首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Opportunities for synthetic plant chimeral breeding: Past and future   总被引:6,自引:0,他引:6  
Many plant periclinal chimeras are selected by horticulturalists due to their distinctive, valuable phenotypes, and because they are relatively stable. Most of these have arisen by induced or spontaneous mutation. Interspecific chimeras have been accidentally produced from graft unions of plants from a wide range of families. Early last century Winkler developed a technique to produce interspecific chimeras from graft unions (graft chimeras). More recently in vitro techniques have been developed to synthesize interspecific and intervarietal chimeras. However, these techniques have only been successful for species in the families Solanaceae and Cruciferae, and rarely assessed on plants in other families. Research is required to improve these techniques or develop new approaches so that the efficiency of chimeral shoot production is improved and the techniques are applicable to plants in a wide range of families. The unique characteristics of interspecific or intervarietal chimeras show the potential of chimeral breeding to produce new cultivars. If chimeral breeding techniques were improved, they could become a standard breeding approach for some horticultural crops.  相似文献   

2.
Exogenous plant growth regulators are known to increase the efficiency of interspecific and intergeneric crosses. In vitro floret culture provides a defined system for assessing the importance of various plant growth regulators on the determinants of haploid production efficiency (seed set, embryos per seeds, and plants per embryos) in Hordeum vulgare × Hordeum bulbosum crosses. The individual and combined effects of three plant growth regulators (2,4-D, GA3 and kinetin) on in vitro seed growth, embryo development and haploid production efficiency were tested in floret culture of the cross H. vulgare, cultivar Klages × H. bulbosum. All treatments, except kinetin alone, produced larger seeds and more embryos/100 seeds than the control (no plant growth regulator). 2,4-D alone was superior to GA3 alone in haploid production efficiency (70.6 vs. 51.5) as measured by the number of plants regenerated/100 florets pollinated. Although kinetin +2,4-D+GA3 produced the largest seeds and embryos, no advantage over 2,4-D alone was observed in haploid production efficiency. 2,4-D alone or kinetin +2,4-D are recommended for the purpose of barley haploid production in floret culture using the bulbosum method.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid  相似文献   

3.
Wide hybridization in okra   总被引:5,自引:0,他引:5  
Summary Crosses were made between members of the two West African okra types Soudanien and Guineen. All crosses succeeded in both directions and the F1 plants which showed hybrid vigour for plant stature were partially sterile. Cytological observations of the F1 plants revealed abnormal meiosis which resulted in the production of microspores of variable sizes. The frequency of viable pollen (as indicated by acetocarmine staining) was low in the hybrids: 35.80% (U.I.92× U.I.313) and 39.41% (1bk-1×U.I.215). The number of seeds produced per fruit was low in the hybrids and only a few of these seeds are viable. The possibility of gene transfer between the two okra types was discussed.  相似文献   

4.
Significant differences in somatic embryogenesis from melon seeds were observed among 18 cultivars; especially, cultivars Earl's Favorite and Barnett which produced a large number of somatic embryos. F1 seeds were obtained by reciprocal crosses between cultivars. Some lines produced a large number of somatic embryos whereas others showed no or poor embryogenic response. Most of the F1 seeds formed somatic embryos. The frequency of somatic embryogenesis decreased as compared to the parents with the highest potential. Transfer of the frequency of somatic embryogenesis from superior responding cultivars to inferior cultivars was proved. It was difficult to determine the mode of inheritance of somatic embryogenesis because there was a large variation in the range of somatic embryogenesis from F2 seeds, and cytoplasmic effect was recognized in certain combinations.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine  相似文献   

5.
Summary The inheritance of yellow berry, a grain disorder in durum and bread wheats, was studied in six intervarietal crosses in bread wheat. The trait was found to be controlled by either two or three dominant genes. Monosomic analysis using Chinese Spring monosomic series showed the presence of two major dominant genes on chromosomes 1A and 7A, and four modifiers on 4A, 4B, 6A and 6D, which influence the expression of yellow berry in bread wheat.  相似文献   

