首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, by artificially reproducing severe (75%) and moderate (25%) defoliation on maritime pines Pinus pinaster in NW Spain, we investigated, under natural conditions, the consequences of foliage loss on reproduction, abundance, diversity and richness of the fungal symbionts growing belowground and aboveground. The effect of defoliation on tree growth was also assessed. Mature needles were clipped during April 2007 and 2008. Root samples were collected in June?CJuly 2007 and 2008. Collection of sporocarps was performed weekly from April 2007 to April 2009. Taxonomic identity of ectomycorrhizal fungi was assessed by using the internal transcribed spacer (ITS) regions of rDNA through the polymerase chain reaction (PCR) method, subsequent direct sequencing and BLAST search. Ectomycorrhizal colonization was significantly reduced (from 54 to 42%) in 2008 by 75% defoliation, accompanied with a decline in species richness and diversity. On the other hand, sporocarp abundance, richness and diversity were not affected by foliage loss. Some ECM fungal symbionts, which are assumed to have a higher carbon cost according to the morphotypes structure, were reduced due to severe (75%) defoliation. Furthermore, 75% foliage loss consistently depressed tree growth, which in turn affected the ectomycorrhizal growth pattern. Defoliation impact on ECM symbionts largely depends on the percentage of foliage removal and on the number of defoliation bouts. Severe defoliation (75%) in the short term (2?years) changed the composition of the ECM community likely because root biomass would be adjusted to lower levels in parallel with the depletion of the aboveground plant biomass, which probably promoted the competition among mycorrhizal types for host resources. The persistence of fungal biomass in mycorrhizal roots would be crucial for nutrient up-take and recovery from defoliation stress of the host plants.  相似文献   

2.
To simulate the effects of forest tent caterpillar (FTC) defoliation on trembling aspen growth and mortality, an artificial defoliation experiment was performed over three years in young aspen stands of northwestern Quebec. Defoliation plots of 15 × 15 m were established on three sites, together with associated control stands of pure trembling aspen. In 2007, root collar diameters were measured and positions of all trees were mapped prior defoliation. Severe FTC defoliation was simulated for three successive years (2007–2009) by manually removing all leaves from all but 7–10% of the trees present in the defoliation plots. Yearly surveys of growth and mortality were conducted until 2010 to evaluate defoliation effects on defoliated as well as surrounding undefoliated trees. In absence of other factors, growth and mortality of trembling aspen decreased and increased, respectively, after defoliation. Our study further revealed that small diameter trees died after one year of artificial defoliation, while larger-diameter trees died after repeated defoliations. Distributions of tree mortality tended to be aggregated at small scales (<5 m), corroborating gap patterns observed in mature stands following FTC outbreaks. This experiment revealed that trembling aspen mortality can be directly attributed solely to defoliation. Repeated defoliations during FTC outbreaks have the potential to profoundly modify stand productivity and structure by reducing tree growth and increasing tree mortality in the absence of predisposing factors.  相似文献   

3.
Parasite epidemics may be influenced by interactions among symbionts, which can depend on past events at multiple spatial scales. Within host individuals, interactions can depend on the sequence in which symbionts infect a host, generating priority effects. Across host individuals, interactions can depend on parasite phenology. To test the roles of parasite interactions and phenology in epidemics, we embedded multiple cohorts of sentinel plants, grown from seeds with and without a vertically transmitted symbiont, into a wild host population, and tracked foliar infections caused by three common fungal parasites. Within hosts, parasite growth was influenced by coinfections, but coinfections were often prevented by priority effects among symbionts. Across hosts, parasite phenology altered host susceptibility to secondary infections, symbiont interactions and ultimately the magnitude of parasite epidemics. Together, these results indicate that parasite phenology can influence parasite epidemics by altering the sequence of infection and interactions among symbionts within host individuals.  相似文献   

