首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The main surface glycoprotein, hemagglutinin (HA), was obtained by treatment of influenza virus B/Leningrad/179/86 with bromelain. Amino acid and monosaccharide compositions of HA and neuraminidase (NA, earlier isolated from the same virus) were determined, thus showing HA and NA to contain 8-10 and 2 carbohydrate chains, respectively. The carbohydrate fragments were cleaved off by the alkaline LiBH4 treatment, the oligosaccharides released were reduced with NaB3H4 and fractionated by two-step HPLC on Ultrasphere-C18 and Zorbax-NH2 columns. Some higher mannose and complex oligosaccharides were identified in both cases by comparison with nonlabelled oligosaccharides of the known structure. The data obtained show that surface glycoproteins of influenza virus A and B are rather similar with regard to structure and heterogeneity of their carbohydrate chains.  相似文献   

2.
The structure and heterogeneity of carbohydrate chains of hemagglutinin (HA) and neuraminidase (NA), the surface glycoproteins of influenza virus A/Krasnodar/101/59 (H2N2), were investigated. Hemagglutinin was reduced with beta-mercaptoethanol and its heavy (HA1) and light (HA2) chains were separated by gel chromatography. Amino acid and sugar composition of HA1, HA2 and NA was elucidated. The carbohydrate chains of the glycoproteins were cleaved off by the alkaline LiBH4 treatment and oligosaccharides were reduced with NaB[3H]4. They were fractionated by subsequent two-step HPLC on Ultrasphere-C8 and Zorbax-NH2 columns with simultaneous identification using nonlabelled oligosaccharides of known structures. Some of the major oligosaccharides isolated from HA1, HA2 and NA were thus identified as high mannose chains, containing 5-9 mannose residues, and complex chains, first of all biantennary chains having or not having bisecting N-acetylglucosamine and/or fucose residues. The approach which has been developed enables one to study the structure and heterogeneity of carbohydrate chains starting from one nmole of a desialylated N-glycoprotein.  相似文献   

3.
Dopamine beta-hydroxylase present in the soluble matrix of bovine adrenal medullary chromaffin granules contains biantennary complex oligosaccharides and high-mannose oligosaccharides in a molar ratio of approximately 2:1. The high-mannose oligosaccharides contain an average of six mannose residues. The largest biantennary oligosaccharides (40% of the total) have two complete peripheral branches consisting of sialic acid-galactose-N-acetylglucosamine, but an equal proportion lack sialic acid on one branch and the remainder lack N-acetylglucosamine and/or galactose. Affinity chromatography on lentil lectin-agarose demonstrated that 84% of the dopamine beta-hydroxylase biantennary oligosaccharides are substituted by fucose on the core N-acetylglucosamine which is linked to asparagine. Based on carbohydrate concentration and the proportions of biantennary and high-mannose oligosaccharides, it would appear that the four dopamine beta-hydroxylase subunits of Mr congruent to 75,000 are not identical with respect to their oligosaccharide moieties. In chromaffin granule membranes, high-mannose and biantennary oligosaccharides comprise 20 and 35%, respectively, of the glycoprotein carbohydrate. Almost 40% is present in the form of large complex oligosaccharides with three or more antennas, less than 3% of which have both a core fucose residue and a 2,6-substituted alpha-linked mannose residue. Chromaffin granule membranes also contain a small proportion (approximately 6%) of O-glycosidically linked glycoprotein oligosaccharides which are predominantly monosialyl derivatives of galactosyl-N-acetylgalactosamine. The ratio of N-acetyl- to N-glycolylneuraminic acid in dopamine beta-hydroxylase and the glycoproteins of chromaffin granule membranes is approximately 1.5:1, which is within the same range as that previously found in membrane gangliosides and in the chromogranins isolated from the soluble granule matrix.  相似文献   