6.
Success of seed development following sexual crosses is primarily dependent on proper endosperm function and development. The failure to produce triploids, or triploid block in 4x×2x crosses served as the impetus for numerous studies of embryo and endosperm to attempt to explain cross failure. Early explanations were based upon a concept of a 232 ploidy balance between maternal tissue, endosperm, and embryo. Subsequent studies done with maize demonstrated that normal endosperm development in intraspecific maize crosses is dependent solely on having a 21 maternal to paternal genome dosage in the endosperm. These results have been modified and extended to solanaceous species in the form of an endosperm dosage system in which empirically determined factors must bear the same 21 relationship for crosses to succeed. Crossing behavior of these species suggest that the system is polygenically controlled and regulates both interspecific and intraspecific crosses. Endosperm dosage systems explain many aspects of species evolution, but the system appears to have originated as an ancient means of ensuring diploid fidelity.  相似文献   

7.
The putative periclinal chimeraRhododendron xlimbatum President Roosevelt was used to study the origin of shoots in vitro. Genotypic segregation readily occurred in vitro. Numerous phenotypes were observed, although most shoots were either entirely green or maintained the original variegation pattern. Derivatives of the third apical layer were rarely involved in shoot formation. A reversed chimeral form was isolated. Adventitious shoots were usually miniaturized and rapidly proliferating, but axillary shoots had thicker stems, larger leaves and proliferated more slowly. Corolla tissue produced stunted, leafy shoots; no variegated shoots were produced from floret explants. In shoot tip cultures the addition of 40M 2iP without IBA resulted in the greatest number of shoots. Explant choice was the most critical factor for maintenance of foliar variegation.  相似文献   

8.
Soybean (Glycine max (L.) Merr.) seeds contain the storage protein -conglycinin, encoded by a multigene family. -Conglycinin consists of three subunits; , , and . A genomic clone for a -subunit of -conglycinin has been characterized by restriction-enzyme mapping and hybrid selected in-vitro translation followed by immunoprecipitation. In order to determine the developmental regulation of this -subunit gene, its expression was studied in seeds of transgenic petunia (Petunia hybrida) and tobacco (Nicotiana tabacum L.) plants. The -subunit expressed in seeds of petunia and tobacco was recognized by anti--conglycinin serum at a relative molecular mass of 53 000, equivalent to that of the native protein. Separation of the petunia-seed proteins by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis showed that multiple isoelectric forms of the -subunit were produced. There was approximately a twofold variation in the accumulation of the -subunit protein in the mature seeds of transgenic petunia plants, each containing a single -subunit gene. However, the level of protein accumulation in mature seeds and the amount of -subunit mRNA in developing seeds was not correlated. Accumulation of the -subunit protein in transgenic seeds was less than the -subunit protein that accumulated in transgenic petunia seeds containing a single -subunit gene and less than the amount of the -subunit in mature soybean seeds which contain 8–13 -subunit genes. In transgenic tobacco plants, the accumulation of the -subunit protein in seeds was generally well correlated with the number of genes that were incorporated in the different transformants.Abbreviations kb kilobase - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

9.
Solanum acaule Bitt. is a disomic tetraploid potato which has been assigned two endosperm balance numbers (EBN). It readily crosses with diploids but does not cross with other tetraploid species, although exceptions have been reported. The genetic basis of this behavior was studied in intra- and interspecific crosses involving plants of four introductions of this species and plants of one introduction of 2x S. commersonii Dun., one of 2x S. gourlayi Haw., and two of 4x S. gourlayi Haw., which have been assigned one EBN, two EBN, and four EBN respectively. Some of the pollinated pistils were used to analyze pollen-pistil compatibility reactions; the rest were left in the plants for seed production. At harvest, seeds were sorted according to size and plumpness, and the ploidy of the resulting plantlets determined from root tips. A model is proposed to explain the results of these crosses as well as the exceptions previously reported. It is based on the presence of two independent loci controlling the EBN, with two alleles in homozygosity: 1/2 and 0. This model, which is extended to cmm and grl, also explains the behavior of 3x (cmm x grl) hybrids in crosses with one-EBN, two-EBN, and four-EBN species reported in a previous work.  相似文献   

