首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two full-length cDNAs encoding gibberellin 3-oxidases, InGA3ox1 and InGA3ox2, were cloned from developing seeds of morning glory (Ipomoea nil (Pharbitis nil) Choisy cv. Violet) with degenerate-PCR and RACEs. The RNA-blot analysis for these clones revealed that the InGA3ox2 gene was organ-specifically expressed in the developing seeds at 6-18 days after anthesis. In situ hybridization showed the signals of InGA3ox2 mRNA in the seed coat, suggesting that active gibberellins (GAs) were synthesized in the tissue, although no active GA was detected there by immunohistochemistry. In situ hybridization analysis for InAmy1 (former PnAmy1) mRNA showed that InAmy1 was also synthesized in the seed coat. Both InGA3ox2 and InAmy1 genes were expressed spatially overlapped without a clear time lag, suggesting that both active GAs and InAmy1 were synthesized almost simultaneously in seed coat and secreted to the integument. These observations support the idea that GAs play an important role in seed development by inducing alpha-amylase.  相似文献   

2.
To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA(12) at C-20 to the C(19) compound GA(9), a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the beta-glucuronidase (GUS) gene. In a transient expression system, beta-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds.  相似文献   

3.
We have isolated Cv3h, a cDNA clone from the developing seeds of watermelon, and have demonstrated significant amino acid homology with gibberellin (GA) 3 beta-hydroxylases. This cDNA clone was expressed in Escherichia coli as a fusion protein that oxidized GA(9) and GA(12) to GA(4) and GA(14), respectively. The Cv3h protein had the highest similarity with pumpkin GA 2 beta,3 beta-hydroxylase, but did not possess 2 beta-hydroxylation function. RNA blot analysis showed that the gene was expressed primarily in the inner parts of developing seeds, up to 10 d after pollination (DAP). In the parthenocarpic fruits induced by treatment with 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU), the embryo and endosperm of the seeds were undeveloped, whereas the integumental tissues, of maternal origin, showed nearly normal development. Cv3h mRNA was undetectable in the seeds of CPPU-treated fruits, indicating that the GA 3 beta-hydroxylase gene was expressed in zygotic cells. In our analysis of endogenous GAs from developing seeds, GA(9) and GA(4) were detected at high levels but those of GA(20) and GA(1) were very low. This demonstrates that GA biosynthesis in seeds prefers a non-13-hydroxylation pathway over an early 13-hydroxylation pathway. We also analyzed endogenous GAs from seeds of the parthenocarpic fruits. The level of bioactive GA(4 )was much lower there than in normal seeds, indicating that bioactive GAs, unconnected with Cv3h, exist in integumental tissues during early seed development.  相似文献   

4.
5.
Gibberellins (GAs) are biosynthesized through a complex pathway that involves several classes of enzymes. To predict sites of individual GA biosynthetic steps, we studied cell type-specific expression of genes encoding early and late GA biosynthetic enzymes in germinating Arabidopsis seeds. We showed that expression of two genes, AtGA3ox1 and AtGA3ox2, encoding GA 3-oxidase, which catalyzes the terminal biosynthetic step, was mainly localized in the cortex and endodermis of embryo axes in germinating seeds. Because another GA biosynthetic gene, AtKO1, coding for ent-kaurene oxidase, exhibited a similar cell-specific expression pattern, we predicted that the synthesis of bioactive GAs from ent-kaurene oxidation occurs in the same cell types during seed germination. We also showed that the cortical cells expand during germination, suggesting a spatial correlation between GA production and response. However, promoter activity of the AtCPS1 gene, responsible for the first committed step in GA biosynthesis, was detected exclusively in the embryo provasculature in germinating seeds. When the AtCPS1 cDNA was expressed only in the cortex and endodermis of non-germinating ga1-3 seeds (deficient in AtCPS1) using the AtGA3ox2 promoter, germination was not as resistant to a GA biosynthesis inhibitor as expression in the provasculature. These results suggest that the biosynthesis of GAs during seed germination takes place in two separate locations with the early step occurring in the provasculature and the later steps in the cortex and endodermis. This implies that intercellular transport of an intermediate of the GA biosynthetic pathway is required to produce bioactive GAs.  相似文献   