4.
The clearance of total rat liver secretory glycoproteins and of alpha 1-acid glycoprotein carrying no or different types of oligosaccharide side chains was studied in vivo and in the isolated perfused rat liver. In order to obtain unglycosylated or differently glycosylated forms of secreted glycoproteins, rat hepatocyte primary cultures were incubated with various inhibitors of N-glycosylation. Tunicamycin was used for the synthesis of unglycosylated (glyco)proteins, the mannosidase I inhibitor 1-deoxymannojirimycin for the synthesis of high-mannose type and the mannosidase II inhibitor swainsonine for the synthesis of hybrid-type glycoproteins. Glycoproteins carrying carbohydrate side chains of the complex type were synthesized by control hepatocytes. In vivo and in the perfused rat liver, high-mannose-type glycoproteins were cleared at the highest rate, followed by unglycosylated and hybrid-type glycoproteins. The lowest clearance rate was found for the glycoproteins with carbohydrate side chains of the complex type. For the highly glycosylated alpha 1-acid glycoprotein the differences in clearance rates were more pronounced. The following plasma half-lives were determined in vivo: complex type, 100 min; hybrid type, 15 min; unglycosylated form, 5 min; and high-mannose type less than 1 min. In the recirculating perfused liver 28% of complex-type alpha 1-acid glycoprotein, 40% of hybrid type, 47% of unglycosylated and 93% of high-mannose-type alpha 1-acid glycoprotein were removed from the perfusate within 2 h. It is concluded that N-glycosylation and processing to complex-type oligosaccharides seems to be of great importance for the circulatory life time of plasma glycoproteins.  相似文献   

5.
An enzymatic procedure for releasing asparagine-linked oligosaccharides from glycoproteins by treatment with N-glycanase (peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase) has been investigated. Ribonuclease B, transferrin, fetuin, and alpha 1-acid glycoprotein were treated with N-glycanase and the released oligosaccharides were radiolabeled with NaB3H4. Lectin staining of the N-glycanase-treated proteins indicated that the deglycosylation reactions had proceeded to completion. The labeled carbohydrate chains were analyzed by HPLC on Micro-Pak AX-5 and AX-10 columns. The proportion of high-mannose and bi-, tri-, and tetraantennary complex chains obtained from each glycoprotein was in agreement with literature values. These results demonstrate that N-glycanase provides a simple method to release all common classes of asparagine-linked oligosaccharides from a glycoprotein in a form that can be radiolabeled directly for structural analysis.  相似文献   

6.
Sialomucins are the dominant components of the cell surfaces of some carcinoma ascites cells and have been postulated to inhibit recognition of tumours by the immune system. The sialomucin ASGP-1 (ascites sialoglycoprotein-1) of the 13762 rat mammary adenocarcinoma is associated with the cell surface as a complex with a concanavalin-A-binding glycoprotein called ASGP-2. This sialomucin complex has been purified from ascites cell microvilli by extraction with Triton X-100 and CsCl density-gradient centrifugation. ASGP-1 (which has been purified previously) and ASGP-2 were dissociated in 6 M-guanidine hydrochloride and separated by gel filtration. The molecular mass of the undenatured detergent complex of ASGP-2, estimated by gel filtration and velocity sedimentation in Triton X-100, was 148 kDa. Since the apparent molecular mass by SDS/polyacrylamide-gel electrophoresis was about 120 kDa, ASGP-2 must be a monomer as extracted from the membrane. Studies of its chemical composition indicate that it contains about 45% carbohydrate by weight, including both mannose and galactosamine. Alkaline borohydride treatment of ASGP-2 converted approx. half of the N-acetylgalactosamine to N-acetylgalactosaminitol, demonstrating the presence of O-linked oligosaccharides. Analyses of mannose-labelled Pronase glycopeptides from ASGP-2 by lectin-affinity chromatography on concanavalin A and leucocyte-agglutinating phytohaemagglutinin suggested that 40% of the label was present in high-mannose/hybrid oligosaccharides, 20% in triantennary oligosaccharides substituted on the C-2 and C-4 mannose positions and 40% in tri- or tetra-antennary oligosaccharides substituted on C-2 and C-6. The presence of polylactosamine sequences on these oligosaccharides was suggested by lectin blots and by precipitation from detergent extracts with tomato lectin. From chemical analyses and lectin-affinity studies, we estimate that ASGP-2 contains four high-mannose and 13 complex N-glycosylated oligosaccharides, plus small amounts of polylactosamine and O-linked oligosaccharides. The presence of four different classes of oligosaccharides on this glycoprotein suggests that it will be an interesting model system for biosynthetic comparisons of the different glycosylation pathways.  相似文献   

