首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Yang X  Lu Y  Ma Y  Liu Z  Du F  Chen Y 《Biotechnology letters》2007,29(11):1775-1779
A novel electrochemical sandwich-type gene sensing system was designed by using a DNA probe (DNA-probe1) immobilized on a gold electrode, the target DNA, and another DNA probe (DNA-probe2) conjugated on a single-walled carbon nanotubes/ferrocene (Fc–SWNT) adduct. In this sandwich-type gene-sensing electrode, the Fc–SWNT adduct could significantly amplify the electrochemical response of the reduction of H2O2. The target DNA could be detected selectively and sensitively based on the much enhanced electrochemical catalytic property of the Fc–SWNT adduct toward H2O2 reduction.  相似文献   

2.
We developed a novel enzyme immunoassay based on a potentiometric measurement of molecular adsorption events by using an extended-gate field-effect transistor (FET) sensor. The adsorbing rate of a thiol compound on a gold surface was found to depend on the concentration of the compound. To construct an electrochemical enzyme immunoassay system by using the sensor, the enzyme chemistry of acetylcholinesterase (AChE) to generate a thiol compound was used and combined with the enzyme-linked immunosorbent assays (ELISA). After the AChE-catalyzed reaction, the amount of the antigen was obtained by detecting the adsorbing rate of the generated thiol compound on the gold electrode using the FET sensor. The measurement stability was also found to improve when a high frequency voltage of 10 kHz or more was superimposed to the reference electrode. The signal corresponding to a range between 1 and 250 pg/mL of Interleukin 1β was obtained by the FET sensor when a voltage of 1 MHz was superimposed onto the reference electrode. The FET sensor based ELISA used in this measurement technique can successfully detect Interleukin 1β at concentrations as low as 1 pg/mL.  相似文献   

3.
Unoxidized crystalline silicon, characterized by high purity, high homogeneity, sturdiness and an atomically flat surface, offers many advantages for the construction of electronic miniaturized biosensor arrays upon attachment of biomolecules (DNA, proteins or small organic compounds). This allows to study the incidence of molecular interactions through the simultaneous analysis, within a single experiment, of a number of samples containing small quantities of potential targets, in the presence of thousands of variables. A simple, accurate and robust methodology was established and is here presented, for the assembling of DNA sensors on the unoxidized, crystalline Si(100) surface, by loading controlled amounts of a monolayer DNA-probe through a two-step procedure. At first a monolayer of a spacer molecule, such as 10-undecynoic acid, was deposited, under optimized conditions, via controlled cathodic electrografting, then a synthetic DNA-probe was anchored to it, through amidation in aqueous solution. The surface coverage of several DNA-probes and the control of their efficiency in recognizing a complementary target-DNA upon hybridization were evaluated by fluorescence measurements. The whole process was also monitored in parallel by Atomic Force Microscopy (AFM).  相似文献   

4.
Herein we report a sensitive electrochemical biosensor for DNA detection by making use of exonuclease III and probe DNA functionalized gold nanoparticles. While probe DNA P1 modified on a gold electrode surface can self-hybridize into a stem-loop structure with an exonuclease III-resistant 3' overhang end, in the presence of target DNA, P1 may also hybridize with the target DNA to form a duplex region. Therefore, exonuclease III may selectively digest P1 from its 3'-hydroxyl termini until the duplex is fully consumed. Since a single target DNA can trigger exonuclease III digestion of numerous P1 strands, the first signal amplification is achieved. On the other hand, since the digested P1, exposing its complementary sequence to probe DNA P2, can further hybridize with P2 that has been previously modified on the surface of gold nanoparticles, many nanoparticles loaded with numerous DNA strands are immobilized onto the electrode surface. Consequently, large amount of electroactive molecules [Ru(NH(3))(6)](3+) can bind with the DNA strands to produce an intense electrochemical response as the second signal amplification. Based on the studies with cyclic voltammetry (CV) and chronocoulometry (CC) techniques, the proposed biosensor can sensitively detect specific target DNA at a picomolar level with high specificity.  相似文献   

