首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bompadre SG  Hwang TC 《生理学报》2007,59(4):431-442
囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是一种Cl^-通道,属于ATP结合(ATP-binding cassette,ABC)转运体超家族。CFTR功能缺陷是高加索人种中普遍存在的致死性常染色体隐性遗传疾病囊性纤维化(cystic fibrosis,CF)发生的主要原因。这种疾病患者各组织上皮细胞内Cl^-转运失调。目前,与CF相关的不同突变超过1400种。CFTR调节(regulatory,R)域负责调控,核苷酸结合域(nucleotide-binding domains,NBDs)NBD1和NBD2负责ATP结合和水解门控。近期研究发现CFFR的NBDs与其它ABC蛋白一样可以二聚化。二聚化过程中,NBD1和NBD2首-尾相连,一个NBD上的WalkerA和B模块与另一个NBD提供的标签序列(signature sequence)形成ATP结合袋(ATP-binding pockets,ABPs)ABP1和ABP2。ABPs中与ATP结合相关的氨基酸突变实验揭示,ABP1和ABP2在CFTR的ATP依赖门控中发挥不同作用。ABP2由NBD2上的WalkA和B模块与NBD1提供的标签序列形成,它与ATP结合催化通道开放,而ABP1单独与ATP结合不能促进通道开放,只能稳定通道构象。有一些CFrR突变相关疾病的特征就是门控失调,进一步深入研究CFTR的NBD1和NBD2如何通过相互作用而达到通道门控,将为药理学研究提供更多所需的机制信息,有利于为CF治疗的药物设计铺平道路。  相似文献   

2.
When excised inside-out membrane patches are bathed in symmetrical Cl--rich solutions, the current-voltage (I-V) relationship of macroscopic cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents inwardly rectifies at large positive voltages. To investigate the mechanism of inward rectification, we studied CFTR Cl- channels in excised inside-out membrane patches from cells expressing wild-type human and murine CFTR using voltage-ramp and -step protocols. Using a voltage-ramp protocol, the magnitude of human CFTR Cl- current at +100 mV was 74 +/- 2% (n = 10) of that at -100 mV. This rectification of macroscopic CFTR Cl- current was reproduced in full by ensemble currents generated by averaging single-channel currents elicited by an identical voltage-ramp protocol. However, using a voltage-step protocol the single-channel current amplitude (i) of human CFTR at +100 mV was 88 +/- 2% (n = 10) of that at -100 mV. Based on these data, we hypothesized that voltage might alter the gating behavior of human CFTR. Using linear three-state kinetic schemes, we demonstrated that voltage has marked effects on channel gating. Membrane depolarization decreased both the duration of bursts and the interburst interval, but increased the duration of gaps within bursts. However, because the voltage dependencies of the different rate constants were in opposite directions, voltage was without large effect on the open probability (Po) of human CFTR. In contrast, the Po of murine CFTR was decreased markedly at positive voltages, suggesting that the rectification of murine CFTR is stronger than that of human CFTR. We conclude that inward rectification of CFTR is caused by a reduction in i and changes in gating kinetics. We suggest that inward rectification is an intrinsic property of the CFTR Cl- channel and not the result of pore block.  相似文献   

3.
Proteins belonging to the ATP-binding cassette superfamily couple ATP binding and hydrolysis at conserved nucleotide-binding domains (NBDs) to diverse cellular functions. Most superfamily members are transporters, while cystic fibrosis transmembrane conductance regulator (CFTR), alone, is an ion channel. Despite this functional difference, recent results have suggested that CFTR shares a common molecular mechanism with other members. ATP binds to partial binding sites on the surface of the two NBDs, which then associate to form a NBD dimer, with complete composite catalytic sites now buried at the interface. ATP hydrolysis and gamma-phosphate dissociation, with the loss of molecular contacts linking the two sides of the composite site, trigger dimer dissociation. The conformational signals generated by NBD dimer formation and dissociation are transmitted to the transmembrane domains where, in transporters, they drive the cycle of conformational changes that translocate the substrate across the membrane; in CFTR, they result in opening and closing (gating) of the ion-permeation pathway.  相似文献   