7.
Clostridium botulinum produces the botulinum neurotoxin, forming a large complex as progenitor toxins in association with non-toxic non-hemagglutinin and/or several different hemagglutinin (HA) subcomponents, HA33, HA17 and HA70, which bind to carbohydrate of glycoproteins from epithelial cells in the infection process. To elucidate the carbohydrate recognition mechanism of HA70, X-ray structures of HA70 from type C toxin (HA70/C) in complexes with sialylated oligosaccharides were determined, and a binding assay by the glycoconjugate microarray was performed. These results suggested that HA70/C can recognize both α2-3- and α2-6-sialylated oligosaccharides, and that it has a higher affinity for α2-3-sialylated oligosaccharides.  相似文献   

8.
Chromatographic methods were developed for the separation and characterization of acidic (sialylated) and neutral (asialo-complex and high-mannose) oligosaccharides released from glycoproteins with peptide N-glycosidase F. endo-beta-N-acetylglucosaminidase F and endo-beta-N-acetylglucosaminidase H using a carbohydrate analyzer (Dionex BioLC). All the carbohydrate separations were carried out on a polymeric pellicular anion-exchange column HPIC-AS6/CarboPac PA-1 (Dionex) using only two eluants namely, 0.5 M NaOH and 3% acetic acid/NaOH pH 5.5, which were mixed with water to generate various gradients. Developed conditions for quantitative detection of carbohydrates with pulsed amperometry were necessary to obtain steady baselines at 0.1-0.3 microA output with suitable sensitivity (less than 5 pmol) in separations employing a variety of acidic and alkaline sodium acetate gradients. Oligosaccharides released from heat-denatured and trypsin-treated glycoproteins were purified initially from large-scale digestion (greater than 0.1 g) by extraction of peptide material into phenol/chloroform and finally by ion-exchange chromatography of the acqueous phase. Oligosaccharides isolated from the peptide N-glycosidase digests of bovine fetuin, human transferrin and alpha 1-acid glycoprotein gave multiple peaks in each charge group in separations based on the charge content at pH 5.5. Alkaline sodium acetate gradients were developed to obtain oligosaccharide maps of the glycoproteins within 60 min, in which separated oligosaccharides eluted in the order of neutral, mono-, di-, tri- and tetra-sialylated species based on both charge, size and structure. Baseline separations were obtained with neutral oligosaccharide types but mixtures of high-mannose and complex types were poorly resolved. The high-mannose peaks were eliminated specifically from complex oligosaccharides by digesting with alpha-mannosidase. Treatment with beta-galactosidase, beta-N-acetylglucosaminidase and alpha-mannosidase resulted in a decrease of the oligosaccharide elution times corresponding to the number of sugar residues lost, the profile of changes was highly reproducible. In contrast, treatment with alpha-L-fucosidase, endo-beta-N-acetylglucosaminidase F and endo-beta-N-acetylglucosaminidase H resulted in an increase in their corresponding oligosaccharide retention times similar to the presence of an additional sugar residue. Conditions developed for separation of the reduced oligosaccharides and also a mixture of monosaccharide to oligosaccharide containing about 15 sugar residues within 30 min were useful in determining the effect of endo- and exo-glycosidases on porcine thyroglobulin oligosaccharides. Changes in elution time of the oligosaccharides following specific glycosidase digestions combined with methylation analysis provided a rapid and sensitive tool for confirmation of the carbohydrate primary structures present in thyroglobulin.  相似文献   

9.
The oligosaccharides of chick embryo type I procollagen were isolated from the carboxyl-terminal propeptide fragment by exhaustive digestion with papain and pronase, and then purified as a mixture of glycopeptides. The structures of the oligosaccharides were established by high-resolution 1H-NMR spectroscopy and found to be a mixture with respect to the non-reducing terminal residues as shown below:
The percentages refer to the relative amount of those mannose residues present in the mixture. The data suggest that the oligosaccharides are a microheterogeneous mixture of high-mannose type glycans containing between six and nine mannose residues per carbohydrate unit. Such carbohydrate chains, although not uncommon for glycoproteins, had never been found before for collagen or collagen-related compounds.  相似文献   

