首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins.  相似文献   

2.
We assessed the ability of human uncoupling protein 2 (UCP2) to uncouple mitochondrial oxidative phosphorylation when expressed in yeast at physiological and supraphysiological levels. We used three different inducible UCP2 expression constructs to achieve mitochondrial UCP2 expression levels in yeast of 33, 283, and 4100 ng of UCP2/mg of mitochondrial protein. Yeast mitochondria expressing UCP2 at 33 or 283 ng/mg showed no increase in proton conductance, even in the presence of various putative effectors, including palmitate and all-trans-retinoic acid. Only when UCP2 expression in yeast mitochondria was increased to 4 microg/mg, more than an order of magnitude greater than the highest known physiological concentration, was proton conductance increased. This increased proton conductance was not abolished by GDP. At this high level of UCP2 expression, an inhibition of substrate oxidation was observed, which cannot be readily explained by an uncoupling activity of UCP2. Quantitatively, even the uncoupling seen at 4 microgram/mg was insufficient to account for the basal proton conductance of mammalian mitochondria. These observations suggest that uncoupling of yeast mitochondria by UCP2 is an overexpression artifact leading to compromised mitochondrial integrity.  相似文献   

3.
Mitochondrial uncoupling protein 1 (UCP1) mediates the thermogenic transport of protons through the inner mitochondrial membrane. This proton leak uncouples respiration from ATP synthesis. The current study assessed the possible contribution of UCP1 muscle gene transfer to impair mitochondrial respiration in a tissue lacking UCP1 gene expression. Rats received an intramuscular injection of plasmid pXC1 containing UCP1 cDNA in the right tibialis muscles, while left tibialis muscles were injected with empty plasmid as control. Ten days after DNA injection, mitochondria from tibialis anterior muscles were isolated and analyzed. UCP1 gene transfer resulted in protein expression as analyzed by inmunoblotting. Mitochondria isolated from UCP1-injected muscles showed a significant increase in state 2 and state 4 oxygen consumption rates and a decreased respiration control ratio in comparison to mitochondria from control muscles. Furthermore, UCP1-containing mitochondria had a lower membrane potential in those states (2 and 4) when compared with control mitochondria. Our results revealed that UCP1 muscle gene transfer is associated with an induced mitochondrial proton leak, which could contribute to increase energy expenditure.  相似文献   

4.
Xu Y  Liu JZ  Xia C 《生理学报》2008,60(1):59-64
本文旨在通过观察棕榈酸对模拟高原低氧大鼠离体脑线粒体解耦联蛋白(uncoupling proteins,UCPs)活性的影响及脑线粒体质子漏与膜电位的改变,探讨UCPs在介导游离脂肪酸对低氧时线粒体氧化磷酸化功能改变中的作用.将SpragueDawley大鼠随机分为对照组、急性低氧组和慢性低氧组.低氧大鼠于低压舱内模拟海拔5 000 m高原23 h/d作低氧暴露,分别连续低氧3 d和30 d.用差速密度梯度离心法提取脑线粒体,[3H-GTP法测定UCPs含量与活性,TPMP 电极与Clark氧电极结合法测量线粒体质子漏,罗丹明123荧光法测定线粒体膜电位.结果显示,低氧使脑线粒体内UCPs含量与活性升高、质子漏增加、线粒体膜电位降低;同时,低氧暴露降低脑线粒体对棕榈酸的反应性,UCPs活性的改变率低于对照组,且线粒体UCPs含量、质子漏、膜电位变化率亦出现相同趋势.线粒体质子漏与反映UCPs活性的Kd值呈线性负相关(P<0.01 r=-0.906),与反映UCPs含量的Bmax呈线性正相关(P<0.01,r=0.856),与膜电位呈线性负相关(P<0.01,r=-0.880).以上结果提示,低氧导致的脑线粒体质子漏增加及膜电位降低与线粒体内UCPs活性升高有关,同时低氧暴露能降低脑线粒体对棕榈酸的反应性,提示在高原低氧环境下,游离脂肪酸升高在维持线粒体能量代谢中起着自身保护和调节机制.  相似文献   