4.
Climatically driven Moran effects have often been invoked as the most likely cause of regionally synchronized outbreaks of insect herbivores without identifying the exact mechanism. However, the degree of match between host plant and larval phenology is crucial for the growth and survival of many spring-feeding pest insects, suggesting that a phenological match/mismatch-driven Moran effect may act as a synchronizing agent.We analyse the phase-dependent spatial dynamics of defoliation caused by cyclically outbreaking geometrid moths in northern boreal birch forest in Fennoscandia through the most recent massive outbreak (2000–2008). We use satellite-derived time series of the prevalence of moth defoliation and the onset of the growing season for the entire region to investigate the link between the patterns of defoliation and outbreak spread. In addition, we examine whether a phase-dependent coherence in the pattern of spatial synchrony exists between defoliation and onset of the growing season, in order to evaluate if the degree of matching phenology between the moth and their host plant could be the mechanism behind a Moran effect.The strength of regional spatial synchrony in defoliation and the pattern of defoliation spread were both highly phase-dependent. The incipient phase of the outbreak was characterized by high regional synchrony in defoliation and long spread distances, compared with the epidemic and crash phase. Defoliation spread was best described using a two-scale stratified spread model, suggesting that defoliation spread is governed by two processes operating at different spatial scale. The pattern of phase-dependent spatial synchrony was coherent in both defoliation and onset of the growing season. This suggests that the timing of spring phenology plays a role in the large-scale synchronization of birch forest moth outbreaks.  相似文献   

5.
Aphids possess several facultative bacterial symbionts that have important effects on their hosts'' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species.  相似文献   

6.
Plants simultaneously associate with multiple microbial symbionts throughout their lifetimes. To address the question of whether the effects of simultaneous symbionts are contingent on the specific identities, we conducted a greenhouse experiment manipulating the presence and identities of arbuscular mycorrhizal fungi (AMF) and fungal endophytes on the shared host grass Elymus hystrix. Each plant host was inoculated with one of two AMF species having varying effects on host growth, or a sterile soil control. Further, we used naturally occurring endophyte‐infected (E+) and uninfected (E–) individuals from two populations of the endophyte Epichloë elymi that varied in their interaction with E. hystrix. We then measured responses of plants, AMF, and fungal endophytes. Overall, we found that the combined effects of AMF and fungal endophytes on plant growth were additive, reflecting the mutualistic quality of each symbiont independently interacting with host plants. However, fungal endophyte infection differentially altered hyphal colonization of the two AMF species and the identity of the coinfecting AMF species affected fungal endophyte fitness traits. The results of this study demonstrate that the outcome of interspecific symbiotic interactions varies with partner identity such that the effects of simultaneous symbioses can not be generalized.  相似文献   

7.
Vertically transmitted microbes are common in macro‐organisms and can enhance host defense against environmental stress. Because vertical transmission couples host and symbiont lineages, symbionts may become specialized to host species or genotypes. Specialization and contrasting reproductive modes of symbiotic partners could create incompatibilities between inherited symbionts and novel host genotypes when hosts outcross or hybridize. Such incompatibilities could manifest as failed colonization or poor symbiont growth in host offspring that are genetically dissimilar from their maternal host. Moreover, outcrossing between host species could influence both host and symbiont reproductive performance. We tested these hypotheses by manipulating outcrossing between populations and species of two grasses, Elymus virginicus and E. canadensis, that host vertically transmitted fungal endophytes (genus Epichloё). In both greenhouse and field settings, we found that host–symbiont compatibility was robust to variation in host genetic background, spanning within‐population, between‐population and between‐species crosses. Symbiont transmission into the F1 generation was generally high and weakly affected by host outcrossing. Furthermore, endophytes grew equally well in planta regardless of host genetic background and transmitted at high frequencies into the F2 generation. However, outcrossing, especially inter‐specific hybridization, reduced reproductive fitness of the host, and thereby the symbiont. Our results challenge the hypothesis that host genetic recombination, which typically exceeds that of symbionts, is a disruptive force in heritable symbioses. Instead, symbionts may be sufficiently generalized to tolerate ecologically realistic variation in host outcrossing.  相似文献   

8.
The microbial symbionts of eukaryotes influence disease resistance in many host‐parasite systems. Symbionts show substantial variation in both genotype and phenotype, but it is unclear how natural selection maintains this variation. It is also unknown whether variable symbiont genotypes show specificity with the genotypes of hosts or parasites in natural populations. Genotype by genotype interactions are a necessary condition for coevolution between interacting species. Uncovering the patterns of genetic specificity among hosts, symbionts, and parasites is therefore critical for determining the role that symbionts play in host‐parasite coevolution. Here, we show that the strength of protection conferred against a fungal pathogen by a vertically transmitted symbiont of an aphid is influenced by both host‐symbiont and symbiont‐pathogen genotype by genotype interactions. Further, we show that certain symbiont phylogenetic clades have evolved to provide stronger protection against particular pathogen genotypes. However, we found no evidence of reciprocal adaptation of co‐occurring host and symbiont lineages. Our results suggest that genetic variation among symbiont strains may be maintained by antagonistic coevolution with their host and/or their host's parasites.  相似文献   

