首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new GSSG-dependent thiol:disulphide oxidoreductase was extensively purified from rat liver cytosol. The enzymic protein shows molecular weight 40 000 as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, and 43 000 as determined by thin-layer gel filtration on Bio-Gel P-100. The pI is 8.1. This enzyme converts rat liver xanthine dehydrogenase into an oxidase, in the presence of oxidized glutathione. Other disulphide compounds are either inactive or far less active than oxidized glutathione in the enzymic oxidation of rat liver xanthine dehydrogenase. The enzyme also catalyses the reduction of the disulphide bond of ricin and acts as a thioltransferase and as a GSH:insulin transhydrogenase. The enzymic activity was measured in various organs of newborn and adult rats.  相似文献   

2.
Attempts were made to assess the role of thiols and to determine the cathepsins involved in the degradation of serum albumin in mouse liver and kidney lysosomes. Unlike cysteine or beta-mercaptoethanol, reduced glutathione (GSH) did not stimulate the degradation of formaldehyde-treated albumin in liver lysosomes, suggesting that the tripeptide did not penetrate the membrane. However, GSH was a much more effective stimulant of proteolysis in kidney lysosomes than was cysteine at low concentrations, and the effect was saturable at 1-2 mM concentrations. Thiols did not stimulate proteolysis in lysosomes when the disulphide bonds of albumin were reduced and alkylated, suggesting that the stimulatory effects were solely due to disulphide-bond reduction in protein substrates. Results obtained with thiols and iodoacetamide suggested that albumins denatured by disulphide-bond reduction and alkylation, disulphide-bond reduction without alkylation, or by treatment with 8 M-urea, were all degraded primarily by cathepsin D in lysosomes, but formaldehyde-denatured albumin was attacked by thiol proteinases. These findings correlated well with studies on the degradation of these proteins by rat liver lysosome (tritosome) extracts. Studies with the proteinase inhibitors leupeptin and pepstatin and the stimulatory effects of thiols in these extracts suggested that formaldehyde-denatured albumin was degraded primarily by the thiol proteinases, but that native albumin or albumins denatured by disulphide-bond reduction or by treatment with 8 M-urea were attacked by cathepsin D. Denaturation of serum albumin by any of the methods used caused a shift in the pH optimum of albumin catabolism by tritosome extracts or by purified cathepsin D from approx. 3-4 to 5-6. These results were discussed in terms of a possible mechanism for the catabolic aspect of serum albumin turnover.  相似文献   

3.
Cathepsin L. A new proteinase from rat-liver lysosomes.   总被引:1,自引:0,他引:1  
1. Cathepsin L was purified from rat liver lysosomes by cell fractionation, osmotic disruption of the lysosomes in the lysosomal mitochondrial pellet, gel filtration of the lysosomal extract and chromatography on CM-Sephadex. 2. Cathepsin L is a thiol proteinase and exists in several multiple forms visible on the disc electropherogram. By polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate its molecular weight was found to be 23000-24000. The isoelectric points of the multiple forms of cathepsin L extended from pH 5.8-6.1 ascertained by analytical isoelectric focusing. 3. Using various protein substrates, cathepsin L was found to be the most active endopeptidase from rat liver lysosomes acting at pH 6-7. In contrast to cathepsin B1, its capability of hydrolyzing N-substituted derivatives of arginine is low and it does not split esters. 4. Greatest activity is obtained close to pH 5.0 with 70-90% of maximal activity at pH 4.0 and pH 6.0 and 30-40% at pH 7.0. 5. The enzyme is strongly inhibited by leupeptin and the chloromethyl ketone of tosyl-lysine. Leupeptin acts as a pseudo-irreversible inhibitor. 6. The enzyme is stable for several months at slightly acid pH values in the presence of thiol compounds in a deep-frozen state.  相似文献   

