首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourier transform infrared (FTIR), UV absorption and exchangeable proton NMR spectroscopies have been used to study the formation and stability of two intramolecular pH-dependent triple helices composed by a chimeric 29mer DNA-RNA (DNA double strand and RNA third strand) or by the analogous 29mer RNA. In both cases decrease of pH induces formation of a triple helical structure containing either rU*dA.dT and rC+*dG.dC or rU*rA.rU and rC+*rG.rC triplets. FTIR spectroscopy shows that exclusively N-type sugars are present in the triple helix formed by the 29mer RNA while both N- and S-type sugars are detected in the case of the chimeric 29mer DNA-RNA triple helix. Triple helix formation with the third strand RNA and the duplex as DNA appears to be associated with the conversion of the duplex part from a B-form secondary structure to one which contains partly A-form sugars. Thermal denaturation experiments followed by UV spectroscopy show that a major stabilization occurs upon formation of the triple helices. Monophasic melting curves indicate a simultaneous disruption of the Hoogsteen and Watson-Crick hydrogen bonds in the intramolecular triplexes when the temperature is increased. This is in agreement with imino proton NMR spectra recorded as a function of temperature. Comparison with experiments concerning intermolecular triplexes of identical base and sugar composition shows the important role played by the two tetrameric loops in the stabilization of the intramolecular triple helices studied.  相似文献   

2.
Pyrimidine oligoribonucleotides bind to the major groove of double-helical DNA at homopurine.homopyrimidine sequences. They recognize Watson-Crick base pairs by forming T.A x U and C.G x C base triplets via Hoogsteen hydrogen bonding. The stability of these triple helices is much higher than that of triple helices formed by oligodeoxyribonucleotides as shown by an increase of the temperature at which half-dissociation of the third strand occurs. When the 2'-hydroxyl group of ribose moieties is replaced by 2'-O-methyl substituent, triple helix stability is further increased.  相似文献   

3.
The stability of a triple helix formed between a DNA duplex and an incoming oligonucleotide strand strongly depends on the solvent conditions and on intrinsic chemical and conformational factors. Attempts to increase triple helix stability in the past included chemical modification of the backbone, sugar ring, and bases in the third strand. However, the predictive power of such modifications is still rather poor. We therefore developed a method that allows for rapid screening of conformationally diverse third strand oligonucleotides for triplex stability in the parallel pairing motif to a given DNA double helix sequence. Combinatorial libraries of oligonucleotides of the requisite (fixed) base composition and length that vary in their sugar unit (ribose or deoxyribose) at each position were generated. After affinity chromatography against their corresponding immobilized DNA target duplex, utilizing a temperature gradient as the selection criterion, the oligonucleotides forming the most stable triple helices were selected and characterized by physicochemical methods. Thus, a series of oligonucleotides were identified that allowed us to define basic rules for triple helix stability in this conformationally diverse system. It was found that ribocytidines in the third strand increase triplex stability relative to deoxyribocytidines independently of the neighboring bases and position along the strand. However, remarkable sequence-dependent differences in stability were found for (deoxy)thymidines and uridines.  相似文献   

4.
The synthesis and properties of triple-helical hybrids containing non-nucleosidic polyaromatic building blocks are described. Clamp-type oligonucleotides containing a non-nucleosidic pyrene linker form stable triple helices with a polypurine target strand containing a terminal pyrene or phenanthrene moiety. Stacking interactions between the unnatural building blocks enhance triplex stability and lead to strong excimer or exciplex formation, which is monitored by fluorescence spectroscopy.  相似文献   

5.
Molecular mechanics has been used to predict the structure of the Y+.R-.R(+)-type DNA triple helix, in which a second polypurine strand binds antiparallel to the homopurine strand of a homopurine/homopyrimidine stretch of duplex DNA. From calculations on the sequence d(C)10.d(G)10.d(G)10, two likely structures emerge. One has the glycosidic torsions of the third strand bases in the anti-conformation and Hoogsteen hydrogen-bonds to the purine strand of the duplex, the other has the third strand purines in the syn orientation and uses a reverse-Hoogsteen hydrogen-bonding pattern. Despite the large structural differences between these two types of triplex, calculations performed in vacuo with a distance-dependent dielectric constant to mimic the shielding effect of solvent show them to be energetically very similar, with the latter (syn) slightly preferred. However, if explicit solvent molecules are included in the calculation, the anti conformation is found to be much preferred. This difference in the results seems to stem from an underestimation of short-range electrostatic interactions in the in vacuo simulations. When TAA or TAT base triples are substituted for the sixth CGG triple in the sequence, it is found that, for the solvated model, the third strand base of the TAA triple prefers the syn orientation while that in the TAT triple retains a preference, though reduced, for the anti conformation.  相似文献   