10.
We have previously reported that the binding properties of the hemagglutinin (HA) of the WSN-F strain of influenza A are affected by the cells in which the virus is grown (Crecelius, D. M., Deom, C. M., and Schulze, I.T. (1984) Virology 139, 164-177); at 37 degrees C chick embryo fibroblast-grown F virus has a greater affinity for host cells than does the same virus grown in Madin-Darby bovine kidney (MDBK) cells. In an attempt to explain this host-determined property, we have characterized the carbohydrate put onto the viral HA by these two cells. Experiments using tunicamycin indicate that the HA made by MDBK cells contains about 4000 daltons of carbohydrate in excess of that on the HA from chick embryo fibroblast. Serial lectin affinity chromatography of the asparagine-linked oligosaccharides on the HA subunits, HA1 and HA2, detected a number of host-dependent differences in the complex oligosaccharides. Both HA1 and HA2 from MDBK cells contained more highly branched (i.e. tri- and tetraantennary) complex oligosaccharides than did the subunits from chick embryo fibroblasts. In addition, the HA subunits from the two sources differed in the amount of galactose-containing "bisected" complex oligosaccharides and in the presence of certain fucosylated triantennary oligosaccharides. Profiles of the asparagine-linked oligosaccharides from the host cells did not show these differences, indicating that the HA subunit profiles were not necessarily representative of the structures found on the cellular glycoproteins. The data support the conclusion that bulky oligosaccharides on the MDBK-HA subunits of WSN-F reduce the affinity of the virus for cellular receptors.  相似文献   

11.
Nakano M  Kakehi K  Tsai MH  Lee YC 《Glycobiology》2004,14(5):431-441
We analyzed carbohydrate chains of human, bovine, sheep, and rat alpha1-acid glycoprotein (AGP) and found that carbohydrate chains of AGP of different animals showed quite distinct variations. Human AGP is a highly negatively charged acidic glycoprotein (pKa = 2.6; isoelectic point = 2.7) with a molecular weight of approximately 37,000 when examined by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and contains di-, tri-, and tetraantennary carbohydrate chains. Some of the tri- and tetraantennary carbohydrate chains are substituted with a fucose residue (sialyl Lewis x type structure). In sheep AGP, mono- and disialo-diantennary carbohydrate chains were abundant. Tri- and tetrasialo-triantennary carbohydrate chains were also present as minor oligosaccharides, and some of the sialic acid residues were substituted with N-glycolylneuraminic acid. In rat AGP, very complex mixtures of disialo-carbohydrate chains were observed. Complexity of the disialo-oligosaccharides was due to the presence of N, O-acetylneuraminic acids. Triantennary carbohydrate chains carrying N,O-acetylneuraminic acid were also observed as minor component oligosaccharides. We found some novel carbohydrate chains containing both N-acetylneuraminic acid and N-glycolylneuraminic acid in bovine AGP. Interestingly, triantennary carbohydrate chains were hardly detected in bovine AGP, but diantennary carbohydrate chains with tri- or tetrasialyl residues were abundant. Furthermore the major sialic acid in these carbohydrate chains was N-glycolylneuraminic acid. It should be noted that these sialic acids are attached to multiple sites of the core oligosaccharide and are not present as disialyl groups.  相似文献   

12.
The first steps of the biosynthetic pathway of high molecular weight polylactosamine-type glycopeptides from rat Zajdela hepatoma cells were studied by pulse-chase experiments, biochemical analysis and by inhibition of N-glycosylation. It is clear that this process involves firstly the transfer of a lipid-linked high-mannose oligosaccharide precursor to a protein moiety in a similar way to that of N-linked glycopeptides of a more common size range according to the classical 'cycle of dolichol'. In the presence of enzymes which are inhibitors of the processing of high-mannose oligosaccharide chains, this class of oligosaccharides was considerably increased, whereas polylactosamine chains and lower complex N-linked glycopeptides were concomitantly decreased in the same kinetics and the same ratio. As expected in the presence of N-methyldeoxynojirimycin, which is an alpha-glucosidase inhibitor, high-mannose oligosaccharides remained glycosylated and are mostly of the Glc1-3Man9GlcNAc type. In the presence of swainsonine, which is an alpha-mannosidase (EC 3.2.1.24) inhibitor, these chains were devoid of glucose residues. In addition, some chains displayed hybrid structures. It appears, therefore, that the first steps of the biosynthesis of polylactosamine-type and N-linked oligosaccharides of a more common size range proceed similarly and that differences between their biosynthetic pathways occur during the elongation phase, which leads to their final respective structures. Glycopeptides prepared from the cell surface by mild trypsin treatment as well as from entire cells, previously treated or not by processing inhibitors, display the same gel filtration patterns indicating that modifications in protein glycosylation do not prevent glycoprotein insertion into the cell membrane.  相似文献   