4.
Opening and closing of a CFTR Cl(-) channel is controlled by PKA-mediated phosphorylation of its cytoplasmic regulatory (R) domain and by ATP binding, and likely hydrolysis, at its two nucleotide binding domains. Functional interactions between the R domain and the two nucleotide binding domains were probed by characterizing the gating of severed CFTR channels expressed in Xenopus oocytes. Expression levels were assessed using measurements of oocyte conductance, and detailed functional characteristics of the channels were extracted from kinetic analyses of macroscopic current relaxations and of single-channel gating events in membrane patches excised from the oocytes. The kinetic behavior of wild-type (WT) CFTR channels was compared with that of split CFTR channels bearing a single cut (between residues 633 and 634) just before the R domain, of split channels with a single cut (between residues 835 and 837) just after the R domain, and of split channels from which the entire R domain (residues 634-836) between those two cut sites was omitted. The channels cut before the R domain had characteristics almost identical to those of WT channels, except for less than twofold shorter open burst durations in the presence of PKA. Channels cut just after the R domain were characterized by a low level of activity even without phosphorylation, strong stimulation by PKA, enhanced apparent affinity for ATP as assayed by open probability, and a somewhat destabilized binding site for the locking action of the nonhydrolyzable ATP analog AMPPNP. Split channels with no R domain (from coexpression of CFTR segments 1-633 and 837-1480) were highly active without phosphorylation, but otherwise displayed the characteristics of channels cut after the R domain, including higher apparent ATP affinity, and less tight binding of AMPPNP at the locking site, than for WT. Intriguingly, severed channels with no R domain were still noticeably stimulated by PKA, implying that activation of WT CFTR by PKA likely also includes some component unrelated to the R domain. As the maximal opening rates were the same for WT channels and split channels with no R domain, it seems that the phosphorylated R domain does not stimulate opening of CFTR channels; rather, the dephosphorylated R domain inhibits them.  相似文献   

5.
Proteomic analysis has proved to be an important tool for understanding the complex nature of genetic disorders, such as cystic fibrosis (CF), by defining the cellular protein environment (proteome) associated with wild-type and mutant proteins. Proteomic screens identified the proteome of CF transmembrane conductance regulator (CFTR), and provided fundamental information to studies designed for understanding the crucial components of physiological CFTR function. Simultaneously, high-throughput screens for small-molecular correctors of CFTR mutants provided promising candidates for therapy. The majority of CF cases are caused by nucleotide deletions (ΔF508 CFTR; >75%), resulting in CFTR misfolding, or insertion of premature termination codons (~10%), leading to unstable mRNA and reduced levels of truncated dysfunctional CFTR. In this article, we review recent results of proteomic screens, developments in identifying correctors for the most frequent CFTR mutants, and comment on how integration of the knowledge gained from these studies may aid in finding a cure for CF and a number of other genetic disorders.  相似文献   

6.
The cystic fibrosis transmembrane conductance regulator is a Cl(-) channel that belongs to the family of ATP-binding cassette proteins. The CFTR polypeptide comprises two transmembrane domains, two nucleotide binding domains (NBD1 and NBD2), and a regulatory (R) domain. Gating of the channel is controlled by kinase-mediated phosphorylation of the R domain and by ATP binding, and, likely, hydrolysis at the NBDs. Exon 13 of the CFTR gene encodes amino acids (aa's) 590-830, which were originally ascribed to the R domain. In this study, CFTR channels were severed near likely NH(2)- or COOH-terminal boundaries of NBD1. CFTR channel activity, assayed using two-microelectrode voltage clamp and excised patch recordings, provided a sensitive measure of successful assembly of each pair of channel segments as the sever point was systematically shifted along the primary sequence. Substantial channel activity was taken as an indication that NBD1 was functionally intact. This approach revealed that the COOH terminus of NBD1 extends beyond aa 590 and lies between aa's 622 and 634, while the NH(2) terminus of NBD1 lies between aa's 432 and 449. To facilitate biochemical studies of the expressed proteins, a Flag epitope was added to the NH(2) termini of full length CFTR, and of CFTR segments truncated before the normal COOH terminus (aa 1480). The functionally identified NBD1 boundaries are supported by Western blotting, coimmunoprecipitation, and deglycosylation studies, which showed that an NH(2)-terminal segment representing aa's 3-622 (Flag3-622) or 3-633 (Flag3-633) could physically associate with a COOH-terminal fragment representing aa's 634-1480 (634-1480); however, the latter fragment was glycosylated to the mature form only in the presence of Flag3-633. Similarly, 433-1480 could physically associate with Flag3-432 and was glycosylated to the mature form; however, 449-1480 protein seemed unstable and could hardly be detected even when expressed with Flag3-432. In excised-patch recordings, all functional severed CFTR channels displayed the hallmark characteristics of CFTR, including the requirement of phosphorylation and exposure to MgATP for gating, ability to be locked open by pyrophosphate or AMP-PNP, small single channel conductances, and high apparent affinity of channel opening by MgATP. Our definitions of the boundaries of the NBD1 domain in CFTR are supported by comparison with the solved NBD structures of HisP and RbsA.  相似文献   