6.
Ward DA  MacMillan J  Gong F  Phillips AL  Hedden P 《Phytochemistry》2010,71(17-18):2010-2018
Immature seeds of the southern wild cucumber, Marah macrocarpus, are a rich source of gibberellins (GAs) and were used in some of the earliest experiments on GA biosynthesis. The main biologically active GAs in developing embryos and endosperm of M. macrocarpus are GA(4) and GA(7), which have been shown previously to be formed from GA(9) in separate pathways, GA(4) being formed directly by 3β-hydroxylation, while GA(7) is produced in two steps via 2,3-didehydroGA(9). In order to identify the enzymes responsible for these conversions, three cDNA clones encoding functionally different GA 3-oxidases, MmGA3ox1, -2 and -3, were obtained from young immature M. macrocarpus embryos. Their biochemical functions were determined by expression of the cDNAs in Escherichia coli and incubation of cell lysates with (14)C-labelled substrates. MmGA3ox1 and MmGA3ox3 converted GA(9) to GA(4) as sole product, while MmGA3ox2 produced several products, including GA(4), 2,3-didehydroGA(9), 2,3-epoxyGA(9), GA(20) and GA(5), these last two products requiring 13-hydroxylation of GA(9) and 2,3-didehydroGA(9), respectively. MmGA3ox1 converted 2,3-didehydroGA(9) to GA(7), while MmGA3ox3 converted this substrate to the 2,3-epoxide, and MmGA3ox2 also formed the epoxide, but also GA(5.) Thus, formation of GA(7) requires the sequential activities of MmGA3ox2 and MmGA3ox1, while MmGA3ox3 is not involved in GA(7) production. The enzymes catalysed similar reactions when incubated with 13-hydroxylated GAs, although with reduced efficiencies. The 13-hydroxylase activity of MmGA3ox2 may be responsible for the production of GA(1) and GA(3), which are present at low levels in developing M. macrocarpus seeds.  相似文献   

7.
Gibberellins in seedlings and flowering trees of Prunus avium L   总被引:1,自引:0,他引:1  
Extracts of acids from mature seeds, germinating seeds, first, second and third year seedlings as well as mature, flowering trees of sweet cherry (Prunus avium L. cv. Stella) were analysed by gas chromatography-mass spectrometry. The presence of the known gibberellins (GAs) GA1 (1), GA3 (4), GA5 (7), GA8 (11), GA19 (14), GA20 (12), GA29 (13), GA32 (5), GA85 (2), GA86 (3) and GA87 (6) was confirmed by comparison of their mass spectra and Kovats retention indices with those of standards or literature values. In addition, 16alpha,17-dihydrodihydroxy GA25 (16) was identified and its stereochemistry confirmed by rational synthesis. The 12alpha,13-dihydroxy GAs, GA32 (5), GA86 (2), GA86 (3) and GA87 (6), were detected in mature seeds, germinating seeds and young seedlings, but not in flowering plants. The 13-hydroxy GAs, GA1 (1) and GA3 (4), were present in germinating seeds and, in addition to these, GA5 (7), GA8 (11), GA19 (14), GA20 (12) and GA29 (13) were detected in seedlings and mature flowering plants. In germinating seeds and seedlings (while the plants were growing actively), concentrations of the 12alpha,13-dihydroxy GAs, measured by bioassay, declined and those of the 13-hydroxy GAs increased. The results are discussed with reference to the known and predicted effects of the GAs on the vegetative growth and flowering of P. avium plants.  相似文献   

8.
The Le gene of pea encodes a gibberellin 3-hydroxylase. Heterologous expression of the le-2 allele indicated that a truncated protein was produced, confirming that le-2 is a null mutation. The Le expression product was unable to metabolise GA12, but was able to produce a small quantity of GA8 from GA29. The le-2 mutation had no effect on the levels of GA1, GA4 or GA8 in developing seeds. Measurements of mRNA levels indicate that the Le gene is only weakly expressed in young pea seeds. These results explain why mutant alleles at the Le locus have no major impact on seed development, even though 3-hydroxylated GAs are essential for normal seed development in pea. Rather, a second 3-hydroxylase, with a different substrate specificity, may be expressed in young seeds, resulting in a different biosynthetic pathway leading to the biologically active GAs.  相似文献   