6.
Abstract

A DNA triple helix formed according to the Purine-motif can accommodate both purines and pyrimidines in the third strand in a pH independent manner. This motif is thus a more versatile means of targeting double stranded DNA than the pH dependent Pyrimidine motif. In this paper we assess the impact of systematically replacing thymine with adenine, inosine or cytosine in the third strand. To this aim we have designed a double length, 22—mer “purine” strand to target a 9-mer pyrimidine strand such that the extending tail acts as the third strand (reversed-Hoogsteen strand) which is antiparallel to the purine strand of the underlying WC duplex. By systematically replacing thymines with adenines in the reversed-Hoogsteen strand there is an increase in the stability (T m) of the triplex, particularly when the sequence closest to the loop consists of a stack of purines. Further substitution towards the 3′ end of the third strand reverses the stability. Systematic mutations in the third strand next to the loop reveal that the stability of the triads can be ranked according to their effect on Tm in the following order. A-AT > T-AT = I-AT. > C-AT where C is considered a mismatch.

  相似文献   

7.
We present evidence of formation of an intramolecular parallel triple helix with T•A.T and G•G.C base triplets (where • represents the hydrogen bonding interaction between the third strand and the duplex while . represents the Watson–Crick interactions which stabilize the duplex). The third GT strand, containing seven GpT/TpG steps, targets the polypurine sequence 5′-AGG-AGG-GAG-GAG-3′. The triple helix is obtained by the folding back twice of a 36mer, formed by three dodecamers tethered by hydroxyalkyl linkers (-L-). Due to the design of the oligonucleotide, the third strand orientation is parallel with respect to the polypurine strand. Triple helical formation has been studied in concentration conditions in which native gel electrophoresis experiments showed the absence of intermolecular structures. Circular dichroism (CD) and UV spectroscopy have been used to evidence the triplex structure. A CD spectrum characteristic of triple helical formation as well as biphasic UV and CD melting curves have been obtained in high ionic strength NaCl solutions in the presence of Zn2+ ions. Specific interactions with Zn2+ ions in low water activity conditions are necessary to stabilize the parallel triplex.  相似文献   

8.
9.
Two triple helix structures (15-mers containing only T.A-T triplets or containing mixed T.A-T and C.G-C triplets) have been studied by uranyl mediated DNA photocleavage to probe the accessibility of the phosphates of the DNA backbone. Whereas the phosphates of the pyrimidine strand are at least as accessible as in double stranded DNA, in the phosphates of the purine strand are partly shielded and more so at the 5'-end of the strand. With the homo A/T target increased cleavage is observed towards the 3'-end on the pyrimidine strand. These results show that the third strand is asymmetrically positioned along the groove with the tightest triple strand double strand interactions at the 5'-end of the third strand. The results also indicate that homo-A versus mixed A/G 'Hoogsteen-triple helices' have different structures.  相似文献   

10.
11.
We have studied the effect of a 2',5'-RNA third strand backbone on the stability of triple helices with a 'pyrimidine motif' targeting the polypurine strand of duplex DNA, duplex RNA and DNA/RNA hybrids. Comparative experiments were run in parallel with DNA and the regioisomeric RNA as third strands adopting the experimental design of Roberts and Crothers. The results reveal that 2',5'-RNA is indeed able to recognize double helical DNA (DD) and DNA (purine):RNA (pyrimidine) hybrids (DR). However, when the duplex purine strand is RNA and the duplex pyrimidine strand is DNA or RNA (i.e. RD or RR), triplex formation is not observed. These results exactly parallel what is observed for DNA third strands. Based on T m data, the affinities of 2',5'-RNA and DNA third strands towards DD and DR duplexes were similar. The RNA third strand formed triplexes with all four hairpins, as previously demonstrated. In analogy to the arabinose and 2'-deoxyribose third strands, the possible C2'- endo pucker of 2',5'-linked riboses together with the lack of an alpha-2'-OH group are believed to be responsible for the selective binding of 2',5'-RNA to DD and DR duplexes, over RR and RD duplexes. These studies indicate that the use of other oligonucleotide analogues will prove extremely useful in dissecting the contributions of backbone and/or sugar puckering to the recognition of nucleic acid duplexes.  相似文献   