5.
Mammalian uncoupling protein 1 (UCP1) mediates nonshivering thermogenesis in brown adipose tissue. We previously reported on the presence of a UCP1 orthologue in ectothermic fish and observed downregulation of UCP1 gene expression in the liver of the common carp. Neither the function of UCP1, nor the mode of UCP1 activation is known in carp liver mitochondria. Here, we compared the proton conductance at 25°C of liver mitochondria isolated from carp either maintained at 20°C (warm-acclimated, WA) or exposed to 8°C (cold-acclimated, CA) water temperature for 7–10 days. Liver mitochondria from WA carp had higher state four rates of oxygen consumption and greater proton conductance at high membrane potential. Liver mitochondria from WA, but not from CA, carp showed a strong increase in proton conductance when palmitate (or 4-hydroxy-trans-2-nonenal, HNE) was added, and this inducible proton conductance was prevented by addition of GDP. This fatty acid sensitive proton leak is likely due to the expression of UCP1 in the liver of WA carp. The observed biochemical properties of proton leak strongly suggest that carp UCP1 is a functional uncoupling protein with broadly the same activatory and inhibitory characteristics as mammalian UCP1. Significant UCP1 expression was also detected in our previous study in whole brain of the carp. We here observed a twofold increase of UCP1 mRNA in carp brain following cold exposure, suggesting a role of UCP1 in the thermal adaptation of brain metabolism. In situ hybridization located the UCP1 gene expression to the optic tectum responsible for visual system control, the descending trigeminal tract and the solitary tract. Taken together, this study characterises uncoupling protein activity in an ectotherm for the first time. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Mitochondrial Proton Leak and the Uncoupling Proteins   总被引:4,自引:0,他引:4  
An energetically significant leak of protons occurs across the mitochondrial inner membranesof eukaryotic cells. This seemingly wasteful proton leak accounts for at least 20% of thestandard metabolic rate of a rat. There is evidence that it makes a similar contribution tostandard metabolic rate in a lizard. Proton conductance of the mitochondrial inner membranecan be considered as having two components: a basal component present in all mitochondria,and an augmentative component, which may occur in tissues of mammals and perhaps ofsome other animals. The uncoupling protein of brown adipose tissue, UCP1, is a clear exampleof such an augmentative component. The newly discovered UCP1 homologs, UCP2, UCP3,and brain mitochondrial carrier protein 1 (BMCP1) may participate in the augmentativecomponent of proton leak. However, they do not appear to catalyze the basal leak, as this isobserved in mitochondria from cells which apparently lack these proteins. Whereas UCP1plays an important role in thermogenesis, the evidence that UCP2 and UCP3 do likewiseremains equivocal.  相似文献   

7.
The phenotypes observed in mice whose uncoupling protein (Ucp2) gene had been invalidated by homologous recombination (Ucp2(-/-) mice) are consistent with an increase in mitochondrial membrane potential in macrophages and pancreatic beta cells. This could support an uncoupling (proton transport) activity of UCP2 in the inner mitochondrial membrane in vivo. We used mitochondria from lung or spleen, the two organs expressing the highest level of UCP2, to compare the proton leak of the mitochondrial inner membrane of wild-type and Ucp2(-/-) mice. No difference was observed under basal conditions. Previous reports have concluded that retinoic acid and superoxide activate proton transport by UCP2. Spleen mitochondria showed a higher sensitivity to retinoic acid than liver mitochondria, but this was not caused by UCP2. In contrast with a previous report, superoxide failed to increase the proton leak rate in kidney mitochondria, where no UCP2 expression was detected, and also in spleen mitochondria, which does not support stimulation of UCP2 uncoupling activity by superoxide. Finally, no increase in the ATP/ADP ratio was observed in spleen or lung of Ucp2(-/-) mice. Therefore, no evidence could be gathered for the uncoupling activity of the UCP2 present in spleen or lung mitochondria. Although this may be explained by difficulties with isolated mitochondria, it may also indicate that UCP2 has another physiological significance in spleen and lung.  相似文献   