9.
Symbiotic interactions between macrotermitine termites and their fungal symbionts have a moderate degree of specificity. Consistent with horizontal symbiont transmission, host switching has been frequent over evolutionary time so that single termite species can often be associated with several fungal symbionts. However, even in the few termite lineages that secondarily adopted vertical symbiont transmission, the fungal symbionts are not monophyletic. We addressed this paradox by studying differential transmission of fungal symbionts by alate male and female reproductives, and the genetic population structure of Termitomyces fungus gardens across 74 colonies of Macrotermes bellicosus in four west and central African countries. We confirm earlier, more limited, studies showing that the Termitomyces symbionts of M. bellicosus are normally transmitted vertically and clonally by dispersing males. We also document that the symbionts associated with this termite species belong to three main lineages that do not constitute a monophyletic group. The most common lineage occurs over the entire geographical region that we studied, including west, central and southern Africa, where it is also associated with the alternative termite hosts Macrotermes subhyalinus and Macrotermes natalensis. While Termitomyces associated with these alternative hosts are horizontally transmitted and recombine freely, the genetic population structure of the same Termitomyces associated with M. bellicosus is consistent with predominantly clonal reproduction and only occasional recombination. This implies that the genetic population structure of Termitomyces is controlled by the termite host and not by the Termitomyces symbiont.  相似文献   

10.
The mutualism between fungus-growing termites (Macrotermitinae) and their mutualistic fungi (Termitomyces) began in Africa. The fungus-growing termites have secondarily colonized Madagascar and only a subset of the genera found in Africa is found on this isolated island. Successful long-distance colonization may have been severely constrained by the obligate interaction of the termites with fungal symbionts and the need to acquire these symbionts secondarily from the environment for most species (horizontal symbiont transmission). Consistent with this hypothesis, we show that all extant species of fungus-growing termites of Madagascar are the result of a single colonization event of termites belonging to one of the only two groups with vertical symbiont transmission, and we date this event at approximately 13 Mya (Middle/Upper Miocene). Vertical symbiont transmission may therefore have facilitated long-distance dispersal since both partners disperse together. In contrast to their termite hosts, the fungal symbionts have colonized Madagascar multiple times, suggesting that the presence of fungus-growing termites may have facilitated secondary colonizations of the symbiont. Our findings indicate that the absence of the right symbionts in a new environment can prevent long-distance dispersal of symbioses relying on horizontal symbiont acquisition.  相似文献   

11.
Aphids belonging to the three genera Tuberaphis, Glyphinaphis, and Cerataphis contain extracellular fungal symbionts that resemble endocellular yeast-like symbionts of planthoppers. Whereas the symbiont of planthoppers has a uricase (urate oxidase; EC 1.7.3.3) and recycles uric acid that the host stores, no uric acid was found in Tuberaphis styraci, and its fungal symbiont did not exhibit the uricase activity. However, the fungal symbionts of these aphids, including that of T. styraci, were shown to have putative uricase genes, or pseudogenes, for the uricase. Sequence analysis of these genes revealed that deleterious mutations occurred independently on each lineage of Glyphinaphis and Tuberaphis, while no such mutation was found in the lineage of Cerataphis. These genes were almost identical to those cloned from the symbionts of planthoppers, though the host aphids and planthoppers are phylogenetically distant. To estimate the phylogenetic relationship in detail between the fungal symbionts of aphids and those of planthoppers, a gene tree was constructed based on the sequences of the uricase genes including their flanking regions. As a result, the symbionts of planthoppers and Tuberaphis aphids formed a sister group against those of Glyphinaphis and Cerataphis aphids with high bootstrap confidence levels, which strongly suggests that symbionts have been horizontally transferred from the aphids' lineage to the planthoppers'. Received: 29 March 2000 / Accepted: 31 May 2000  相似文献   