12.
Oligonucleotides can be used as sequence-specific DNA ligands by forming a local triple helix. In order to form more stable triple-helical structures or prevent their degradation in cells, oligonucleotide analogues that are modified at either the backbone or base level are routinely used. Morpholino oligonucleotides appeared recently as a promising modification for antisense applications. We report here a study that indicates the possibility of a triple helix formation with a morpholino pyrimidine TFO and its comparison with a phosphodiester and a phosphoramidate oligonucleotide. At a neutral pH and in the presence of a high magnesium ion concentration (10 mM), the phosphoramidate oligomer forms the most stable triple helix, whereas in the absence of magnesium ion but at a physiological monovalent cation concentration (0.14 M) only morpholino oligonucleotides form a stable triplex. To our knowledge, this is the first report of a stable triple helix in the pyrimidine motif formed by a noncharged oligonucleotide third strand (the morpholino oligonucleotide) and a DNA duplex. We show here that the structure formed with the morpholino oligomer is a bona fide triple helix and it is destabilized by high concentrations of potassium ions or divalent cations (Mg(2+)).  相似文献   

13.
14.
15.
Modulation of endogenous gene function, through sequence-specific recognition of double helical DNA via oligonucleotide-directed triplex formation, is a promising approach. Compared to the formation of pyrimidine motif triplexes, which require relatively low pH, purine motif appears to be the most gifted for their stability under physiological conditions. Our previous work has demonstrated formation of magnesium-ion dependent highly stable intermolecular triplexes using a purine third strand of varied lengths, at the purine?pyrimidine (Pu?Py) targets of SIV/HIV-2 (vpx) genes (Svinarchuk, F., Monnot, M., Merle, A., Malvy, C., and Fermandjian, S. (1995) Nucleic Acids Res. 23, 3831-3836). Herein, we show that a designed intramolecular version of the 11-bp core sequence of the said targets, which also constitutes an integral, short, and symmetrical segment (G(2)AG(5)AG(2))?(C(2)TC(5)TC(2)) of human c-jun protooncogene forms a stable triplex, even in the absence of magnesium. The sequence d-C(2)TC(5)TC(2)T(5)G(2)AG(5)AG(2)T(5)G(2)AG(5)AG(2) (I-Pu) folds back twice onto itself to form an intramolecular triple helix via a double hairpin formation. The design ensures that the orientation of the intact third strand is antiparallel with respect to the oligopurine strand of the duplex. The triple helix formation has been revealed by non-denaturating gel assays, UV-thermal denaturation, and circular dichroism (CD) spectroscopy. The monophasic melting curve, recorded in the presence of sodium, represented the dissociation of intramolecular triplex to single strand in one step; however, the addition of magnesium bestowed thermal stability to the triplex. Formation of intramolecular triple helix at neutral pH in sodium, with or without magnesium cations, was also confirmed by gel electrophoresis. The triplex, mediated by sodium alone, destabilizes in the presence of 5'-C(2)TC(5)TC(2)-3', an oligonucleotide complementary to the 3'-oligopurine segments of I-Pu, whereas in the presence of magnesium the triplex remained impervious. CD spectra showed the signatures of triplex structure with A-like DNA conformation. We suggest that the possible formation of pH and magnesium-independent purine-motif triplexes at genomic Pu?Py sequences may be pertinent to gene regulation.  相似文献   

