首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ádám Kun  István Scheuring 《Oikos》2006,115(2):308-320
It is well-known that dispersal is advantageous in many different ecological situations, e.g. to survive local catastrophes where populations live in spatially and temporally heterogeneous habitats. However, the key question, what kind of dispersal strategy is optimal in a particular situation, has remained unanswered. We studied the evolution of density-dependent dispersal in a coupled map lattice model, where the population dynamics are perturbed by external environmental noise. We used a very flexible dispersal function to enable evolution to select from practically all possible types of monotonous density-dependent dispersal functions. We treated the parameters of the dispersal function as continuously changing phenotypic traits. The evolutionary stable dispersal strategies were investigated by numerical simulations. We pointed out that irrespective of the cost of dispersal and the strength of environmental noise, this strategy leads to a very weak dispersal below a threshold density, and dispersal rate increases in an accelerating manner above this threshold. Decreasing the cost of dispersal increases the skewness of the population density distribution, while increasing the environmental noise causes more pronounced bimodality in this distribution. In case of positive temporal autocorrelation of the environmental noise, there is no dispersal below the threshold, and only low dispersal below it, on the other hand with negative autocorrelation practically all individual disperses above the threshold. We found our results to be in good concordance with empirical observations.  相似文献   

2.
The extent of within-patch dispersal by a tephritid fly and its four major parasitoids was examined over three field seasons. Hosts and parasitoids were marked using acrylic paint and observed as they oviposited into the flowerheads of marsh thistle, Cirsium palustre. The average recapture rate pooled across all species was 22%. The four parasitoids showed consistently greater rates of movement than the host in all three years. In nearly all comparisons, male dispersal was less than female dispersal. There was no evidence that parasitoids moved longer distances after visiting low quality rather than high quality patches. In the one season it was studied, no correlations between movement and insect size were observed. The relevance of these observations to host-parasitoid population dynamics is discussed.  相似文献   

3.
Reyns NB  Eggleston DB 《Oecologia》2004,140(2):280-288
The mechanisms driving the pelagic secondary dispersal of aquatic organisms following initial settlement to benthic habitats are poorly characterized. We examined the physical environmental (wind, diel cycle, tidal phase) and biological (ontogenetic, density-dependent) factors that contribute to the secondary dispersal of a benthic marine invertebrate, the blue crab (Callinectes sapidus) in Pamlico Sound, NC, USA. Field studies conducted in relatively large (0.05 km2) seagrass beds determined that secondary dispersal is primarily undertaken by the earliest juvenile blue crab instar stages (J1 crabs). These crabs emigrated pelagically from seagrass settlement habitats using nighttime flood tides during average wind conditions (speed ~5 m s–1). Moreover, the secondary dispersal of J1 crabs was density-dependent and regulated by intra-cohort (J1) crab density in seagrass. Our results suggest that dispersal occurs rapidly following settlement, and promotes blue crab metapopulation persistence by redistributing juveniles from high-density settlement habitats to areas characterized by low postlarval supply. Collectively, these data indicate that blue crab secondary dispersal is an active process under behavioral control and can alter initial distribution patterns established during settlement. This study highlights the necessity of considering secondary dispersal in ecological studies to improve our understanding of population dynamics of benthic organisms.  相似文献   

4.
5.
We study the evolution of density-dependent dispersal in a structured metapopulation subject to local catastrophes that eradicate local populations. To this end we use the theory of structured metapopulation dynamics and the theory of adaptive dynamics.The set of evolutionarily possible dispersal functions (i.e., emigration rates as a function of the local population density) is derived mechanistically from an underlying resource-consumer model. The local resource dynamics is of a flow-culture type and consumers leave a local population with a constant probability per unit of time κ when searching for resources but not when handling resources (i.e., eating and digesting). The time an individual spends searching (as opposed to handling) depends on the local resource density, which in turn depends on the local consumer density, and so the average per capita emigration rate depends on the local consumer density as well.The derived emigration rates are sigmoid functions of local consumer population density. The parameters of the local resource-consumer dynamics are subject to evolution. In particular, we find that there exists a unique evolutionarily stable and attracting dispersal rate κ for searching consumers. The κ increases with local resource productivity and decreases with resource decay rate. The κ also increases with the survival probability during dispersal, but as a function of the catastrophe rate it reaches a maximum before dropping off to zero again.  相似文献   