12.
While many endosymbionts have beneficial effects on hosts under specific ecological conditions, there can also be associated costs. In order to maximize their own fitness, hosts must facilitate symbiont persistence while preventing symbiont exploitation of resources, which may require tight regulation of symbiont populations. As a host ages, the ability to invest in such mechanisms may lessen or be traded off with demands of other life history traits, such as survival and reproduction. Using the pea aphid, Acyrthosiphon pisum, we measured survival, lifetime fecundity, and immune cell counts (hemocytes, a measure of immune capacity) in the presence of facultative secondary symbionts. Additionally, we quantified the densities of the obligate primary bacterial symbiont, Buchnera aphidicola, and secondary symbionts across the host''s lifetime. We found life history costs to harboring some secondary symbiont species. Secondary symbiont populations were found to increase with host age, while Buchnera populations exhibited a more complicated pattern. Immune cell counts peaked at the midreproductive stage before declining in the oldest aphids. The combined effects of immunosenescence and symbiont population growth may have important consequences for symbiont transmission and maintenance within a host population.  相似文献   

13.
Maternally inherited symbionts are common in arthropods and many have important roles in host adaptation. The observation that specific symbiont lineages infect distantly related host species implies new interactions are commonly established by lateral transfer events. However, studies have shown that symbionts often perform poorly in novel hosts. We hypothesized selection on the symbiont may be sufficiently rapid that poor performance in a novel host environment is rapidly ameliorated, permitting symbiont maintenance. Here, we test this prediction for a Spiroplasma strain transinfected into the novel host Drosophila melanogaster. In the generations immediately following transinfection, the symbiont had low transmission efficiency to offspring and imposed severe fitness costs on its host. We observed that effects on host fitness evolved rapidly, being undetectable after 17 generations in the novel host, whereas vertical transmission efficiency was poorly responsive over this period. Our results suggest that long-term symbiosis may more readily be established in cases where symbionts perform poorly in just one aspect of symbiosis.  相似文献   

14.
Evolutionary theory predicts that hosts are selected to prevent mixing of genetically different symbionts when competition among lineages reduces the productivity of a mutualism. The symbionts themselves may also defend their interests: recent studies of Acromyrmex leaf-cutting ants showed that somatic incompatibility enforces single-clone gardens within mature colonies, thereby constraining horizontal transmission of fungal symbionts. However, phylogenetic analyses indicate that symbiont switches occur frequently enough to remove most signs of host-symbiont cocladogenesis. Here we resolve this paradox by showing that transmission among newly founded Acromyrmex colonies is not constrained. All tested queens of sympatric A. octospinosus and A. echinatior offered a novel fragment of fungus garden accepted the new symbiont. The outcome was unaffected by genetic distance between the novel and the original symbiont, and by the ant species the novel symbiont came from. The colony founding stage may thus provide an efficient but transient window for horizontal transmission, in which the fungus is unable to actively defend its partnership position before the host feeds on it, so that host fecal droplets remain compatible with alternative strains during the early stage of colony founding. We discuss how brief stages of low commitment between partners may increase the evolutionary stability of ancient coevolved mutualisms.  相似文献   

15.
Endosymbionts can fundamentally alter host physiology. Whether such changes are beneficial or detrimental to one or both partners may depend on the dynamics of the symbiotic relationship. Here we investigate the relationship between facultative symbionts and host immune responses. The pea aphid, Acyrthosiphon pisum, maintains an obligate primary symbiont, but may also harbour one or more facultative, secondary symbionts. Given their more transient nature and relatively recent adoption of a symbiotic lifestyle compared to primary symbionts, secondary symbionts may present a challenge for the host immune system. We assessed the response of several key components of the cellular immune system (phenoloxidase activity, encapsulation, immune cell counts) in the presence of alternative secondary symbionts, investigating the role of host and secondary symbiont genotype in specific responses. There was no effect of secondary symbiont presence on the phenoloxidase response, but we found variation in the encapsulation response and in immune cell counts based largely on the secondary symbiont. Host genotype was less influential in determining immunity outcomes. Our results highlight the importance of secondary symbionts in shaping host immunity. Understanding the complex physiological responses that can be propagated by host-symbiont associations has important consequences for host ecology, including symbiont and pathogen transmission dynamics.  相似文献   