4.
Role of thiols in degradation of proteins by cathepsins.   总被引:2,自引:1,他引:1       下载免费PDF全文
The effects of thiols on the breakdown of 125I-labelled insulin, albumin and formaldehyde-treated albumin by highly purified rat liver cathepsins B, D, H and L at pH 4.0 and 5.5 were studied. At both pH values degradation was strongly activated by the thiols cysteamine, cysteine, dithiothreitol, glutathione and 2-mercaptoethanol, and its rate increased with increasing thiol concentration. Preincubation of the protein substrates with 5 mM-glutathione did not affect concentration. Preincubation of the protein substrates with 5 mM-glutathione did not affect the rate of degradation by cathepsin D or L, and determination of free thiol groups after incubation of the proteins in the presence of glutathione but without cathepsin showed that their disulphide bonds were stable under the incubation conditions. Sephadex G-75 chromatography of the acid-soluble products of insulin digestion by cathepsin D or L suggested that thiols can reduce disulphide bonds in proteins after limited proteolysis. The resultant opening-up of the protein structure would lead to further proteolysis, so that the two processes (proteolysis and reduction) may act synergistically. By using the osmotic protection method it was shown that, at a physiological pH, cysteamine, and its oxidized form cystamine, can cross the lysosome membrane and thus may well be the physiological hydrogen donor for the reduction of disulphides in lysosomes. The results are discussed in relation to the lysosomal storage disease cystinosis.  相似文献   

5.
The inhibitory effect of ricin, abrin, and modeccin on protein synthesis by a rabbit reticulocyte lysate is enhanced after preincubation of the toxins with GSH in the presence of a thiol:protein disulfide oxidoreductase purified from bovine liver. The same toxins, as well as the toxin from Viscum album, are reduced also by another thiol:protein disulfide oxidoreductase purified from rat liver cytosol.  相似文献   

6.
Up to 88% of the total thiol present in isolated rat liver nuclei can be extracted with 8 M urea 50 mM phosphate pH 7.6. There is approx. 5–10% disulphide material present in this extract. When the thiols were labelled with 14C-N-ethyl maleimide (14C-NEM) the thiol material co-electrophoresed with the protein material. If a mixed disulphide was formed with 35S-labelled 5-thio-2-nitrobenzoic acid (Ellman's reagent) the thiol compounds could be removed from the protein by isoelectric focusing in polyacrylamide gel. The mixed disulphides obtained could be resolved into at least 10 components on DEAE cellulose. One of the major components had an estimated molecular weight of 3 000 and did not contain peptide material.  相似文献   

7.
The uptake and degradation of 125I-labeled (a) native aldolase, (b) cathepsin D-inactivated aldolase, and (c) aldolase inactivated by oxidized glutathione were studied in perfused rat liver. All three forms of aldolase were removed from the perfusion medium and degraded by the liver, but the uptake of the glutathione-inactivated enzyme (half-life in perfusate = 10 min) was much faster than that of the native enzyme (half-life = 30 min) or the cathepsin-inactivated enzyme (half-life = 42 min). The degradation of the enzyme was almost totally inhibited by leupeptin, indicating that thiol proteinases in lysosomes play an important role in the digestion process. Degradation of native and cathepsin D-inactivated aldolase appeared to be slower than that of the glutathione-inactivated enzyme but studies in which liver was preloaded with aldolase by perfusion at 19 degrees C and then warming to 37 degrees C indicated that the rate of degradation of all three forms was similar. It is concluded that the liver is capable of distinguishing between the glutathione-altered aldolase and native or partially degraded aldolase with regard to endocytosis, but that all three forms are degraded at similar rates once within lysosomes.  相似文献   

8.
The protein disulphide-bond isomerization activity of highly active homogeneous protein disulphide-isomerase (measured by re-activation of 'scrambled' ribonuclease) is enhanced by EDTA and by phosphate buffers. As shown for previous less-active preparations, the enzyme has a narrow pH optimum around pH 7.8 and requires the presence of either a dithiol or a thiol. The dithiol dithiothreitol is effective at concentrations 100-fold lower than the monothiols reduced glutathione and cysteamine. The enzyme follows Michaelis-Menten kinetics with respect to these substrates; Km values are 4,620 and 380 microM respectively. The enzyme shows apparent inhibition by high concentrations of thiol or dithiol compounds (greater than 10 X Km), but the effect is mainly on the extent of reaction, not the initial rate. This is interpreted as indicating the formation of significant amounts of reduced ribonuclease in these more reducing conditions. The purified enzyme will also catalyse net reduction of insulin disulphide bonds by reduced glutathione (i.e. it has thiol:protein-disulphide oxidoreductase or glutathione:insulin transhydrogenase activity), but this requires considerably higher concentrations of enzyme and reduced glutathione than does the disulphide-isomerization activity. The Km for reduced glutathione in this reaction is an order of magnitude greater than that for the disulphide-isomerization activity, and the turnover number is considerably lower than that of other enzymes that can catalyse thiol-disulphide oxidoreduction. Conventional two-substrate steady-state analysis of the thiol:protein-disulphide oxidoreductase activity indicates that it follows a ternary-complex mechanism. The protein disulphide-isomerase and thiol:protein-disulphide oxidoreductase activities co-purify quantitatively through the final stages of purification, implying that a single protein species is responsible for both activities. It is concluded that previous preparations, from various sources, that have been referred to as protein disulphide-isomerase, disulphide-interchange enzyme, thiol:protein-disulphide oxidoreductase or glutathione:insulin transhydrogenase are identical or homologous proteins. The assay, nomenclature and physiological role of this enzyme are discussed.  相似文献   