5.
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.  相似文献   

6.
We developed a self-assembling polymer based on polyallylamine (PAH) for use in DNA chips. Thioctic acid (TA) was covalently attached to PAH in sidechains to immobilize the polymer on a gold surface by self-assembly. N-hydroxysuccinimide-ester terminated probe single-stranded (ss) DNA is easily covalently immobilized onto a TA-PAH-coated gold surface. Finally, the surface was covered with polyacrylic acid, which formed ion complexes with the TA-PAH, to reduce the cationic charge. This ssDNA on a polymer-coated surface recognized a fully matched DNA sequence and restrained nonspecific adsorption of target DNA. The selectivity and efficiency of hybridization was affected by adjusting the ionic strength of sodium chloride.  相似文献   

7.
We propose a new type of photosensitive biosensor with a CMOS compatible Si photodiode integrated circuit, for the high-sensitive detection of small mycotoxin molecules requiring competitive assay approach. In this work, a photodiode is connected to the gate of a field effect transistor (FET) so that the open circuit voltage (V(OC)) of the illuminated photodiode is transferred into the drain/source current (I(DS)) of the FET. The sensing scheme employs competitive binding of toxin molecules (within the sample solution) and toxin-BSA conjugates (immobilized on the photodiode surface) with Au-nanoparticle-labeled antibodies, followed by silver enhancement to generate opaque structures on the photodiode surface. By utilizing the non-linear dependence of the V(OC) on the light intensity, we can maintain a sufficiently high signal resolution at low toxin concentrations (with most of the incident light blocked) for the competitive assay. By monitoring the I(DS) of the FET whose gate is driven by the V(OC), quantitative detection of Aflatoxin B1 has been achieved in the range of 0-15ppb.  相似文献   

8.
A novel hepatitis B virus (HBV) DNA biosensor was developed by immobilizing covalently single-stranded HBV DNA fragments to a gold electrode surface via carboxylate ester to link the 3(')-hydroxy end of the DNA with the carboxyl of the thioglycolic acid (TGA) monolayer. A short-stranded HBV DNA fragment (181bp) of known sequence was obtained and amplified by PCR. The surface hybridization of the immobilized single-stranded HBV DNA fragment with its complementary DNA fragment was evidenced by electrochemical methods using [Os(bpy)(2)Cl(2)](+) as a novel electroactive indicator. The formation of double-stranded HBV DNA on the gold electrode resulted in a great increase in the peak currents of [Os(bpy)(2)Cl(2)](+) in comparison with those obtained at a bare or single-stranded HBV DNA-modified electrode. The mismatching experiment indicated that the surface hybridization was specific. The difference between the responses of [Os(bpy)(2)Cl(2)](+) at single-stranded and double-stranded DNA/TGA gold electrodes suggested that the label-free hybridization biosensor could be conveniently used to monitor DNA hybridization with a high sensitivity. X-ray photoelectron spectrometry technique has been employed to characterize the immobilization of single-stranded HBV DNA on a gold surface.  相似文献   

9.
Water molecules immobilized on a protein or DNA surface are known to play an important role in intramolecular and intermolecular interactions. Comparative analysis of related three-dimensional (3D) structures allows to predict the locations of such water molecules on the protein surface. We have developed and implemented the algorithm WLAKE detecting "conserved" water molecules, i.e. those located in almost the same positions in a set of superimposed structures of related proteins or macromolecular complexes. The problem is reduced to finding maximal cliques in a certain graph. Despite exponential algorithm complexity, the program works appropriately fast for dozens of superimposed structures. WLAKE was used to predict functionally significant water molecules in enzyme active sites (transketolases) as well as in intermolecular (ETS-DNA complexes) and intramolecular (thiol-disulfide interchange protein) interactions. The program is available online at http://monkey.belozersky.msu.ru/~evgeniy/wLake/wLake.html.  相似文献   