6.
Some species cope with, and survive in, urban areas better than others.From a conservation viewpoint it is important to understand why some species arerare or are excluded in the urban landscape, in order that we might take actionto conserve and restore species. Two ecological factors that might explain thedistribution and abundance of butterfly species in the urban landscape aredispersal ability and the availability of suitable habitat. The influence ofthese factors was assessed by examining the distribution and genetic structureof four grassland butterfly species in the West Midlands conurbation, UK. Thefour species differ in their distribution and abundance, mobility and habitatspecificity. No significant fit to the isolation-by-distance model was found forany of the study species at this spatial scale. MeanF ST values revealed a non-significant level ofpopulation structuring for two species, Pieris napi (L.)and Maniola jurtina (L.), but moderate and significantpopulation differentiation for Pyronia tithonus (L.) andCoenonympha pamphilus (L.). Results suggest that thesespecies are limited more by the availability of suitable habitat than by theirability to move among habitat patches. Conservation strategies for thesegrassland species should initially focus on the creation and appropriatemanagement of suitable habitat. More sedentary species that have already beenexcluded from the conurbation may require a more complex strategy for theirsuccessful restoration.  相似文献   

7.
Moran C  Catterall CP  Green RJ  Olsen MF 《Oecologia》2004,141(4):584-595
Seed dispersal plays a critical role in rainforest regeneration patterns, hence loss of avian seed dispersers in fragmented landscapes may disrupt forest regeneration dynamics. To predict whether or not a plant will be dispersed in fragmented forests, it is necessary to have information about frugivorous bird distribution and dietary composition. However, specific dietary information for frugivorous birds is often limited. In such cases, information on the seed-crushing behaviour, gape width and relative dietary dominance by fruit may be used to describe functional groups of bird species with respect to their potential to disperse similar seeds. We used this information to assess differences in the seed dispersal potential of frugivorous bird assemblages in a fragmented rainforest landscape of southeast Queensland, Australia. The relative abundance of frugivorous birds was surveyed in extensive, remnant and regrowth rainforest sites (16 replicates of each). Large-gaped birds with mixed diets and medium-gaped birds with fruit-dominated diets were usually less abundant in remnants and regrowth than in continuous forest. Small-gaped birds with mixed diets and birds with fruit as a minor dietary component were most abundant in regrowth. We recorded a similar number of seed-crushing birds and large-gaped birds with fruit-dominated diets across site types. Bird species that may have the greatest potential to disperse a large volume and wide variety of plants, including large-seeded plants, tended to be less abundant outside of extensive forests, although one species, the figbird Sphecotheres viridis, was much more abundant in these areas. The results suggest that the dispersal of certain plant taxa would be limited in this fragmented landscape, although the potential for the dispersal of large-seeded plants may remain, despite the loss of several large-gaped disperser species.  相似文献   

8.
By dispersing from localized aggregations of recruits, individuals may obtain energetic benefits due to reduced experienced density. However, this will depend on the spatial scale over which individuals compete. Here, we quantify this scale for juvenile Atlantic salmon (Salmo salar) following emergence and dispersal from nests. A single nest was placed in each of ten replicate streams during winter, and information on the individual positions (±1 m) and the body sizes of the resulting young-of-the-year (YOY) juveniles was obtained by sampling during the summer. In six of the ten streams, model comparisons suggested that individual body size was most closely related to the density within a mean distance of 11 m (range 2–26 m). A link between body size and density on such a restricted spatial scale suggests that dispersal from nests confers energetic benefits that can counterbalance any survival costs. For the four remaining streams, which had a high abundance of trout and older salmon cohorts, no single spatial scale could best describe the relation between YOY density and body size. Energetic benefits of dispersal associated with reduced local density therefore appear to depend on the abundance of competing cohorts or species, which have spatial distributions that are less predictable in terms of distance from nests. Thus, given a trade-off between costs and benefits associated with dispersal, and variation in benefits among environments, we predict an evolving and/or phenotypically plastic growth rate threshold which determines when an individual decides to disperse from areas of high local density.  相似文献   