9.
Cathepsin B was localized in multiple neurons of the rat central nervous system by means of the peroxidase-antiperoxidase technique and immunogold labeling using a polyclonal antiserum produced in rabbits against rat liver enzyme. The main intracellular locus of cathepsin B antigenic sites was in lysosomes. In some cases, however, immunoreactive material was also detected outside lysosomes (i.e. at the membranes of the rough endoplasmic reticulum). The findings are discussed with respect to the proposed role of the enzyme in the general protein metabolism of the brain and the potency of the antiserum to label the proform of cathepsin B.  相似文献   

10.
Species variations amongst lysosomal cysteine proteinases   总被引:4,自引:0,他引:4  
H Kirschke  P Locnikar  V Turk 《FEBS letters》1984,174(1):123-127
Properties of cathepsin L from rat liver lysosomes were compared with those of a similar enzyme, cathepsin S from beef spleen. Major characteristics of cathepsin L are the high activity against Z-Phe-Arg-methylcoumarylamide and sensitivity to the fast reacting irreversible inhibitor Z-Phe-Phe-diazomethane. In contrast, cathepsin S hydrolyzes Z-Phe-Arg-methylcoumarylamide only slowly and Z-Phe-Phe-diazomethane cannot be regarded as a potent inhibitor of this enzyme. The differences in the substrate specificity of cathepsin L from rat liver and cathepsin S from beef spleen are discussed in comparison with the substrate specificity of cathepsin B from rat and human liver and beef spleen.  相似文献   

11.
Adrenocortical tissues of male adult Wistar rats were fractionated by isopycnic density gradient centrifugation. Fractions were analyzed for density, protein and marker enzymes for lysosomes and mitochondria with rat liver being used as a reference tissue for subcellular enzyme distribution. Both lysosomes and mitochondria of adrenal cortex showed unimodal distribution profiles of marker enzymes with their modal isopycnic density values at 1.165. This value was significantly lower than the corresponding ones for lysosomes and mitochondria in rat liver but was very close to those in porcine adrenal cortex. Modal isopycnic density as well as distribution profiles of marker enzymes for lysosomes and mitochondria remained unchanged 24 hr after 0.1 or 10 units of ACTH (Cortrosyn Z) administration. As in porcine adrenal cortex, lysosomes in rat adrenal cortex were characterized by a higher content of cathepsin D than those in rat liver.  相似文献   

12.
《Plant science》1986,45(1):1-7
NADP-malate dehydrogenase (L-malate: NADP+ oxidoreductase, E.C. 1.1.1.82) was purified from the leaves of Zea mays L. and its subunit molecular weight, amino acid composition and the changes in number of thiol groups during activation were determined. The amino acid composition we found differed from that reported earlier for the Z. mays enzyme but was very similar to that reported for the enzyme isolated from pea leaves. The maize enzyme contains fewer methionine residues (3 compared to 5 in pea) but a greater total number of cysteine residues (6 compared to 3 in pea). In its inactive form (oxidised) the enzyme contained 2 thiols per subunit of which only 1 reacts with 5,5′-dithiobis(2-nitrobenzoic acid) when the enzyme is in its native form. During activation by dithiothreitol two disulphide bonds are reduced per subunit to give 4 new thiol groups. We conclude that NADP-malate dehydrogenase from leaves of the C4 plant Z. mays is very similar to the enzyme from the C3 plant pea. However, apparently two disulphide bonds are reduced during the reductive activation of the Z. mays enzyme in vitro compared with 1 disulphide bond for the pea enzyme.  相似文献   