13.
Human apolipoprotein B100 (apoB100) has 19 potential N-glycosylation sites, and 16 asparagine residues were reported to be occupied by high-mannose type, hybrid type, and monoantennary and biantennary complex type oligosaccharides. In the present study, a site-specific glycosylation analysis of apoB100 was carried out using reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI MS/MS). ApoB100 was reduced, carboxymethylated, and then digested by trypsin or chymotrypsin. The complex mixture of peptides and glycopeptides was subjected to LC/ESI MS/MS, where product ion spectra of the molecular ions were acquired data-dependently. The glycopeptide ions were extracted and confirmed by the presence of carbohydrate-specific fragment ions, such as m/z 204 (HexNAc) and 366 (HexHexNAc), in the product ion spectra. The peptide moiety of glycopeptide was determined by the presence of the b- and y-series ions derived from its amino acid sequence in the product ion spectrum, and the oligosaccharide moiety was deduced from the calculated molecular mass of the oligosaccharide. The heterogeneity of carbohydrate structures at 17 glycosylation sites was determined using this methodology. Our data showed that Asn2212, not previously identified as a site of glycosylation, could be glycosylated. It was also revealed that Asn158, 1341, 1350, 3309, and 3331 were occupied by high-mannose type oligosaccharides, and Asn 956, 1496, 2212, 2752, 2955, 3074, 3197, 3438, 3868, 4210, and 4404 were predominantly occupied by mono- or disialylated oligosaccharides. Asn3384, the nearest N-glycosylation site to the LDL-receptor binding site (amino acids 3359-3369), was occupied by a variety of oligosaccharides, including high-mannose, hybrid, and complex types. These results are useful for understanding the structure of LDL particles and oligosaccharide function in LDL-receptor ligand binding.  相似文献   

14.
D K Mandal  C F Brewer 《Biochemistry》1992,31(50):12602-12609
We have previously demonstrated that the interactions between branched chain oligosaccharides and glycopeptides isolated from glycoproteins and glycolipids with specific lectins lead to the formation of homopolymeric carbohydrate-protein cross-linked complexes, even in the presence of mixtures of the carbohydrates or lectins [cf. Bhattacharyya, L., Fant, J., Lonn, H., & Brewer, C. F. (1990) Biochemistry 29, 7523-7530]. Recently, we have shown that highly ordered cross-linked lattices are formed between the tetrameric glycoprotein soybean agglutinin (SBA), which possesses a Man9 oligomannose chain per monomer, and the Glc/Man-specific plant lectin concanavalin A (Con A) [Khan, M. I., Mandal, D. K., & Brewer, C. F. (1991) Carbohydr. Res. 213, 69-77]. Using radiolabeling and quantitative precipitation techniques, we show in the present study that Con A binds and forms unique cross-linked complexes with four different glycoproteins having different numbers and types of carbohydrate chains as well as different quaternary structures. The glycoproteins include quail ovalbumin, Lotus tetragonolobus isolectin A (LTL-A), Erythrina cristagalli lectin (ECL), and Erythrina corallodendron lectin (EcorL). The results show that a preparation of quail ovalbumin containing either one Man7 or Man8 oligomannose chain per molecule forms a 1:2 cross-linked complex with tetrameric Con A, thereby demonstrating bivalency of the single carbohydrate chain(s) on the glycoprotein. Tetrameric LTL-A and dimeric ECL, which possess two xylose-containing carbohydrate chains per monomer, both form 1:2 and 1:1 cross-linked complexes (per monomer) of glycoprotein to lectin, depending on their relative ratios in solution. However, dimeric EcorL, which has the same carbohydrate structure and number of chains as ECL, forms only a 1:2 cross-linked complex with tetrameric Con A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have examined the maturation or processing of the oligosaccharides of cellular fibronectin in cultured chick embryo fibroblasts. Fibronectin was pulse-labeled with [2-3H]mannose or [35S]methionine, and the turnover rates of carbohydrate and polypeptide portions of immunoprecipitated fibronectin were compared. The oligosaccharides on fibronectin were analyzed by gel electrophoresis for alterations in sensitivity to the enzyme endo-β-N-acetylglucosaminidase H, which specifically cleaves the ‘high-mannose’ class of asparagine-linked oligosaccharide. Incorporated mannose was removed only at early time points, suggesting that the structure of fibronectin oligosaccharides was altered due to processing.This possibility was confirmed by the analysis of glycopeptides generated by exhaustive pronase digestion. Two major glycopeptide structures were detected; their properties correspond to a ‘high-mannose’ oligosaccharide precursor and a ‘complex’ carbohydrate product. The precursor-product relationship of these two forms of oligosaccharide chains was demonstrated by pulse-chase labeling experiments. The precursor glycopeptide had an apparent size (Mr 2100) comparable to (Man)9GlcNAc (Mr 2080), and was sensitive to endo-β-N-acetylglucosaminidase H; nearly all of the labeled mannose incorporated in a 10 min pulse was released from fibronectin glycopeptides by this enzyme. During a 90 min chase period, the glycopeptides became larger and increasingly resistent to endo-β-N-acetylglucosaminadase H cleavage. The final ‘complex’ or processed oligosaccharide structure contained approximately two-thirds less associated with the mature glycoprotein. They also indicate that the ‘complex’ structure is synthesized as a ‘high-mannose’ intermediate which is processed by the removal of mannose.  相似文献   