7.
Peptide toxins from animal venom have been used for many years for the identification and study of cation-permeable ion channels. However, no peptide toxins have been identified that interact with known anion-selective channels, including cystic fibrosis transmembrane conductance regulator (CFTR), the protein defective in cystic fibrosis and a member of the ABC transporter superfamily. Here, we describe the identification and initial characterization of a novel 3.7-kDa peptide toxin, GaTx1, which is a potent and reversible inhibitor of CFTR, acting from the cytoplasmic side of the membrane. Thus, GaTx1 is the first peptide toxin identified that inhibits a chloride channel of known molecular identity. GaTx1 exhibited high specificity, showing no effect on a panel of nine transport proteins, including Cl(-) and K(+) channels, and ABC transporters. GaTx1-mediated inhibition of CFTR channel activity is strongly state-dependent; both potency and efficacy are reduced under conditions of elevated [ATP], suggesting that GaTx1 may function as a non-competitive inhibitor of ATP-dependent channel gating. This tool will allow the application of new quantitative approaches to study CFTR structure and function, particularly with respect to the conformational changes that underlie transitions between open and closed states.  相似文献   

8.
The cystic fibrosis transmembrane conductance regulator (CFTR) is vital for Cl(-) and HCO(3)(-) transport in many epithelia. As the HCO(3)(-) concentration in epithelial secretions varies and can reach as high as 140 mm, the lumen-facing domains of CFTR are exposed to large reciprocal variations in Cl(-) and HCO(3)(-) levels. We have investigated whether changes in the extracellular anionic environment affects the activity of CFTR using the patch clamp technique. In fast whole cell current recordings, the replacement of 100 mm external Cl(-) ((Cl(o)(-))) with HCO(3)(-), Br(-), NO(3)(-), or aspartate(-) inhibited inward CFTR current (Cl(-) efflux) by approximately 50% in a reversible manner. Lowering Cl(o)(-) alone by iso-osmotic replacement with mannitol also reduced Cl(-) efflux to a similar extent. The maximal inhibition of CFTR current was approximately 70%. Raising cytosolic calcium shifted the Cl(-) dose-inhibition curve to the left but did not alter the maximal current inhibition observed. In contrast, a reduction in the internal [Cl(-)] neither inhibited CFTR nor altered the block caused by reduced Cl(o)(-). Single channel recordings from outside-out patches showed that lowering Cl(o)(-) markedly reduced channel open probability with little effect on unitary conductance. Together, these results indicate that alterations in Cl(o)(-) alone and not the Cl(-)/HCO(3)(-) ratio regulate the gating of CFTR. Physiologically, our data have implications for current models of epithelial HCO(3)(-) secretion and for the control of pH at epithelial cell surfaces.  相似文献   