8.
Mitochondrial proton leak: a role for uncoupling proteins 2 and 3?   总被引:8,自引:0,他引:8  
In mitochondria ATP synthesis is not perfectly coupled to oxygen consumption due to proton leak across the mitochondrial inner membrane. Quantitative studies have shown that proton leak contributes to approximately 25% of the resting oxygen consumption of mammals. Proton leak plays a role in accounting for differences in basal metabolic rate. Thyroid studies, body mass studies, phylogenic studies and obesity studies have all shown that increased mass-specific metabolic rate is linked to increased mitochondrial proton leak. The mechanism of the proton leak is unclear. Evidence suggests that proton leak occurs by a non-specific diffusion process across the mitochondrial inner membrane. However, the high degree of sequence homology of the recently cloned uncoupling proteins UCP 2 and UCP 3 to brown adipose tissue UCP 1, and their extensive tissue distribution, suggest that these novel uncoupling proteins play a role in proton leak. Early indications from reconstitution experiments and several in vitro expression studies suggest that the novel uncoupling proteins uncouple mitochondria. Furthermore, mice overexpressing UCP 3 certainly show a phenotype consistent with increased metabolism. The evidence for a role for these novel UCPs in mitochondrial proton leak is reviewed.  相似文献   

9.
Mice having targeted inactivation of uncoupling protein 1 (UCP1) are cold sensitive but not obese (Enerb?ck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper M-E, and Kozak LP. Nature 387: 90-94, 1997). Recently, we have shown that proton leak in brown adipose tissue (BAT) mitochondria from UCP1-deficient mice is insensitive to guanosine diphosphate (GDP), a well known inhibitor of UCP1 activity (Monemdjou S, Kozak LP, and Harper M-E. Am J Physiol Endocrinol Metab 276: E1073-E1082, 1999). Moreover, despite a fivefold increase of UCP2 mRNA in BAT of UCP1-deficient mice, we found no differences in the overall kinetics of this GDP-insensitive proton leak between UCP1-deficient mice and controls. Based on these findings, which show no adaptive increase in UCP1-independent leak in BAT, we hypothesized that adaptive thermogenesis may be occurring in other tissues of the UCP1-deficient mouse (e.g., skeletal muscle), thus allowing them to maintain their normal resting metabolic rate, feed efficiency, and adiposity. Here, we report on the overall kinetics of the mitochondrial proton leak, respiratory chain, and ATP turnover in skeletal muscle mitochondria from UCP1-deficient and heterozygous control mice. Over a range of mitochondrial protonmotive force (Deltap) values, leak-dependent oxygen consumption is higher in UCP1-deficient mice compared with controls. State 4 (maximal leak-dependent) respiration rates are also significantly higher in the mitochondria of mice deficient in UCP1, whereas state 4 Deltap is significantly lower. No significant differences in state 3 respiration rates or Deltap values were detected between the two groups. Thus the altered kinetics of the mitochondrial proton leak in skeletal muscle of UCP1-deficient mice indicate a thermogenic mechanism favoring the lean phenotype of the UCP1-deficient mouse.  相似文献   

10.
The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and −2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.  相似文献   

11.
We have investigated the effect of 24-h fasting on basal proton leak and uncoupling protein (UCP) 3 expression at the protein level in subsarcolemmal and intermyofibrillar skeletal muscle mitochondria. In fed rats, the two mitochondrial populations displayed different proton leak, but the same protein content of UCP3. In addition, 24-h fasting, both at 24 and 29 degrees C, induced an increase in proton leak only in subsarcolemmal mitochondria, while UCP3 content increased in both the populations. From the present data, it appears that UCP3 does not control the basal proton leak of skeletal muscle mitochondria.  相似文献   

12.
One factor that has the potential to regulate reactive oxygen species (ROS) generation is the mild uncoupling of oxidative phosphorylation, i.e. proton (H(+)) leak across the mitochondrial inner membrane. Proton leak has been shown to attenuate ROS generation, whereas ROS and their derivatives (such as superoxide and hydroxynonenal) have been shown to induce H(+) leak through uncoupling proteins (UCPs). This suggests the existence of a feedback loop between ROS and H(+) leak mediated through UCPs. Although the physiological functions of the new UCPs, such as UCP2 and UCP3, are still not established, extensive data support the idea that these mitochondrial carrier proteins are involved in the control of ROS generation. The molecular basis of both ROS generation and hydroxynonenal-induced uncoupling through UCPs is reviewed and the consequences of their interaction for protection against excessive ROS production at the expense of energy production is discussed.  相似文献   