10.
In order to develop non-radioactive oligonucleotide derivatives and to examine their utility as a diagnostic tool, namely as DNA-probe, an enzyme-linked oligonucleotide was synthesized. Oligonucleotide complementary to M13mp8 phage DNA was linked to alkaline phosphatase via a crosslinker and a spacer. M13mp8 phage DNA (single strand) immobilized on the nitrocellulose membrane was hybridized with the enzyme-linked oligonucleotide. The hybrid was detected with three detection methods; (1)colorimetric detection in solution, (2)colorimetric one on membranes, and (3)fluorometric one in solution. Methods(2) and (3) gave high sensitivities to detect as low as several to several tens attomoles of DNA and it was found that those methods with enzyme-linked oligonucleotides are potent for DNA-probe methodology from the viewpoint of automation.  相似文献   

11.
A bio-inspired photoresponse was engineered in porphyrin-attached Au nanoparticles (AuNPs) on a field-effect transistor (FET). The system mimics photosynthetic electron transfer, using porphyrin derivatives as photosensitizers and AuNPs as photoelectron counting devices. Porphyrin-protected AuNPs were immobilized onto the gate of an FET via the formation of self-assembled monolayers. Photoinduced electron transfer from the porphyrin led to single electron transfer at the Au nanoparticles, which was monitored via a changing gate voltage on the FET in the presence of organic electrolyte. The further attachment of other functional molecules to this system should enable various other potential functionalities. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

12.
The digold complex [Au(2)(micro-G)(micro-dmpe)](KBr)(0.75) x 2H(2)O (dmpe=1,2-bis(dimethylphosphino)ethane (1)) has been prepared by nucleophilic attack of the guaninate dianion on the gold(I) atoms of [(AuBr)(2)(micro-dmpe)] and has been characterised by X-ray crystallography and spectroscopic studies. The structure of 1 consists of dinuclear nine-membered ring molecules, K(+) cations, Br(-) anions and water molecules, all of them involved in either weak K....O or hydrogen bonding interactions. Within the cyclic dinuclear molecules, gold(I) atoms are bridged on one side by the diphosphine ligand and on the other side by a doubly deprotonated guaninate anion coordinated through neighbouring N3 and N9 nitrogen atoms, with gold(I)....gold(I) interactions of 3.030(2) A. This is the first X-ray example showing an N3,N9-bridging mode for guanine. There are two types of K(+) cations in the structure, K1 and K2. The former interacts with water molecules to form a unique [K(H(2)O)(3)(micro-H(2)O)(2)K(H(2)O)(3)](2+) dipotassium unit whereas K2 interact with the O6 atom of the guaninate ligands and oxygen atoms of the dipotassium unit leading to a chain running along the c-axis. Each chain is interdigitated with four neighbouring ones to give rise to an intricate network in which Br1, Br2 and [K(H(2)O)(3)(micro-H(2)O)(2)K(H(2)O)(3)](2+) fit snugly into cavities defined by digold molecules. Complex 1 luminescence at room temperature and 77 K in the solid state with excitation maxima at 385 nm and emission maxima at 451.8 and 448.7 nm, respectively. The emission spectrum of a saturated solution of 1 in DMSO (dimethyl sulfoxide) shows the maximum at about 440 nm.  相似文献   