16.
Host identity is among the most important factors in structuring ectomycorrhizal (ECM) fungal communities. Both host–fungal coevolution and host shifts can account for the observed host effect, but their relative significance in ECM fungal communities is not well understood. To investigate these two host-related mechanisms, we used relict forests of Pseudotsuga japonica, which is an endangered endemic species in Japan. As with other Asian Pseudotsuga species, P. japonica has been isolated from North American Pseudotsuga spp. since the Oligocene and has evolved independently as a warm-temperate species. We collected 100 soil samples from four major localities in which P. japonica was mixed with other conifers and broadleaf trees. ECM tips in the soil samples were subjected to molecular analyses to identify both ECM fungi and host species. While 136 ECM fungal species were identified in total, their communities were significantly different between host groups, confirming the existence of the host effect on ECM fungal communities. None of the 68 ECM fungal species found on P. japonica belonged to Pseudotsuga-specific lineages (e.g., Rhizopogon and Suillus subgroups) that are common in North America. Most of ECM fungi on P. japonica were shared with other host fungi or phylogenetically close to known ECM fungi on other hosts in Asia. These results suggest that after migrating, Pseudotsuga-specific fungal lineages may have become extinct in small isolated populations in Japan. Instead, most of the ECM fungal symbionts on P. japonica likely originated from host shifts in the region.  相似文献   

17.
Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered.Key words: abiotic stress, endophytes, fungal symbiont, mycorrhizal fungus, Piriformospora indica, stress tolerance, symbiosis  相似文献   

18.
Using a population model of selection on an obligate symbiont and its host, we evaluate how demographic differences across geographical landscapes can produce selection mosaics in interacting species. The model assumes that the host populations vary geographically from demographic sources to sinks in the absence of effects by the symbionts, and that a virulent and a relatively avirulent form of the symbiont compete with one another across all habitats. Our results indicate that productivity gradients can create selection mosaics across habitats, resulting in complex fitness landscapes over which evolution occurs. We find that relatively virulent symbionts only persist if they have an advantage over avirulent strains or species in terms of interference (i.e. competition, and/or cross‐transmission) interactions. When such a trade‐off exists, we predict that the more virulent symbiont is most likely to be found in habitats where host population growth is highest, whereas the more avirulent symbiont should tend to persist in more marginal habitats or even habitat sinks for symbiont‐free hosts. Demographic sinks may be the habitats most likely to favour the origin of new mutualisms. Very productive mutualisms can be exploited by hyperparasites or cheaters. We discuss our findings in terms of geographical scenarios for the emergence of mutualisms, and the long‐standing debate about geographical patterns in the maintenance of sex.  相似文献   

19.
Nara K 《The New phytologist》2006,171(1):187-198
To advance understanding of the contribution of ectomycorrhizal (ECM) fungi to tree successional processes, natural establishment patterns of secondary colonizing hosts and their ECM fungal communities were investigated with special reference to pioneer hosts. In the volcanic desert on Mount Fuji, Japan, vegetation is sparsely distributed, resembling islands in a sea of scoria. Of 509 vegetation islands in the research area, 161 contained Salix reinii (Salix), the first colonizing ECM host species. The spatial coincidence between secondary colonizing timber species and Salix was analysed, and ECM fungal communities were studied using molecular identification methods. I found 39 and 26 individuals of Betula ermanii and Larix kaempferi, respectively. Without exception, these individuals were all accompanied by Salix. The ECM fungal communities of these timber species showed high similarity to that of Salix and were dominated by generalists that were compatible with two or more plant families. In this desert, available ECM propagules are limited. Pioneer Salix may contribute to tree succession by providing adjacent late colonizers with compatible ECM fungal symbionts.  相似文献   

20.
Vertically transmitted symbionts associate with some of the most ecologically dominant species on Earth, and their fixation has led to major evolutionary transitions (e.g., the development of mitochondria). Theory predicts that exclusive vertical transmission should favor mutualism and generate high frequencies of symbiosis in host populations. However, host populations often support lower-than-expected symbiont frequencies. Imperfect transmission (i.e., symbiont is not transmitted to all offspring) can reduce symbiont frequency, but for most beneficial symbionts it is unknown whether vertical transmission can be imperfect or during which life-history stage the symbiont is lost. Using quantitative natural history surveys of fungal endophytes in grasses, we show that transmission was imperfect in at least one stage for all seven host species examined. Endophytes were lost at all possible stages: within adult plants, from adult tillers to seeds, and from seeds to seedlings. Despite this loss, uninfected seeds failed to germinate in some species, resulting in perfect transmission to seedlings. The type and degree of loss differed among host populations and species and between endophyte genera. Populations with lower endophyte frequencies had higher rates of loss. Our results indicate new directions for understanding cooperation and conflict in symbioses and suggest mechanisms for host sanctions against costly symbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号