9.
We investigated the regulation of cardiac cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels by protein kinase C (PKC) in Xenopus oocytes injected with cRNA encoding the cardiac (exon 5-) CFTR Cl- channel isoform. Membrane currents were recorded using a two-electrode voltage clamp technique. Activators of PKC or a cAMP cocktail elicited robust time-independent Cl- currents in cardiac CFTR-injected oocytes, but not in control water-injected oocytes. The effects of costimulation of both pathways were additive; however, maximum protein kinase A (PKA) activation occluded further activation by PKC. In oocytes expressing either the cardiac (exon 5-) or epithelial (exon 5+) CFTR isoform, Cl- currents activated by PKA were sustained, whereas PKC-activated currents were transient, with initial activation followed by slow current decay in the continued presence of phorbol esters, the latter effect likely due to down-regulation of endogenous PKC activity. The specific PKA inhibitor, adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS), and various protein phosphatase inhibitors were used to determine whether the stimulatory effects of PKC are dependent upon the PKA phosphorylation state of cardiac CFTR channels. Intraoocyte injection of 1,2-bis(2-aminophenoxy)ethane-N,N, N,N-tetraacetic acid (BAPTA) or pretreatment of oocytes with BAPTA-acetoxymethyl-ester (BAPTA-AM) nearly completely prevented dephosphorylation of CFTR currents activated by cAMP, an effect consistent with inhibition of protein phosphatase 2C (PP2C) by chelation of intracellular Mg2+. PKC-induced stimulation of CFTR channels was prevented by inhibition of basal endogenous PKA activity, and phorbol esters failed to stimulate CFTR channels trapped into either the partially PKA phosphorylated (P1) or the fully PKA phosphorylated (P1P2) channel states. Site-directed mutagenesis of serines (S686 and S790) within two consensus PKC phosphorylation sites on the cardiac CFTR regulatory domain attentuated, but did not eliminate, the stimulatory effects of phorbol esters on mutant CFTR channels. The effects of PKC on cardiac CFTR Cl- channels are consistent with a simple model in which PKC phosphorylation of the R domain facilitates PKA-induced transitions from dephosphorylated (D) to partially (P1) phosphorylated and fully (P1P2) phosphorylated channel states.  相似文献   

10.
Impaired biosynthetic processing of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, constitutes the most common cause of CF. Recently, we have identified a distinct category of mutation, caused by premature stop codons and frameshift mutations, which manifests in diminished expression of COOH-terminally truncated CFTR at the cell surface. Although the biosynthetic processing and plasma membrane targeting of truncated CFTRs are preserved, the turnover of the complex-glycosylated mutant is sixfold faster than its wild-type (wt) counterpart. Destabilization of the truncated CFTR coincides with its enhanced susceptibility to proteasome-dependent degradation from post-Golgi compartments globally, and the plasma membrane specifically, determined by pulse-chase analysis in conjunction with cell surface biotinylation. Proteolytic cleavage of the full-length complex-glycosylated wt and degradation intermediates derived from both T70 and wt CFTR requires endolysosomal proteases. The enhanced protease sensitivity in vitro and the decreased thermostability of the complex-glycosylated T70 CFTR in vivo suggest that structural destabilization may account for the increased proteasome susceptibility and the short residence time at the cell surface. These in turn are responsible, at least in part, for the phenotypic manifestation of CF. We propose that the proteasome-ubiquitin pathway may be involved in the peripheral quality control of other, partially unfolded membrane proteins as well.  相似文献   

11.
In search of the structural basis for gating of amiloride-sensitive Na(+) channels, kinetic properties of single homo and heterooligomeric ENaCs formed by the subunits with individual truncated cytoplasmic domains were studied in a cell-free planar lipid bilayer reconstitution system. Our results identify the N-terminus of the alpha-subunit as a major determinant of kinetic behavior of both homooligomeric and heterooligomeric ENaCs, although the carboxy-terminal domains of beta- and gamma-ENaC subunits play important role(s) in modulation of the kinetics of heterooligomeric channels. We also found that the cystic fibrosis transmembrane conductance regulator (CFTR) inhibits amiloride-sensitive channels, at least in part, by modulating their gating. Comparison of these data suggests that the modulatory effects of the beta- and gamma-ENaC subunits, and of the CFTR, may involve the same, or closely related, mechanism(s); namely, "locking" the heterooligomeric channels in their closed state. These mechanisms, however, do not completely override the gating mechanism of the alpha-channel.  相似文献   

12.
We wish to construct a mouse model for the human inherited disease cystic fibrosis. We describe here the successful targeting in embryonal stem cells of the murine homologue (Cftr) of the cystic fibrosis transmembrane conductance regulator gene, as the first critical step towards this end. The targeting event precisely disrupts exon 10, the site of the major mutation in patients with cystic fibrosis. The targeted cells are pluripotent and competent to form chimaeras.  相似文献   