13.
A novel piezoelectric method for DNA point mutation detection based on DNA ligase reaction and nano-Au-amplified DNA probes is proposed. A capture probe was designed with the potential point mutation site located at the 3' end and a thiol group at the 5' end to be immobilized on the gold electrode surface of quartz crystal microbalance (QCM). Successive hybridization with the target DNA and detection probe of nano-Au-labeled DNA forms a double-strand DNA (dsDNA). After the DNA ligase reaction and denaturing at an elevated temperature, the QCM frequency would revert to the original value for the target with single-base mismatch, whereas a reduced frequency response would be obtained for the case of the perfect match target. In this way, the purpose of point mutation discrimination could be achieved. The current approach is demonstrated with the identification of a single-base mutation in artificial codon CD17 of the beta-thalassemia gene, and the wild type and mutant type were discriminated successfully. The scanning electron microscope (SEM) image showing that plenty of gold nanoparticles remained on the electrode surface demonstrated that the nano-Au label served as an efficient signal amplification agent in QCM assay. A detection limit of 2.6 x 10(-9)mol/L of oligonucleotides was achieved. Owing to its ease of operation and low detection limit, it is expected that the proposed procedure may hold great promise in both research-based and clinical genomic assays.  相似文献   

14.
Genosensor technology relying on the use of carbon and gold electrodes is reviewed. The key steps of each analytical procedure, namely DNA-probe immobilisation, hybridisation, labelling and electrochemical investigation of the surface, are discussed in detail with separate sections devoted to label-free and newly emerging magnetic assays. Special emphasis has been given to protocols that have been used with real DNA samples.  相似文献   

15.
The fabrication quality of microarrays significantly influences the accuracy and reproducibility of microarray experiments. In this report, we present a simple and fast quality control (QC) method for spotted oligonucleotide and cDNA microarrays. It employs a nonspecific electrostatic interaction of colloidal gold nanoparticles with the chemical groups of DNA molecules and other biomolecules immobilized on the microarray surface that bear positive or negative charges. An inexpensive flatbed scanner is used to visualize and quantify the binding of cationic gold particles to the anionic DNA probes on the microarray surface. An image analysis software was designed to assess the various parameters of the array spots including spot intensity, shape and array homogeneity, calculate the overall array quality score, and save the detailed array quality report in an Excel file. The gold staining technique is fast and sensitive. It can be completed in 10 min and detect less than 1% of the probe amount commonly recommended for microarrays. Compared to the current microarray QC method that utilizes the hybridization of probes with short random sequence oligonucleotides labeled with fluorophore, our gold staining method requires less time for the analysis, reduces the reagent cost, and eliminates the need for the expensive laser scanner. Biotechnol. Bioeng. 2009; 102: 960–964. © 2008 Wiley Periodicals, Inc.  相似文献   

16.
A method for the accurate determination of the melting temperature (Tm) of surface-immobilized DNA duplexes that exploits the fluorescence-quenching properties of gold is reported. A thiolated single-stranded DNA probe is chemisorbed onto a gold surface and then hybridized to a fluorophore-labeled complementary sequence. On formation of the duplex, the fluorescence of the label is effectively quenched by the gold surface. As the temperature is increased and the duplex denatures, the fluorophore label moves away from the gold surface and the fluorescence signal is again observed. The increase in fluorescence is measured as the temperature is ramped, and using first-derivative plots, the Tm is determined. To demonstrate the approach, the Tm of the cystic fibrosis DF508 mutation was determined in three different phases: in solution, in suspension immobilized on gold nanoparticles, and immobilized on gold film-coated substrate. The technique was further applied to optimize conditions for differentiation between a surface-immobilized DF508 mutant probe and a mutant/wild-type target exploiting increasing stringency in varying salt and formamide concentrations. The approach has application in optimization of assay conditions for biosensors that use gold substrates as well as in melting curve analysis.  相似文献   