9.
A spatially explicit metapopulation model with positive density-dependent migration is analysed. We obtained conditions under which a previously stable system can be driven to instability caused by a density-dependent migration mechanism. The stability boundary depends on the rate of increase of the number of migrants on each site at local equilibrium, on the intrinsic rate of increase at local level, on the number of patches, and on topological aspects regarding the connectivity between patches. A concrete example is presented illustrating the dynamics on the dispersal-induced unstable regime.  相似文献   

10.
In most mammals, dispersal rates are higher in males than in females. Using behavioural and genetic data of individually marked bats, we show that this general pattern is reversed in the greater sac-winged bat (Saccopteryx bilineata). Dispersal is significantly female biased and male philopatry in combination with rare male immigration causes a patrilineal colony structure. Female dispersal helps avoid father-daughter inbreeding, as male tenure exceeds female age at first breeding in this bat species. Furthermore, our data suggest that females may engage in extra-harem copulations to mate with genetically dissimilar males, and thus avoid their male descendants as mating partners. Acquaintance with the natal colony might facilitate territory takeover since male sac-winged bats queue for harem access. Given the virtual absence of male immigration and the possible lower reproductive success of dispersing males, we argue that enhancing the likelihood of settlement of male descendants could be adaptive despite local mate competition. We conclude that resource defence by males is important in promoting male philopatry, and argue that the potential overlap of male tenure and female first conception is the driving force for females to disperse.  相似文献   

11.
The relative contribution of density-dependent regulation and environmental stochasticity to the temporal dynamics of animal populations is one of the central issues of ecology. In insects, the primary role of the latter factor, typically represented by weather patterns, is widely accepted. We have evaluated the impact of density dependence as well as density-independent factors, including weather and mowing regime, on annual fluctuations of butterfly populations. As model species, we used Maculinea alcon and M. teleius living in sympatry and, consequently, we also analysed the effect of their potential competition. Density dependence alone explained 62 and 42% of the variation in the year-to-year trends of M. alcon and M. teleius, respectively. The cumulative Akaike weight of models with density dependence, which can be interpreted as the probability that this factor should be contained in the most appropriate population dynamics model, exceeded 0.97 for both species. In contrast, the impacts of inter-specific competition, mowing regime and weather were much weaker, with their cumulative weights being in the range of 0.08–0.21; in addition, each of these factors explained only 2–5% of additional variation in Maculinea population trends. Our results provide strong evidence for density-dependent regulation in Maculinea, while the influence of environmental stochasticity is rather minor. In the light of several recent studies on other butterflies that detected significant density-dependent effects, it would appear that density-dependent regulation may be more widespread in this group than previously thought, while the role of environmental stochasticity has probably been overestimated. We suggest that this misconception is the result of deficiencies in the design of most butterfly population studies in the past, including (1) a strong focus on adults and a neglect of the larval stage in which density-dependent effects are most likely to occur; (2) an almost exclusive reliance on transect count results that may confound the impact of environmental stochasticity on butterfly numbers with its impact on adult longevity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The survival of many species may be dependent on their ability to exist in human-altered landscapes within metapopulations; in turn, metapopulation persistence is dictated by the ability of individuals to move effectively among patches to promote recolonization. The Taylor’s checkerspot butterfly (Euphydryas editha taylori) is a species that does not naturally occur in fragmented landscapes, yet it is now restricted to a handful of small isolated prairie habitats. Current recovery plans aim to establish a stable metapopulation; however, to date little is known about the species’ ability to move across the landscape. In 2010 and 2011, we conducted marking, tracking and boundary surveys to explore the movement dynamics of adults within two sites in Oregon, USA. Over the survey period, we marked 136 male butterflies, tracked 174 individuals and observed the behavior of 1,576 individual butterflies at site boundaries. Our study revealed a significant sex-bias in the movement dynamics of the Taylor’s checkerspot in both suitable habitat and surrounding matrix. Males were highly motile, whereas females appeared sedentary, rarely moving from their natal site. The limited dispersal behavior of females indicates that populations cannot persist naturally in a metapopulation and thus are at high risk of extinction. Based on our findings, we recommend that managers take proactive measures to increase or enable dispersal (including translocation) to existing and/or restored sites.  相似文献   