16.
A 30 nt RNA with a sequence designed to form an intramolecular triple helix was analyzed by one-and two-dimensional NMR spectroscopy and UV absorption measurements. NMR data show that the RNA contains seven pyrimidine-purine-pyrimidine base triples stabilized by Watson-Crick and Hoogsteen interactions. The temperature dependence of the imino proton resonances, as well as UV absorption data, indicate that the triple helix is highly stable at acidic pH, melting in a single sharp transition centered at 62 degrees C at pH 4.3. The Watson-Crick and Hoogsteen pairings are disrupted simultaneously upon melting. The NMR data are consistent with a structural model where the Watson-Crick paired strands form an A-helix. Results of model building, guided by NMR data, suggest a possible hydrogen bond between the 2' hydroxyl proton of the Hoogsteen strand and a phosphate oxygen of the purine strand. The structural model is discussed in terms of its ability to account for some of the differences in stability reported for RNA and DNA triple helices and provides insight into features that are likely to be important in the design of RNA binding compounds.  相似文献   

17.
It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region.  相似文献   

18.
The highly repeated Drosophila melanogaster AAGAGAG satellite sequence is present at each chromosome centromere of the fly. We demonstrate here how, under nearly physiological pH conditions, these sequences can form a pyrimidine triple helix containing T.A-T and CCu.G-C base triplets, stabilized by Cu2+ metal ions in amounts mirroring in vivo concentrations. Ultraviolet experiments were used to monitor the triple helix formation at pH 7.2 in presence of Cu2+ ions. Triplex melting is observed at 23 degrees C. Furthermore, a characteristic signature of triple helix formation was obtained by Fourier transform infrared spectroscopy. The stabilization of the C.G-C base triplets at pH 7.2 is shown to occur via interactions of Cu2+ ions on the third strand cytosine N3 atom and on the guanine N7 atom of the polypurine target strand forming CCu.G-C triplets. Under the same neutral pH conditions in absence of Cu2+ ions, the triple helix fails to form. Possible biological implications are discussed.  相似文献   

19.
Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the inverted purine*pyrimidine base pair(s). The loss of triplex stability due to the mismatch is partially overcome. The stability of triplexes formed at perfect and imperfect target sequences was investigated by UV thermal denaturation experiments. The stabilization provided by an internally incorporated acridine third strand oligonucleotide depends on the sequences flanking the inverted base pair. For triplexes containing a single mismatch the highest stabilization is observed for an acridine or a propanediol tethered to an acridine on its 3'-side facing an inverted A*T base pair and for a cytosine with an acridine incorporated to its 3'-side or a guanine with an acridine at its 5'-side facing an inverted G*C base pair. Fluorescence studies provided evidence that the acridine was intercalated into the triplex. The target sequences containing a double base pair inversion which form very unstable triplexes can still be recognized by oligonucleotides provided they contain an appropriately incorporated acridine facing the double mismatch sites. Selectivity for an A*T base pair inversion was observed with an oligonucleotide containing an acridine incorporated at the mismatched site when this site is flanked by two T*A*T base triplets. These results show that the range of DNA base sequences available for triplex formation can be extended by using oligonucleotide intercalator conjugates.  相似文献   

20.
Sinyakov  A. N.  Ryabinin  V. A.  Grimm  G. N.  Boutorine  A. S. 《Molecular Biology》2001,35(2):251-260
The possibility is discussed of stabilizing a DNA triple helix by covalent conjugation to the third strand (through its terminal phosphate) of ligands that have affinity to double and triple helices. Two types of stabilizers are considered: minor groove binders based on oligopyrroles, and triplex-specific intercalators. As a target, a synthetic 29-mer duplex containing a natural polypurine sequence of the human immunodeficiency provirus was employed. The stabilization with minor groove binders requires several conditions to be respected: a sufficiently long linker capable of reaching the minor groove from the major groove, a specific double-stranded structure of the oligopyrrole fragment, and its in-phase fitness to the target sequence. The best stabilizers of a triplex were novel conjugates in which two parallel molecules containing six pyrrole units each are linked to the same 5"-phosphate of a 16-mer triplex-forming oligonucleotide. The stabilizing properties of these derivatives were comparable to those of benzoindoloquinoline (BIQ) intercalators attached to the terminal phosphate of triple-helix forming oligonucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号