10.
Summary Three different diallel crosses were studied in Cicer arietinum; two of size 6×6, one within each of the two botanical groups macrosperma and microsperma of the cultivated subspecies, and one of 9×9 involving lines covering most of the morphological variation of chickpea. Barriers to crossability present neither a botanical nor a geographical pattern, being probably a direct consequence of interactions between genotypes. The genetic systems of twelve quantitative characters were analysed. Full dominance in a negative sense (small values dominant) is shown by leaflet length, width and shape index, rachis length, leaflet density on the rachis and pod length. Full dominance in a positive sense is shown by seeds per pod. Overdominance (in a positive sense) is evident for pods, seeds and yield per plant. Weak reciprocal differences were manifested by pod length, and pods, seeds and yield per plant. The system controlling number of leaflets per leaf is not clear. Dominance of primitive over selected characters seems to be the rule. As far as the environmental effects have permitted the analysis, no differences in genetic systems were observed between botanical groups.  相似文献   

11.
The effects of homoeology and sex on recombination frequency were studied in crosses between cultivated pearl millet, Pennisetum glaucum, and two wild subspecies, P. violaceum and P. mollissimum. For the two wild x cultivated crosses, reciprocal three-way crosses were made between the F1 hybrid and an inbred line (Tift 23DB1). The three-way cross populations were mapped to produce a female map of each wide cross (where the F1 was the female) and a male map (where the F1 was the male). Total genetic map lengths of the two inter-subspecies crosses were broadly similar and around 85 % of a comparable intervarietal map. In the P. glaucumxP. mollissimum crosses, the map was further shortened by a large (40 cM) inversion in linkage group 1. Comparison of the recovered recombinants from male and female meiocytes showed an overall trend for the genetic maps to be longer in the male (10%) in both inter-subspecific crosses; however, analysis of individual linkage intervals showed no significant differences. Gametophytic selection was prevalent, and sometimes extreme, for example 121 in favour of wild alleles in the P. glaucumxP. mollissimum male recombinant population. One of the loci which determines panicle type in cultivated pearl millet and wild relatives, H, was mapped 9 cM from Xpsm812 on linkage group 7 in the P. violaceum cross.  相似文献   

12.
In vitro methods for plant multiplication of a sterile interspecific hybrid between Brassica fruticulosa and B. campestris through either micropropagation or callus regeneration is described. Shoot-tip, single-node and leaf explants, obtained from in vitro-grown hybrids, regenerated on media containing NAA and BA. In vitro application of colchicine induced chromosome doubling in in vitro-regenerated shoots resulting in the production of fertile amphidiploids. Comparative studies on regeneration potential of the hybrid and its parents were also carried out using callus from leaf explants. The explants of B. fruticulosa and the hybrid were capable of shoot and root formation while those of B. campestris failed to form shoots but produced profuse roots. The results demonstrate the efficacy of an in vitro method in producing a large number of hybrid plants and fertile amphidiploids from incompatible crosses that yield very few hybrid seeds/seedlings.Abbreviations BA benzyladenine - CMS cytoplasmic male sterile - AA diploid genome of B. campestris - FF diploid genome of B. fruticulosa - NAA -naphthaleneacetic acid  相似文献   

13.
A genetically related response to iron deficiency stress in muskmelon   总被引:1,自引:0,他引:1  
A mutant muskmelon (Cucumis melo L.) with characteristic Fe-deficiency chlorosis symptoms was compared to related cultivars in its ability to obtain Fe via the widely known Fe-stress response mechanisms of dicotyledonous plants. The three cultivars (fefe, the Fe-inefficient mutant; Mainstream and Edisto, both Fe efficient plants) were grown in nutrient solution in either 0 or 3.5 mg L-1 Fe as FeCl3. None of the three cultivars released reductants or phytosiderophores, but both Edisto and Mainstream produced massive amounts of H+ ions to reduce and maintain the pH of nutrient solutions below pH 4.0. The roots of these two Fe-efficient cultivars were also capable of reducing Fe3+ to Fe2+. These responses maintained green plants, resulted in high leaf Fe in both Edisto and Mainstream, and produced Mn toxicity in Mainstream. The lack of Fe-deficiency stress response in fefe not only affected leaf Fe concentration and chlorosis, but also resulted in reduced uptake of Mn. The importance of reduced Fe (Fe2+) to the Fe-efficient cultivars was confirmed by growing the cultivars with BPDS (4, 7-diphenyl-1, 10-phenanthroline disulfonic acid, a ferrous chelator) and EDDHA [ethylene-diamine di (0-hydroxphenylacetic acid)] (a ferric chelator), and observing increased chlorosis and reduced Fe uptake in BPDS grown plants. The Fe-deficiency response observed in these cultivars points out the diversity of responses to Fe deficiency stress in plants. The fefe mutant has a limited ability to absorb Fe and Mn and perhaps could be used to better understand Mn uptake in plants.  相似文献   