16.
Tamm-Horsfall (TH) glycoprotein, the major protein of human urine, is, in vitro, a powerful immunosuppressive agent and the activity resides in its oligosaccharide chains. In this study we investigated structural features required for the inhibitory activity of TH glycoprotein oligosaccharides in the one-way mixed lymphocyte reaction (MLR). We found that both high-mannose and complex-type TH glycopeptides, fractionated from Pronase-digested TH glycoprotein, behaved as inhibitors. Sequential exoglycosidase digestion of complex-type TH glycopeptide results in a slight increase of the inhibitory activity, with a maximum after desialylation and beta-galactosidase treatment. These results suggest that the immunosuppressive activity resides in the central portion of TH glycoprotein N-linked oligosaccharides. The conjugation of complex-type TH glycopeptides to a protein carrier, such as bovine serum albumin, greatly enhanced the inhibitory activity. This effect occurred if the TH-glycopeptide conjugate was added to MLR within the first 24 hr. These results indicate that (i) the immunosuppressive activity is strongly dependent on a multivalent interaction between TH oligosaccharides and ligand(s) at the lymphocyte surface; (ii) an early step of cell-cell recognition is the target of the immunosuppressive conjugate; (iii) TH oligosaccharides compete with a carbohydrate recognition system between effector and stimulator cells which contributes to the MLR-induced blastogenesis.  相似文献   