9.
Gibberellin 3-oxidase (GA3ox) catalyzes the final step in the synthesis of bioactive gibberellins (GAs). We examined the expression patterns of all four GA3ox genes in Arabidopsis thaliana by promoter-beta-glucuronidase gene fusions and by quantitative RT-PCR and defined their physiological roles by characterizing single, double, and triple mutants. In developing flowers, GA3ox genes are only expressed in stamen filaments, anthers, and flower receptacles. Mutant plants that lack both GA3ox1 and GA3ox3 functions displayed stamen and petal defects, indicating that these two genes are important for GA production in the flower. Our data suggest that de novo synthesis of active GAs is necessary for stamen development in early flowers and that bioactive GAs made in the stamens and/or flower receptacles are transported to petals to promote their growth. In developing siliques, GA3ox1 is mainly expressed in the replums, funiculi, and the silique receptacles, whereas the other GA3ox genes are only expressed in developing seeds. Active GAs appear to be transported from the seed endosperm to the surrounding maternal tissues where they promote growth. The immediate upregulation of GA3ox1 and GA3ox4 after anthesis suggests that pollination and/or fertilization is a prerequisite for de novo GA biosynthesis in fruit, which in turn promotes initial elongation of the silique.  相似文献   

10.
Gibberellins are required for embryo growth and seed development in pea   总被引:11,自引:0,他引:11  
The gibberellin (GA) biosynthesis mutants lh-1 and lh-2 have been used to examine the physiological role of GAs in pea seed development. The LH protein is required for the three-step oxidation of ent -kaurene to ent -kaurenoic acid early in the GA biosynthesis pathway. The allele-specific interaction of lh-1 and lh-2 with chemical inhibitors of these three steps suggests that LH encodes the multi-functional GA biosynthesis enzyme ent -kaurene oxidase. Unlike the lh-2 mutation which reduces seed weight and decreases seed survival by ∼50% compared with wild-type plants, the lh-1 allele has a transient effect on embryo and seed growth and only slightly increases seed abortion. These seed phenotypes parallel the effects of the two mutant alleles on GA levels in young seeds. Detailed examination of the growth of lh-1 seeds reveals homeostatic regulation of GA-promoted embryo and seed growth. Although GA-deficient seeds grow more slowly than WT seeds, decreased assimilate availability to the developing seeds is not the primary reason for the altered seed development. Instead, GAs act to promote some process(es) required for embryo and seed growth and only indirectly influence the distribution of assimilates. How GA deficiency causes seed abortion is not known but it may simply be a consequence of reduced seed or embryo growth rate. These results demonstrate that even relatively small changes in the levels of GAs in young seeds can alter seed development and suggest that the available GA-related mutants may represent only a subset of all possible mutants with reduced GA levels or GA signalling.  相似文献   

11.
12.
Gibberellin 3beta-hydroxylase catalyzes the final step in the biosynthetic pathway leading to the plant hormone gibberellin (GA) and, therefore, the in vivo localization of this enzyme should give a direct indication of the site of synthesis of bioactive GAs in plants. We have isolated a cDNA clone, Nty (Nicotiana tabacum GA 3beta-hydroxylase), which encodes a putative GA 3beta-hydroxylase, by RT-PCR using RNA from tobacco shoot apices. Functional analysis, using an NTY protein expressed in Escherichia coli, revealed that Nty encoded an active GA 3beta-hydroxylase. A high expression level of Nty was observed in shoot apices, flowers, roots, young internodes but not in leaves or seeds. We performed more detailed expression analyses using in situ hybridization and histochemical analyses of the GUS activity in transgenic tobacco plants carrying an Nty promoter:GUS fusion gene. These studies revealed that expression of Nty was restricted to specific regions, including actively dividing and elongating cells in the various organs; rib meristem and elongation zones of shoot apices, tapetum and pollen grains in developing anthers and root tips, which are consistent with the sites of GA action. It is proposed that GA actions depend on the modulation of endogenous bioactive GA levels through the regulation of GA 3beta-hydroxylase expression in situ.  相似文献   

13.
Effects of light and temperature on gibberellin (GA)-induced seed germination were studied in Arabidopsis thaliana (L.) Heynh. with the use of GA-deficient ( gal ) mutants, mutants with a strongly reduced sensitivity to GA ( gai ) and with the recombinant gai/gal . Seeds of the gal mutant did not germinate in the absence of exogenous GAs, neither in darkness, nor in light, indicating that GAs are absolutely required for germination of this species. Wild-type and gai seeds did not always require applied GAs in light. The conclusion that light stimulates GA biosynthesis was strengthened by the antagonistic action of tetcyclacis, an inhibitor of GA biosynthesis. In wild-type, gal and gai/gal seeds light lowered the GA requirement, which can be interpreted as an increase in sensitivity to GAs. In gai and gai/gal seeds light became effective only after dormancy was broken by either a chilling treatment of one week or a dry after-ripening period at 2°C during some months. The present genetic and physiological evidence strongly suggests that temperature regulates the responsiveness to light in A. thaliana seeds. The responsiveness increases during dormancy breaking, whereas the opposite occurs during induction of dormancy (8 days at 15°C pre-incubation). Since light stimulates the synthesis of GAs as well as the responsiveness to GAs, temperature-induced changes in dormancy may indirectly change the capacities to synthesize GAs and to respond to GAs. GA sensitivity is also directly controlled by temperature. It is concluded that both GA biosynthesis and sensitivity to GAs are not the primary controlling factors in dormancy, but are essential for germination.  相似文献   