13.
Abstract. 1. Female apple maggot (Rhagoletis pomonella Walsh) flies held in field cages usually oviposited in an unparasitized (non-pheromone marked) fruit when it was encountered.
2. Oviposition in a previously parasitized (pheromone marked) fruit depended upon the time since the last oviposition (TSLO) and the percentage of infested fruit encountered during search for oviposition sites.
3. Previous theories of host acceptance suggest that the acceptance or rejection of a host should depend dichotomously on time since last oviposition and the fraction of marked hosts in the last five encounters. The experiments, however, show considerable variability and are thus not consistent with the theory.
4. A new theory for the experiments is introduced. This model involves physiological (egg complement) and informational state variables and leads to intuitive understanding of the experimental results. In particular, the model shows how the plasticity in oviposition site selection may arise from fitness maximizing behaviour. Alternative models are also discussed. All of the models stress the importance of physiological and informational states.  相似文献   

14.
Understanding the evolution of density-dependent dispersal strategies has been a major challenge for evolutionary ecologists. Some existing models suggest that selection should favour positive and others negative density-dependence in dispersal. Here, we develop a general model that shows how and why selection may shift from positive to negative density-dependence in response to key ecological factors, in particular the temporal stability of the environment. We find that in temporally stable environments, particularly with low dispersal costs and large group sizes, habitat heterogeneity selects for negative density-dependent dispersal, whereas in temporally variable environments, particularly with high dispersal costs and small group sizes, habitat heterogeneity selects for positive density-dependent dispersal. This shift reflects the changing balance between the greater competition for breeding opportunities in more productive patches, versus the greater long-term value of offspring that establish themselves there, the latter being very sensitive to the temporal stability of the environment. In general, dispersal of individuals out of low-density patches is much more sensitive to habitat heterogeneity than is dispersal out of high-density patches.  相似文献   

15.
Gaps in the large-scale distribution of the tephritid fly Urophora cardui in Europe have been explained as the results of an ongoing re-immigration from Pleistocene refugia due to a very low dispersal capacity. Following evidence of a much greater dispersal capacity of U. cardui than previously assumed, the pattern of genetic differentiation of 41 populations from 16 European regions was studied using allozyme electrophoresis. In these analyses 18 enzyme systems were scored consistently providing 27 alleles. Allozyme variation indicated high gene flow and low levels of genetic differentiation within and between sampling regions as well as in recently colonized areas. No geographical pattern of heterozygosity or allozyme differentiation could be found matching the previously suggested recent immigration pattern. An observed south-north gradient in allozyme frequencies was interpreted as a geographical cline due to environmental factors. The results corroborate evidence from more recent studies that U. cardui is a highly mobile species which is likely to have repeatedly colonized some suboptimal European regions since the Pleistocene after retreats during 'little ice ages'. Patterns resulting from postglacial immigration processes are likely to have been long wiped out through high exchange rates.  相似文献   