17.
Inhibitors of the biosynthesis and processing of N-linked oligosaccharides   总被引:15,自引:0,他引:15  
A number of glycoproteins have oligosaccharides linked to protein in a GlcNAc----asparagine bond. These oligosaccharides may be either of the complex, the high-mannose or the hybrid structure. Each type of oligosaccharides is initially biosynthesized via lipid-linked oligosaccharides to form a Glc3Man9GlcNAc2-pyrophosphoryl-dolichol and transfer of this oligosaccharide to protein. The oligosaccharide portion is then processed, first of all by removal of all three glucose residues to give a Man9GlcNAc2-protein. This structure may be the immediate precursor to the high-mannose structure or it may be further processed by the removal of a number of mannose residues. Initially four alpha 1,2-linked mannoses are removed to give a Man5 - GlcNAc2 -protein which is then lengthened by the addition of a GlcNAc residue. This new structure, the GlcNAc- Man5 - GlcNAc2 -protein, is the substrate for mannosidase II which removes the alpha 1,3- and alpha 1,6-linked mannoses . Then the other sugars, GlcNAc, galactose, and sialic acid, are added sequentially to give the complex types of glycoproteins. A number of inhibitors have been identified that interfere with glycoprotein biosynthesis, processing, or transport. Some of these inhibitors have been valuable tools to study the reaction pathways while others have been extremely useful for examining the role of carbohydrate in glycoprotein function. For example, tunicamycin and its analogs prevent protein glycosylation by inhibiting the first step in the lipid-linked pathway, i.e., the formation of Glc NAc-pyrophosphoryl-dolichol. These antibiotics have been widely used in a number of functional studies. Another antibiotic that inhibits the lipid-linked saccharide pathway is amphomycin, which blocks the formation of dolichyl-phosphoryl-mannose. In vitro, this antibiotic gives rise to a Man5GlcNAc2 -pyrophosphoryl-dolichol from GDP-[14C]mannose, indicating that the first five mannose residues come directly from GDP-mannose rather than from dolichyl-phosphoryl-mannose. Other antibodies that have been shown to act at the lipid-level are diumycin , tsushimycin , tridecaptin, and flavomycin. In addition to these types of compounds, a number of sugar analogs such as 2-deoxyglucose, fluoroglucose , glucosamine, etc. have been utilized in some interesting experiments. Several compounds have been shown to inhibit glycoprotein processing. One of these, the alkaloid swainsonine , inhibits mannosidase II that removes alpha-1,3 and alpha-1,6 mannose residues from the GlcNAc- Man5GlcNAc2 -peptide. Thus, in cultured cells or in enveloped viruses, swainsonine causes the formation of a hybrid structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing.   总被引:23,自引:0,他引:23  
A D Elbein 《FASEB journal》1991,5(15):3055-3063
The biosynthesis of the various types of N-linked oligosaccharide structures involves two series of reactions: 1) the formation of the lipid-linked saccharide precursor, Glc3Man9(GlcNAc)2-pyrophosphoryl-dolichol, by the stepwise addition of GlcNAc, mannose and glucose to dolichyl-P, and 2) the removal of glucose and mannose by membrane-bound glycosidases and the addition of GlcNAc, galactose, sialic acid, and fucose by Golgi-localized glycosyltransferases to produce different complex oligosaccharide structures. For most glycoproteins, the precise role of the carbohydrate is still not known, but specific N-linked oligosaccharide structures are key players in targeting of lysosomal hydrolases to the lysosomes, in the clearance of asialoglycoproteins from the serum, and in some cases of cell:cell adhesion. Furthermore, many glycoproteins have more than one N-linked oligosaccharide, and these oligosaccharides on the same protein frequently have different structures. Thus, one oligosaccharide may be of the high-mannose type whereas another may be a complex chain. One approach to determining the role of specific structures in glycoprotein function is to use inhibitors that block the modification reactions at different steps, causing the cell to produce glycoproteins with altered carbohydrate structures. The function of these glycoproteins can then be assessed. A number of alkaloid-like compounds have been identified that are specific inhibitors of the glucosidases and mannosidases involved in glycoprotein processing. These compounds cause the formation of glycoproteins with glucose-containing high mannose structures, or various high-mannose or hybrid chains, depending on the site of inhibition. These inhibitors have also been useful for studying the processing pathway and for comparing processing enzymes from different organisms.  相似文献   

20.
The Xenopus laevis egg vitelline envelope is composed of five glycoproteins (ZPA, ZPB, ZPC, ZPD, and ZPX). As shown previously, ZPC is the primary ligand for sperm binding to the egg envelope, and this binding involves the oligosaccharide moieties of the glycoprotein (Biol. Reprod., 62:766-774, 2000). To understand the molecular mechanism of sperm-egg envelope binding, we characterized the N-linked glycans of the vitelline envelope (VE) glycoproteins. The N-linked glycans of the VE were composed predominantly of a heterogeneous mixture of high-mannose (5-9) and neutral, complex oligosaccharides primarily derived from ZPC (the dominant glycoprotein). However, the ZPA N-linked glycans were composed of acidic-complex and high-mannose oligosaccharides, ZPX had only high-mannose oligosaccharides, and ZPB lacked N-linked oligosaccharides. The consensus sequence for N-linked glycosylation at the evolutionarily conserved residue N113 of the ZPC protein sequence was glycosylated solely with high-mannose oligosaccharides. This conserved glycosylation site may be of importance to the three-dimensional structure of the ZPC glycoproteins. One of the complex oligosaccharides of ZPC possessed terminal beta-N-acetyl-glucosamine residues. The same ZPC oligosaccharide species isolated from the activated egg envelopes lacked terminal beta-N-acetyl-glucosamine residues. We previously showed that the cortical granules contain beta-N-acetyl-glucosaminidase (J. Exp. Zool., 235:335-340, 1985). We propose that an alteration in the oligosaccharide structure of ZPC by glucosaminidase released from the cortical granule reaction is responsible for the loss of sperm binding ligand activity at fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号