13.
Leak of protons into the mitochondrial matrix during substrate oxidation partially uncouples electron transport from phosphorylation of ADP, but the functions and source of basal and inducible proton leak in vivo remain controversial. In the present study we describe an endogenous activation of proton conductance in mitochondria isolated from rat and mouse skeletal muscle following addition of respiratory substrate. This endogenous activation increased with time, required a high membrane potential and was diminished by high concentrations of serum albumin. Inhibition of this endogenous activation by GDP [classically considered specific for UCPs (uncoupling proteins)], carboxyatractylate and bongkrekate (considered specific for the adenine nucleotide translocase) was examined in skeletal muscle mitochondria from wild-type and Ucp3-knockout mice. Proton conductance through endogenously activated UCP3 was calculated as the difference in leak between mitochondria from wild-type and Ucp3-knockout mice, and was found to be inhibited by carboxyatractylate and bongkrekate, but not GDP. Proton conductance in mitochondria from Ucp3-knockout mice was strongly inhibited by carboxyatractylate, bongkrekate and partially by GDP. We conclude the following: (i) at high protonmotive force, an endogenously generated activator stimulates proton conductance catalysed partly by UCP3 and partly by the adenine nucleotide translocase; (ii) GDP is not a specific inhibitor of UCP3, but also inhibits proton translocation by the adenine nucleotide translocase; and (iii) the inhibition of UCP3 by carboxyatractylate and bongkrekate is likely to be indirect, acting through the adenine nucleotide translocase.  相似文献   

14.
Mitochondrial proton leak can account for almost 20% of oxygen consumption and it is generally accepted that this process contributes to basal metabolism. In order to clarify the role of basal proton leak in testicular mitochondria, we performed a comparative study with kidney and liver mitochondrial fractions. Proton leak stimulated by linoleic acid and inhibited by guanosine diphosphate (GDP) was detected, in a manner that was correlated with protein levels for uncoupling protein 2 (UCP2) in the three fractions. Modulation of proton leak had an effect on reactive oxygen species production as well as on lipid peroxidation, and this effect was also tissue‐dependent. However, a possible role for the adenine nucleotide transporter (ANT) in testicular mitochondria proton leak could not be excluded. The modulation of proton leak appears as a possible and attractive target to control oxidative stress with implications for male gametogenesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Uncoupling protein-3 (UCP3) is a mitochondrial carrier protein of as yet undefined physiological function. To elucidate characteristics of its function, we studied the effects of fasting on resting metabolic rate, respiratory quotient, muscle Ucp3 expression, and mitochondrial proton leak in wild-type and Ucp3(-/-) mice. Also analyzed were the fatty acid compositions of skeletal muscle mitochondria in fed and fasted Ucp3(-/-) and wild-type mice. In wild-type mice, fasting caused significant increases in Ucp3 (4-fold) and Ucp2 (2-fold) mRNA but did not significantly affect mitochondrial proton leak. State 4 oxygen consumption was not affected by fasting in either of the two groups. However, protonmotive force was consistently higher in mitochondria of Ucp3(-/-) animals (P = 0.03), and fasting further augmented protonmotive force in Ucp3(-/-) mice; there was no effect in wild-type mitochondria. Resting metabolic rates decreased with fasting in both groups. Ucp3(-/-) mice had higher respiratory quotients than wild-type mice in fed resting states, indicating impaired fatty acid oxidation. Altogether, results show that the fasting-induced increases in Ucp2 and Ucp3 do not correlate with increased mitochondrial proton leak but support a role for UCP3 in fatty acid metabolism.  相似文献   