16.
Bird habitat conservation may require different management strategies for different seasonal bird assemblages. We studied habitat use by winter birds in forest and scrubland habitat patches in the northern Negev, Israel. Our goal was to assess whether differences in responses to landscape and habitat structure between breeding and non-breeding seasons require changes in future conservation plans that have been suggested for the Negev breeding bird community. We evaluated habitat and area effects on bird abundance and distribution and tested whether species habitat use during winter involves niche shifts. Compared with breeding birds, a larger proportion of winter bird species occupied both scrubland and forest. As in summer, forest bird species responded to habitat structure, whereas scrubland species were associated with both habitat structure and area. Resident birds disperse into habitats in which they were not present during summer. Consequently, for several species, the correlation between bird densities and environmental factors showed a better fit at the landscape rather than at the habitat scale. In addition, rather than niche shift, birds actually extended their niche breadth. Nest site selection may constrain bird distribution into a realized niche, smaller than their fundamental niche. Despite the scale differences in habitat use, the similar species diversity patterns between seasons suggest that both winter and summer birds would benefit from conservation of scrub patches larger than 50 ha, and enrichment of foliage layers within the planted forests.  相似文献   

17.
An important issue in population ecology is to disentangle different density-dependent mechanisms that may limit or regulate animal populations. This goal is further complicated when studying long-lived species for which experimental approaches are not feasible, in whose cases density-dependence hypotheses are tested using long-term monitored populations. Here we respond to some criticisms and identify additional problems associated with these kinds of observational studies. Current caveats are related to the temporal and spatial scales covered by population monitoring data, which may question its suitability for density-dependence tests, and to statistical flaws such as the incorrect control for confounding variables, low statistical power, the distribution of demographic variables, the interpretation of spurious correlations, and the often used stepwise series of univariate analyses. Generalised linear mixed models are recommended over other more traditional approaches, since they help to solve the above statistical problems and, more importantly, allow to properly test several hypotheses simultaneously. Finally, several management actions aimed to recover endangered species, such as supplementary feeding, might be considered as field experiments for further testing density-dependence hypotheses in long-lived study models. We expect these opportunities, together with the most adequate statistical tools now available, will help to better our understanding of density-dependent effects in wild populations.  相似文献   

18.
It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated under dominance competition if density-dependent dispersal is Type III rather than Type II. These results lead to testable predictions about source-sink coexistence under different regimes of competition, spatial variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable approximation to species' dispersal patterns, and those under which consideration of density-dependent dispersal is crucial to predicting long-term coexistence.  相似文献   

19.
Sex-biased dispersal is a common phenomenon in birds and mammals. Competition for mates has been argued to be an important selective pressure favouring dispersal. Sexual differences in the level of intrasexual competition may produce asymmetries in the costs-benefits balance of dispersal and philopatry for males and females, which may favour male-biased dispersal in polygynous species such as most mammals. This being the case, condition-dependent dispersal predicts that male-bias should decrease if mating competition relaxes. We test this expectation for red deer, where male-biased dispersal is the norm. In southwestern Spain, red deer populations located in nonfenced hunting estates presented altered structures with sex ratio strongly biased to females and high proportion of young males. As a consequence, mate competition in these populations was lower than in other, most typical red deer populations. We found that, under such conditions of altered population structure, dispersal was female-biased rather than male-biased. Additionally, mate competition positively related to male dispersal but negatively to female dispersal. Other factors such as resource competition, age of individuals and sex ratio were not related to male or female dispersal. Males may not disperse if intrasexual competition is low and then females may disperse as a response to male philopatry. We propose hypotheses related to female mate choice to explain female dispersal under male philopatry. The shift of the sex-biased dispersal pattern along the gradient of mate competition highlights its condition-dependence as well as the interaction between male and female dispersal in the evolution of sex-biased dispersal.  相似文献   

20.
Francis NJ 《Current biology : CB》2011,21(17):R659-R661
Histones are widely believed to carry regulatory information across cell generations. A recent study suggests limits to this model by measuring dispersal of ancestral histones in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号