14.
Agrobacterium tumefaciens strains harbouring plasmid vectors pBCAT1, pVU1011 or pMON806 were used to transform leaf explants of Nicotiana tabacum cultivars Delgold and Candel, N. debneyi, and N. rustica var. NRT. Transgenic plants resistant to the selective agents kanamycin, hygromycin or methotrexate were regenerated and used as sources of leaf mesophyll protoplasts. Protoplasts divided and regenerated plants in the presence of selective agents at levels inhibitory to protoplasts of non-transformed plants. Cross-resistance of protoplasts to more than one selective agent was not observed in this study which suggests that this approach may lead to an efficient interspecific somatic hybrid selection system.  相似文献   

15.
Summary A study of seed position in the pod ofLotus corniculatus L. cv. Mirabel (Fabaceae) suggested that reduced seed set after self-pollination is not due to an inability of the self-pollen tube to reach the end of the ovary. As in other cultivars, it has been demonstrated that cultivar Mirabel produced less seed per pod and shorter pods after self- than after cross-pollination. No differences were noted for percent germination of seeds produced by both types of pollination indicating that the number of seeds per pod is a reliable index of the ultimate productive potential of the pollination.  相似文献   

16.
Summary Subunits of wheat endosperm proteins have been fractionated by two-dimensional electrophoresis. To determine which subunits in the two-dimensional electrophoretic pattern belong to gliadin or glutenin the endosperm proteins have also been fractionated by a modified Osborne procedure and by gel filtration on Sephadex G-100 and Sepharose CL-4B prior to separation by two-dimensional electrophoresis.The control of production of five major grain protein subunits is shown to be determined by chromosomes 6A, 6B and 6D by comparing two-dimensional electrophoretic protein subunit patterns of aneuploid lines of the variety Chinese Spring. From these and previous studies it is concluded that some , and gliadins (molecular weights by SDS-PAGE 30,000 to 40,000) are specified by genes on the short arms of homoeologous Group 6 chromosomes, the gliadins (molecular weights by SDS-PAGE 50,000 to 70,000) are specified by genes on the short arms of homoeologous Group 1 chromosomes and the glutenin subunits (molecular weights by SDS-PAGE > 85,000) are specified by genes on the long arms of homoeologous Group 1 chromosomes.No major gliadins or glutenin subunits were absent when any of the chromosomes in homoeologous Groups 2, 3, 4, 5 or 7 were deleted. However two gliadins whose presumed structural genes are on chromosome 6D were absent in aneuploid stocks of Chinese Spring carrying two additional doses of chromosome 2A. Two out of thirty-three intervarietal or interspecific chromosome substitution lines examined, involving homoeologous Group 2 chromosomes, lacked the same two gliadins. All the subunits in the other thirty-one chromosome substitution lines were indistinguishable from those in Chinese Spring. It is therefore concluded that the major variation affecting gliadin and glutenins in wheat is concentrated on the chromosomes of homoeologous Groups 1 and 6 but Group 2 chromosomes are candidates for further study.An endosperm protein controlled by chromosome 4D in Chinese Spring is shown to be a high molecular weight globulin.  相似文献   