16.
We report the molecular cloning of a novel cDNA fragment from lamprey encoding a 313-amino acid protein that is highly homologous to human uncoupling proteins (UCP). We therefore named the protein lamprey UCP. This lamprey UCP, rat UCP1, human UCP2, and human mitochondrial oxoglutarate carrier were individually expressed in Saccharomyces cerevisiae and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak. Only UCP1 showed a strong (3.6-fold increase of the ratio of mitochondrial state 4 respiration rate to FCCP-stimulated fully uncoupled respiration rate) and GDP-inhibitable uncoupling activity, while the uncoupling activities of both UCP2 and lamprey UCP were relatively weak (1.5-fold and 1.4-fold, respectively) and GDP-insensitive. The oxoglutarate carrier had no effect on the studied parameters. In conclusion, the lamprey UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles UCP2, but not UCP1.  相似文献   

17.
Sandra Amaral 《FEBS letters》2008,582(30):4191-4196
To address the possibility that mitochondria are involved in the age-related loss of testicular function, we characterized mitochondrial bioenergetics in rat testis. A peak of mitochondrial functionality was detected in adult animals, with a decrease in both young and older animals. In the latter group a decrease in mitochondrial function was matched with an increase in proton leak and expression and activity of uncoupling protein 2 (UCP2), suggesting that proton leak may be involved in managing age-dependent mitochondrial dysfunction.  相似文献   

18.
Mice lacking the thermogenic mitochondrial membrane protein UCP1 (uncoupling protein 1) - and thus all heat production from brown adipose tissue - can still adapt to a cold environment (4 °C) if successively transferred to the cold. The mechanism behind this adaptation has not been clarified. To examine possible adaptive processes in the skeletal muscle, we isolated mitochondria from the hind limb muscles of cold-acclimated wild-type and UCP1(–/–) mice and examined their bioenergetic chracteristics. We observed a switch in metabolism, from carbohydrate towards lipid catabolism, and an increased total mitochondrial complement, with an increased total ATP production capacity. The UCP1(–/–) muscle mitochondria did not display a changed state-4 respiration rate (no uncoupling) and were less sensitive to the uncoupling effect of fatty acids than the wild-type mitochondria. The content of UCP3 was increased 3-4 fold, but despite this, endogenous superoxide could not invoke a higher proton leak, and the small inhibitory effect of GDP was unaltered, indicating that it was not mediated by UCP3. Double mutant mice (UCP1(–/–) plus superoxide dismutase 2-overexpression) were not more cold sensitive than UCP1(–/–), bringing into question an involvement of reactive oxygen species (ROS) in activation of any alternative thermogenic mechanism. We conclude that there is no evidence for an involvement of UCP3 in basal, fatty-acid- or superoxide-stimulated oxygen consumption or in GDP sensitivity. The adaptations observed did not imply any direct alternative process for nonshivering thermogenesis but the adaptations observed would be congruent with adaptation to chronically enhanced muscle activity caused by incessant shivering in these mice.  相似文献   

19.
The uncoupling protein (UCP) is uniquely expressed in brown adipose tissue, which is a thermogenic organ of mammals. The UCP uncouples mitochondrial respiration from ATP production by introducing a proton conducting pathway through the mitochondrial inner membrane. The activity of the UCP is regulated: nucleotide binding to the UCP inhibits proton conductance whereas free fatty acids increase it. The similarities between the UCP, the ADP/ATP carrier and the DNA recognition element found in the DNA binding domain of the estrogen receptor suggested that these proteins could share common features in their respective interactions with free nucleotides or DNA, and thus defined a putative 'nucleotide recognition element' in the UCP. This article provides demonstration of the validity of this hypothesis. The putative nucleotide recognition element corresponding to the amino acids 261-269 of the UCP was gradually destroyed, and these mutant proteins were expressed in yeast. Flow cytometry, measuring the mitochondrial membrane potential in vivo, showed increased uncoupling activities of these mutant proteins, and was corroborated with studies with isolated mitochondria. The deletion of the three amino acids Phe267, Lys268 and Gly269, resulted in a mutant where proton leak could be activated by fatty acids but not inhibited by nucleotides.  相似文献   

20.
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号