13.
A large fraction of mutations causing cystic fibrosis impair the function of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel by causing reduced channel activity (gating defect) and/or impaired exit from the endoplasmic reticulum (trafficking defect). Such defects need to be treated with separate pharmacological compounds termed potentiators and correctors, respectively. Here, we report the characterization of aminoarylthiazoles (AATs) as compounds having dual activity. Cells expressing mutant CFTR were studied with functional assays (fluorescence-based halide transport and short circuit current measurements) to assess the effect of acute and chronic treatment with compounds. We found that AATs are effective on F508del, the most frequent cystic fibrosis mutation, which is associated with both a gating and a trafficking defect. AATs are also effective on mutations like G1349D and G551D, which cause only a gating defect. Evaluation of a panel of AAT analogs identified EN277I as the most effective compound. Incubation of cells expressing mutant CFTR with EN277I caused a strong stimulation of channel activity as demonstrated by single channel recordings. Compounds with dual activity such as AATs may be useful for the development of effective drugs for the treatment of cystic fibrosis.  相似文献   

14.
J Zhao  B Zerhusen  J Xie  M L Drumm  P B Davis    J Ma 《Biophysical journal》1996,71(5):2458-2466
We report here distinct rectification of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel reconstituted in lipid bilayer membranes. Under the symmetrical ionic condition of 200 mM KCl (with 1 mM MgCl2 in cis intracellular and 0 MgCl2 in trans extracellular solutions, pH in both solutions buffered at 7.4 with 10 mM HEPES), the inward currents (intracellular-->extracellular chloride movement) through a single CFTR channel were approximately 20% larger than the outward currents. This inward rectification of the CFTR channel was mediated by extracellular divalent cations, as the linear current-voltage relationship of the channel could be restored through the addition of millimolar concentrations of MgCl2 or CaCl2 to the trans solution. The dose responses for [Mg]zero and [Ca]zero had half-dissociation constants of 152 +/- 72 microM and 172 +/- 40 microM, respectively. Changing the pH buffer from HEPES to N-tris-(hydroxymethyl)methyl-2-aminoethanesulfonic acid did not alter rectification of the CFTR channel. The nonlinear conductance property of the CFTR channel seemed to be due to negative surface charges on the CFTR protein, because in pure neutral phospholipid bilayers, clear rectification of the channel was also observed when the extracellular solution did not contain divalent cations. The CFTR protein contains clusters of negatively charged amino acids on several extracellular loops joining the transmembrane segments, which could constitute the putative binding sites for Ca and Mg.  相似文献   

15.
Membrane vesicles, prepared from mouse NIH-3T3 fibroblasts and Chinese hamster ovary cells expressing high levels of cystic fibrosis transmembrane conductance regulator (CFTR), were fused with Mueller-Rudin planar lipid bilayers. Upon addition of the catalytic subunit of cAMP-dependent protein kinase and ATP, low conductance Cl(-)-selective ion channels were observed in 10 of 16 experiments. The channels had a linear current-voltage relationship and a unitary conductance of approximately 6.5 pS. The channels were more permeable to Cl- than to I- and showed no appreciable time-dependent voltage activation. In contrast, addition of cAMP-dependent protein kinase and ATP to lipid bilayers fused with vesicles prepared from mock transfected (n = 14) cells failed to activate Cl- channels. These data support the conclusion that CFTR is a Cl- channel. They indicate that it can be reconstituted in a planar lipid bilayer and that the biophysical and regulatory properties are very similar to those observed in the native cell membrane. These data also argue against the requirement for loosely associated factors for regulation or function of the channel.  相似文献   

16.
Cystic fibrosis is characterized by an impaired cyclic adenosine 3,5-monophosphate (cAMP) activated Cl conductance in parallel with an enhanced amiloride sensitive Na+ conductance (ENaC) of the respiratory epithelium. Very recently, acute downregulation of ENaC by the cystic fibrosis transmembrane conductance regulator (CFTR) was demonstrated in several studies. The mechanism, however, by which CFTR exerts its inhibitory effect on ENaC remains obscure. We demonstrate that cytosolic domains of human CFTR are sufficient to induce inhibition of rat epithelial Na+ currents (rENaC) when coexpressed in Xenopus oocytes and stimulated with 3-isobutyl-1-methylxanthine (IBMX). Moreover, mutations of CFTR, which occur in cystic fibrosis, abolish CFTR-dependent downregulation of rENaC. Yeast two hybrid analysis of CFTR domains and rENaC subunits suggest direct interaction between the proteins. Enhanced Na+ transport as found in the airways of cystic fibrosis patients is probably due to a lack of CFTR dependent downregulation of ENaC.  相似文献   