13.
An enzyme present in rat liver lysosomes catalyzes the conversion of neutral rabbit liver fructose 1,6-bisphosphatase (Fru-P2ase, EC 3.1.3.11) to a form having maximum activity at pH 9.2. The converting enzyme is partly released when lysosomes are subjected to a single freeze-thaw cycle, but a significant fraction tends to remain with the lysosomal membrane fraction even after repeated freezing and thawing. After repeated freezing and thawing hexosaminidase and cathepsin D are also partly membrane-bound, but cathepsins A, B, and C are completely solubilized. The membrane-bound enzymes, unlike those in intact lysosomes, are not cryptic. The converting enzyme activity is inactivated by phenylmethanesulfonyl fluoride, and is almost completely inactive after exposure to iodoacetic acid or tosylamido-2-phenylethyl and N-α-tosyl lysyl chloromethyl ketones. Unlike cathepsin B, it is not inhibited by leupeptin. Converting enzyme is unstable above pH 6.5, and this property also serves to distinguish it from cathepsins B and D. The results suggest that the converting enzyme is not identical to any of the well-characterized cathepsins.  相似文献   

14.
Upon differential centrifugation of rat liver homogenate, the enzyme acyl-CoA:dihydroxyacetone-phosphate acyltransferase (EC 2.3.1.42) was found to be localized in the light mitochondrial (L) fraction which is enriched with lysosomes and peroxisomes. Peroxisomes were separated from lysosomes in a density gradient centrifugation using rats which were injected with Triton WR 1339. By comparing the enzyme distribution with the distribution of different marker enzymes, it was concluded that dihydroxyacetone phosphate acyltransferase is primarily localized in rat liver peroxisomes (microbodies). Similarly, the enzyme acyl dihydroxyacetone-phosphate:NADPH oxidoreductase (EC 1.1.1.101) was shown to be enriched in the peroxisomal fraction, although a portion of this reductase is also present in the microsomal fraction.  相似文献   

15.
A procedure for the isolation of cathepsin B (EC 3.4.22.1) and of cathepsin H from bovine spleen involving covalent chromatography by thiol-disulphide interchange and ion-exchange chromatography was devised. The stabilities of both cathepsins in alkaline media are markedly temperature-dependent, and reliable kinetic data can be obtained at pH values up to 8 by working at 25 degrees C with a continuous spectrophotometric assay. Both enzyme preparations contain only one type of thiol group as judged by reactivity characteristics towards 2,2'-dipyridyl disulphide at pH values up to 8; in each case this thiol group is essential for catalytic activity. Cathepsin H was characterized by kinetic analysis of the reactions of its thiol group with 2,2'-dipyridyl disulphide in the pH range approx. 2-8 and the analogous study on cathepsin B [Willenbrock & Brocklehurst (1984) Biochem. J. 222, 805-814] was extended to include reaction at pH values up to approx. 8. Cathepsin H, like the other cysteine proteinases, was shown to contain an interactive catalytic-site system in which the nucleophilic character of the sulphur atom is maintained in acidic media. The considerable differences in catalytic site characteristics detected by this two-protonic-state reactivity probe between cathepsin B, cathepsin H, papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) are discussed. Reaction with 2,2'-dipyridyl disulphide in acidic media, which is known to provide a rapid spectrophotometric active centre titration for many cysteine proteinases, is applicable to cathepsin H. This is useful because other active-centre titrations have proved unsuitable in view of the relatively low reactivity of the thiol group in cathepsin H.  相似文献   

16.
A procedure for the purification of 3-hydroxy-3-methylglutaryl coenzyme A reductase [mevalonate:NADP+ oxidoreductase (CoA-acylating); EC 1.1.1.34] from rat liver microsomes has been developed. The enzyme preparations obtained by this procedure have specific activities of 16 to 23 μmol of mevalonate formed per minute per milligram of protein. These enzyme preparations were judged to be homogeneous on the basis of comigration of enzyme activity and protein on polyacrylamide gels.  相似文献   