14.
15.
Zhang Y  Zhu Y  Peng Y  Yan D  Li Q  Wang J  Wang L  He Z 《Cell research》2008,18(3):412-421
The rice Eui (ELONGATED UPPERMOST INTERNODE) gene encodes a cytochrome P450 monooxygenase that deactivates bioactive gibberellins (GAs). In this study, we investigated controlled expression of the Eui gene and its role in plant development. We found that Eui was differentially induced by exogenous GAs and that the Eui promoter had the highest activity in the vascular bundles. The eui mutant was defective in starch granule development in root caps and Eui overexpression enhanced starch granule generation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Experiments using embryoless half-seeds revealed that RAmy1A and GAmyb were highly upregulated in eui aleurone cells in the absence of exogenous GA. In addition, the GA biosynthesis genes GA3ox1 and GA20ox2 were downregulated and GA2ox1 was upregulated in eui seedlings. These results indicate that EUI is involved in GA homeostasis, not only in the internodes at the heading stage, but also in the seedling stage, roots and seeds. Disturbing GA homeostasis affected the expression of the GA signaling genes GID1 (GIBBERELLIN INSENSITIVE DWARF 1), GID2 and SLR1. Transgenic RNA interference of the Eui gene effectively increased plant height and improved heading performance. By contrast, the ectopic expression of Eui under the promoters of the rice GA biosynthesis genes GA3ox2 and GA20ox2 significantly reduced plant height. These results demonstrate that a slight increase in Eui expression could dramatically change rice morphology, indicating the practical application of the Eui gene in rice molecular breeding for a high yield potential.  相似文献   

16.
17.
In pea, normal pod (pericarp) growth requires the presence of seeds; and in the absence of seeds, gibberellins (GAs) and/or auxins can stimulate pericarp growth. To further characterize the function of naturally occurring pea GAs and the auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), on pea fruit development, profiles of the biological activities of GA3, GA1, and 4-Cl-IAA on pericarp growth were determined separately and in combination on pollinated deseeded ovaries (split-pericarp assay) and nonpollinated ovaries. Nonpollinated ovaries (pericarps) responded differently to exogenous GAs and 4-Cl-IAA than pollinated deseeded pericarps. In nonpollinated pericarps, both GA3 and 4-Cl-IAA stimulated pericarp growth, but GA3 was significantly more active in stimulating all measured parameters of pericarp growth than 4-Cl-IAA. 4-Cl-IAA, GA1, and GA3 were observed to stimulate pericarp growth similarly in pollinated deseeded pericarps. In addition, the synergistic effect of simultaneous application of 4-Cl-IAA and GAs on pollinated deseeded pericarp growth supports the hypothesis that GAs and 4-Cl-IAA are involved in the growth and development of pollinated ovaries.  相似文献   

18.
Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.  相似文献   

19.
20.
Vally K  Selvi MT  Sharma R 《Plant physiology》1995,109(2):517-523
Treatment of pollinated pea (Pisum sativum L. cv Alaska, line V1) ovaries with 3,5-dioxo-4-butyryl-cyclohexane carboxylic acid ethyl ester (LAB), an acylcyclohexanedione derivative that competitively inhibits 2-oxoglutarate-dependent gibberellin (GA) dioxygenases, caused a reduction of pod elongation proportional to the amount of inhibitor applied. The effect of LAB was counteracted by GA1 and GA3, and partially by GA20. The inhibitor decreased the contents of GA1 and GA3 (the purported active GAs) and GA8, increased those of GA19 and GA20, and did not affect that of GA29 in both the pod and the developing seeds. These results provide evidence that GA1 and/or GA3 control pod development in pea and show that GA20 is not active per se. In contrast to its effect on pollinated ovaries, LAB promoted parthenocarpic development of unpollinated ovaries, which is associated with an increase of GA1 and GA8 content. The inhibitor enhanced the response of unpollinated ovaries to GA1 and GA20, but it did not alter the response to GA3. LAB is proposed to promote parthenocarpic development and enhance the response to exogenous GAs by blocking the 2[beta]-hydroxylation of GA1 more efficiently than 3[beta]-hydroxylation of GA20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号