17.
The CLCA family of proteins consists of a growing number of structurally and functionally diverse members with distinct expression patterns in different tissues. Several CLCA homologs have been implicated in diseases with secretory dysfunctions in the respiratory and intestinal tracts. Here we present biochemical protein characterization and details on the cellular and subcellular expression pattern of the murine mCLCA6 using specific antibodies directed against the amino- and carboxy-terminal cleavage products of mCLCA6. Computational and biochemical characterizations revealed protein processing and structural elements shared with hCLCA2 including anchorage in the apical cell membrane by a transmembrane domain in the carboxy-terminal subunit. A systematic light- and electron-microscopic immunolocalization found mCLCA6 to be associated with the microvilli of non-goblet cell enterocytes in the murine small and large intestine but in no other tissues. The expression pattern was confirmed by quantitative RT-PCR following laser-capture microdissection of relevant tissues. Confocal laser scanning microscopy colocalized the mCLCA6 protein with the cystic fibrosis transmembrane conductance regulator CFTR at the apical surface of colonic crypt cells. Together with previously published functional data, the results support a direct or indirect role of mCLCA6 in transepithelial anion conductance in the mouse intestine.  相似文献   

18.
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N‐terminal 25 amino acid deleted S. typhi native PilS protein (ΔPilS), which makes the pilus, was determined at 1.9 Å resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of ΔPilS and a target CFTR peptide, determined at 1.8 Å, confirms that residues 113–117 (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Cystic fibrosis transmembrane conductance regulator (CFTR) functions as both a chloride channel and an epithelial transport regulator, interacting with Na(+) (epithelial sodium channel), Cl(-), renal outer medullary potassium channel(+), and H(2)O channels and some exchangers (i.e. Na(+)/H(+)) and co-transporters (Na(+)-HCO(3)(minus sign), Na(+)-K(+)-2Cl(-)). Acid-sensitive ion channels (ASICs), members of the epithelial sodium channel/degenerin superfamily, were originally cloned from neuronal tissue, and recently localized in epithelia. Because CFTR has been immunocytochemically and functionally identified in rat, murine, and human brain, the regulation of ASICs by CFTR was tested in oocytes. Our observations show that the proton-gated Na(+) current formed by the heteromultimeric ASIC1a/2a channel was up-regulated by wild type but not by Delta F508-CFTR. In contrast, the acid-gated Na(+) current associated with either the homomultimeric ASIC1a or ASIC2a channel was not influenced by wild type CFTR. The apparent equilibrium dissociation constant for extracellular Na(+) for ASIC1a/2a was increased by CFTR, but CFTR had no effect on the gating behavior or acid sensitivity of ASIC1a/2a. CFTR had no effect on the pH activation of ASIC1a/2a. We conclude that wild type CFTR elevates the acid-gated Na(+) current of ASIC1a/2a in part by altering the kinetics of extracellular Na(+) interaction.  相似文献   

20.
Structural knowledge of the cystic fibrosis transmembrane conductance regulator (CFTR) requires developing methods to purify and stabilize this aggregation-prone membrane protein above 1 mg/ml. Starting with green fluorescent protein- and epitope-tagged human CFTR produced in mammalian cells known to properly fold and process CFTR, we devised a rapid tandem affinity purification scheme to minimize CFTR exposure to detergent in order to preserve its ATPase function. We compared a panel of detergents, including widely used detergents (maltosides, neopentyl glycols (MNG), C12E8, lysolipids, Chaps) and innovative detergents (branched alkylmaltosides, facial amphiphiles) for CFTR purification, function, monodispersity and stability. ATPase activity after reconstitution into proteoliposomes was 2–3 times higher when CFTR was purified using facial amphiphiles. ATPase activity was also demonstrated in purified CFTR samples without detergent removal using a novel lipid supplementation assay. By electron microscopy, negatively stained CFTR samples were monodisperse at low concentration, and size exclusion chromatography showed a predominance of monomer even after CFTR concentration above 1 mg/ml. Rates of CFTR aggregation quantified in an electrophoretic mobility shift assay showed that detergents which best preserved reconstituted ATPase activity also supported the greatest stability, with CFTR monomer half-lives of 6–9 days in MNG or Chaps, and 12–17 days in facial amphiphile. Cryoelectron microscopy of concentrated CFTR in MNG or facial amphiphile confirmed mostly monomeric protein, producing low resolution reconstructions in conformity with similar proteins. These protocols can be used to generate samples of pure, functional, stable CFTR at concentrations amenable to biophysical characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号