17.
The purpose of the present investigation was twofold: The isolation of Kupffer cell lysosomes by changing their density in vivo through uptake of colloidal silver iodide (NeosilvolR), and the characterization of the isolated fraction. No significant changes in the activities or distribution of acid phosphatase, aryl sulphatase, and cathepsin D were found after the injection of NeosilvolR. A method is presented for the isolation of silver-loaded lysosomes from rat liver Kupffer cells by means of ultracentrifugation in sucrose gradients. Morphological and biochemical data indicate that the lysosomal fraction was contaminated with other subcellular organelles only to a minor degree. The lysosomal fraction showed non-parallel enrichment of various acid hydrolases, with the highest degree of purification found for aryl sulphatase and the lowest for acid phosphatase. The lysosomal enzyme activity pattern was similar to that found in Kupffer cell preparations.  相似文献   

18.
The thiol proteinase cathepsin H, isolated and purified from rat liver lysosomes, provokes acute inflammation characterized by the accumulation of polymorphonuclear leukocytes (PMN) when injected intracutaneously into newborn rats. We have examined the possibility that the accumulation of PMN at skin sites injected with cathepsin H is due, in part, to generation locally of C-derived chemotactic factors. We have found that cathepsin H acts in a concentration- and time-dependent fashion in whole human (and rat) EDTA-plasma to generate C5-derived peptides with chemotactic activity for PMN. Chemotactic activity was not generated in EDTA-plasma by either heat-inactivated cathepsin H or by a combination of active enzyme and a thiol proteinase inhibitor isolated from rat epidermis. Cathepsin H also acted in a concentration- and time-dependent fashion on isolated (functionally pure) human C5 to yield chemotactic activity for PMN as well as PMN lysosomal enzyme-releasing activity. Whereas 10 ng/ml cathepsin H generated significant chemotactic activity from isolated C5 (1000 CH50 U/ml), 7 to 10 micrograms/ml were required to generate chemotactic activity in whole EDTA-plasma. Cathepsin H not only was capable of generating biologically active, C5-derived peptides, but also was capable of degrading these peptides. Incubation of either whole EDTA-plasma or isolated C5 with high concentrations of cathepsin H (e.g., 25 micrograms/ml and 100 ng/ml, respectively) caused the rapid appearance of chemotactic activity followed by an equally rapid disappearance. PMN accumulated more rapidly in the skin of newborn rats injected with cathepsin H-treated C5 than in the skin of animals injected with cathepsin H alone. These data suggest that generation by cathepsin H of C-derived chemotactic activity contributes to the ability of this enzyme to induce dermal inflammation.  相似文献   

19.
6,6-Dithiodinicotinate shows half-of-the-sites reactivity towards the six catalytic-site thiol groups of bovine liver UDP-glucose dehydrogenase. The reagent introduces three intrasubunit disulphide linkages between catalytic-site thiol groups and non-catalytic-site thiol groups and abrogates 60% of the catalytic activity of the hexameric enzyme; excess 2-mercaptoethanol rapidly restores full catalytic activity. These results show the half-of-the-sites behaviour of the enzyme with the reagent and the presence of a non-catalytic-site thiol group capable of forming a disulphide linkage with a catalytic-site thiol group on the same subunit without irreversible denaturation.  相似文献   

20.
Summary Light and electron microscopic localization of cathepsin D in rat liver was investigated by post-embedding immunoenzyme and protein A-gold techniques. By light microscopy, cytoplasmic granules of parenchymal cells and Kupffer cells were stained for cathepsin D. Weak staining was also noted in sinusoidal endothelial cells. In the parenchymal cells many of positive granules located around bile canaliculi. In the Kupffer cells and the endothelial cells, diffuse staining was noted in the cytoplasm in addition to granular staining. By electron microscopy, gold particles representing the antigenic sites for cathepsin D were seen in typical secondary lysosomes and some multivesicular bodies of the parenchymal cells and Kupffer cells. The lysosomes of the endothelial cells and fat-storing cells were weakly labeled. Quantitative analysis of the labeling density in the lysosomes of these three types of cells demonstrated that the lysosomes of parenchymal cells and Kupffer cells are main containers of cathepsin D in rat liver. The results suggest that cathepsin D functions in the intracellular digestive system of parenchymal cells and Kupffer cells but not so much in that of the endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号