17.
The direct detection of oligodeoxynucleotide (ODN) hybridisation using electrochemical impedance spectroscopy was made on interdigitated array (IDA) gold (Au) ultramicroelectrodes manufactured by silicon technology. The immobilisation of single stranded ODNs (ssODNs) was accomplished by self-assembling of thiol-modified ODNs onto an Au-electrode surface. Faradaic impedance was measured in the presence of K(3)[Fe(CN)(6)]. Double strand formation was identified by a decrease of approximately 50% in impedance in the low frequency region in the presence of K(3)[Fe(CN)(6)], compared to the spectrum of single stranded ODN. The frequency dependent diffusion of Fe(CN)(6)(3-) ions through defects in the ODN monolayer determines the impedance of Au-ssODN surface. The influence of DNA intercalator methylene blue on the impedance of both, single and double strands, was examined along with K(3)[Fe(CN)(6)] and confirmed by cyclic voltammetry. The layer densities and the hybridisation have been further corroborated by chronoamperometric redox recycling of para-aminophenol (p-AP) in ELISA like experiments. It can be concluded, that a performed impedance spectroscopy did not change the layer density. The impedance spectroscopy at ultramicroelectrodes combined with faradaic redox reactions enhances the impedimetric detection of DNA hybridisation on IDA platforms.  相似文献   

18.
Recently near-infrared (NIR) molecular probes have become important reporter molecules for a number of types of in vivo biomedical imaging. A peptide-based NIR fluorescence probe consisting of a NIR fluorescence emitter (Cy5.5), a NIR fluorescence absorber (NIRQ820), and a protease selective peptide sequence was designed to sense protease activity. Using a MMP-7 model, we showed that NIRQ820 efficiently absorbs the emission energy of Cy5.5 resulting in a low initial signal. Upon reacting with its target, MMP-7, the fluorescence signal of the designed probe was increased by 7-fold with a K(cat)/K(m) of 100 000 M(-)(1) s(-)(1). The described synthetic strategy should have wide application for other NIR probe preparations.  相似文献   

19.
Solid-support based assays offer several advantages that are not normally available in solution. Enzymes that are anchored on gold surfaces can interact with several different molecules, opening the way to high throughput array format based assays. In this scenario, surface plasmon resonance (SPR) and mass spectrometry (MS) investigations have often been applied to analyze the interaction between immobilized enzyme and its substrate molecules in a tag-free environment. Here, we propose a SPR-MS combined experimental approach aimed at studying insulin degrading enzyme (IDE) immobilized onto gold surfaces and its ability to interact with insulin. The latter is delivered by a microfluidic system to the IDE functionalized surface and the activity of the immobilized enzyme is verified by atmospheric pressure/matrix assisted laser desorption ionization (AP/MALDI) MS analysis. The SPR experiments allow the calculation of the kinetic constants involved for the interaction between immobilized IDE and insulin molecules and evidence of IDE conformational change upon insulin binding is also obtained.  相似文献   

20.
J P Cooper  P J Hagerman 《Biochemistry》1990,29(39):9261-9268
Nonradiative fluorescence energy transfer (FET) is thought to be a highly sensitive measure of distance, occurring through a dipole coupling (Forster) mechanism in which the efficiency of FET depends on the inverse sixth power of the distance between fluorophores. The current work assesses the utility of FET for measuring distances in duplex and branched DNA molecules. The apparent efficiencies of FET between donor (fluorescein) and acceptor (eosin) fluorophores attached to opposite ends of oligonucleotide duplexes of varying length were determined; the results suggest that FET is a useful qualitative indicator of distance in DNA molecules. However, the apparent FET efficiency values cannot be fit to the Forster equation without the specification of highly extended DNA-to-fluorophore tethers and motionally restricted fluorophores, conditions that are unlikely to coexist. Three other lines of evidence further suggest that factors in addition to Forster transfer contribute to apparent FET in DNA: (1) The efficiency of FET appears to depend on the base sequence in some instances. (2) Donor fluorescence changes with the extent of thermally induced DNA melting in a sequence-dependent fashion, indicating dye-DNA interactions. (3) The distances between the ends of various pairwise combinations of arms of a DNA four-way junction do not vary as much as expected from previous work. Thus, the occurrence of any nondipolar effects on energy transfer in oligonucleotide systems must be defined before distances in DNA molecules can be quantified by using FET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号