17.
Summary Hybrid embryos from hexaploid wheat x maize crosses rapidly lose the maize chromosomes to produce haploid wheat embryos. Such embryos almost always aborted when left to develop on the plant, and only 1 was recovered from 2440 florets (0.17% of the expected number). Embryos had greater viability in spikelet culture, 47 (26.5% of the expected number) being recovered from 706 ovaries. Thirty-two of these embryos germinated to give green plants, 31 of which were haploid (21 wheat chromosomes) and 1 of which was euploid (42 wheat chromosomes). Spikelet culture enabled 17.1% of the expected number of embryos to be recovered as haploid plants, a 100-fold improvement on allowing embryos to develop in vivo. Ten haploid plants of Chinese Spring (kr1, kr2), 13 plants of Chinese Spring (Hope 5A) (kr1, Kr2), and 8 of Hope (Kr1, Kr2) were recovered. The potential of wheat x maize crosses for wheat haploid production and for gene transfer from maize to wheat is discussed.  相似文献   

18.
Wheat microspores mechanically isolated from the anthers before culture and isolated from the anthers during the hole culture period in a chemically defined medium resulted in proembryos, embryos and finally plants. Of the four genotypes included, all responded with proembryos, and the two spring wheats Ciano and Walter gave rise to macroscopic embryos and plants. The frequency of embryo regeneration and the frequency of albino plants in both Ciano and Walter was in accordance with previously obtained results with anther culture derived material.Abbreviations 2,4-d 2,4-dichlorophenoxy acetic acid - NAA 1-naphthaleneacetic acid  相似文献   

19.
We describe a method for the isolation of spontaneous haploid tomato plants from greenhousegrown seedlings obtained from crosses involving a transgenic parental line in which a counter-selectionable chimeric gene has been introduced. Transgenic seeds transformed with the aux2 gene, a gene of Agrobacterium rhizogenes that transforms naphthalene acetamide (NAM) into naphthalene acetic acid (NAA), did not develop roots in the presence of NAM, whereas wildtype tomato seeds developed a normal rooting system in its presence. Transgenic plants homozygous for aux2 (cv UC82b) were used to pollinate male-sterile (ms322) tomato plants (cv Apedice). Using NAM as a toxic substrate to kill heterozygous diploid plants carrying aux2, we selected for three maternal haploid plants resulting from the development of the female nucleus without fertilization. Maternal haploid selection using the aux2 marker was less efficient than the visual screening of haploid plants displaying recessive morphological markers of the female parent, but provided evidence for the feasibility of haploid selection in species for which no morphological markers are available.  相似文献   

20.
Summary Interspecific hybrids between Brassica napus and B. oleracea are difficult to produce, and previous attempts to transfer economic characters from one species to the other have largely been unsuccessful. In these studies, oilseed rape cv. Tower (2n38) (B. napus) was crossed with broccoli and kale (2n18) (B. oleracea), and hybrid plants were developed from embryos in culture by either organogenesis or somatic embryogenesis. In rape × broccoli, F1 plants were regenerated from hybrid embryos and the plants produced viable selfed seeds. F5 plants (2n38) homozygous for white flower colour were selected for high oil content (47%) and Line 15; a selection from these plants produced fertile hybrids with rape, broccoli and kale without embryo culture. In reciprocal crosses between oilseed rape cv. Tower and an aphid resistant diploid kale, 28 and 56 chromosome F1 hybrid plants were regenerated from somatic embryos. The 56 chromosome plants were self-fertile and it was concluded from F2 segregation ratios that a single dominant gene controls resistance to cabbage aphid in kale. The 28 chromosome F1's were self-sterile, but these and the 56 chromosome F1's could be backcrossed to rape and kale. A cross between the F1 (2n56) and a forage rape resulted in the selection of a cabbage aphid (Brevicoryne brassicae L.) resistant line (Line 3). Both Line 15 and Line 3 can serve as bridges for gene interchange between B. campestris, B. napus and B. oleracea, which has not been possible hitherto. Hybridisations between rape and tetraploid kale produced F1 plants with 37 chromosomes. One F2 plant possessed coronal scales and the inheritance was shown to be controlled by a single recessive gene unlinked to petal colour.This paper is dedicated to Mr. T. P. Palmer, a colleague and close friend who retired from the DSIR as Assistant Director of the Crop Research Division in September 1984  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号