首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Large identifiable landscape units, such as ecoregions, are used to prioritize global and continental conservation efforts, particularly where biodiversity knowledge is inadequate. Setting biodiversity representation targets using coarse large‐scale biogeographic boundaries, can be inefficient and under‐representative. Even when using fine‐scale biodiversity data, representation deficiencies can occur through misalignment of target distributions with such prioritization frameworks. While this pattern has been recognized, quantitative approaches highlighting misalignments have been lacking, particularly for assemblages of mammal species. We tested the efficacy of Australia's bioregions as a spatial prioritization framework for representing mammal species, within protected areas, in New South Wales. We produced an approach based on mammal assemblages and assessed its performance in representing mammal distributions. Substantial spatial misalignment between New South Wales's bioregions and mammal assemblages was revealed, reflecting deficiencies in the representation of more than half of identified mammal assemblages. Using a systematic approach driven by fine‐scale mammalian data, we compared the efficacy of these two frameworks in securing mammalian representation within protected areas. Of the 61 species, 38 were better represented by the mammalian framework, with remaining species only marginally better represented when guided by bioregions. Overall, the rate at which mammal species were incorporated into the protected area network was higher (5.1% ± 0.6 sd) when guided by mammal assemblages. Guided by bioregions, systematic conservation planning of protected areas may be constrained in realizing its full potential in securing representation for all of Australia's biodiversity. Adapting the boundaries of prioritization frameworks by incorporating amassed information from a broad range of taxa should be of conservation significance.  相似文献   

2.
Biodiversity targets, or estimates of the quantities of biodiversity features that should be conserved in a region, are fundamental to systematic conservation planning. We propose that targets for species should be based on the quantitative thresholds developed for the Vulnerable category of the IUCN Red List system, thereby avoiding future listings of species in an IUCN Red List threat category or an increase in the extinction risk, or ultimate extinction, of species already listed as threatened. Examples of this approach are presented for case studies from South Africa, including threatened taxa listed under the IUCN Red List criteria of A to D, a species listed as Near Threatened, a species of conservation concern due to its rarity, and one species in need of recovery. The method gives rise to multiple representation targets, an improvement on the often used single representation targets that are inadequate for long term maintenance of biodiversity or the arbitrary multiple representation and percentage targets that are sometimes adopted. Through the implementation of the resulting conservation plan, these targets will ensure that the conservation status of threatened species do not worsen over time by qualifying for higher categories of threat and may actually improve their conservation status by eliminating the threat of habitat loss and stabilizing population declines. The positive attributes ascribed to the IUCN Red List system, and therefore to the species targets arising from this approach, are important when justifying decisions that limit land uses known to be detrimental to biodiversity.  相似文献   

3.
Protected areas are considered as an essential strategy to halt the decline of biodiversity. Ecological representation in protected areas is crucial for assessment on the progress toward conservation targets. Although China has established a large number of protected areas since the 1950s, ecological representation of protected areas is poorly understood. Here, we performed the complementarity analysis to evaluate ecological representation of protected areas in China. We used a database of the geographical distribution for 10,396 woody plant species, 2,305 fern species, 406 amphibian species, 460 reptile species, 1,364 bird species, and 590 mammal species from 2,376 counties across China. We identified complementary sets of counties for all species or threatened species of plant and vertebrate species using a complementarity algorithm. We evaluated ecological representation of 3,627 protected areas and discerned conservation gaps by comparing the distribution of protected areas with complementary sets. The results show that the spatially representative and complementary sites for biodiversity are poorly covered, and a fairly large proportion of protected areas is not designed to efficiently represent biodiversity at the national scale. Our methodology can serve as a generic framework for assessment on ecological representation of protected areas at the national scale.  相似文献   

4.
青藏高原是全球生物多样性热点区域和优先保护区,分布着多种重点保护物种及青藏高原特有种,物种丰富度高且濒危物种占比大。本文针对青藏高原分布的有蹄类、猫科、熊科、犬科、鼬科、翼手目、小型兽类7个动物类群,从濒危现状、濒危成因、已开展的研究工作和管理对策、取得的保护成效等角度分别论述了各类群的保护与管理研究进展。在青藏高原有蹄类中特有种占比远高于其他类群;81% ~ 100%的有蹄类、猫科、熊科、犬科动物被列为国家重点保护野生动物;45% ~ 100%的有蹄类、猫科、熊科动物被中国脊椎动物红色名录或IUCN红色名录列为受威胁物种,远高于全球平均水平。全球变暖、栖息地破碎化、环境污染、过度放牧、偷猎与非法贸易是青藏高原濒危兽类生存的主要威胁。相关法律法规的贯彻实施、自然保护地建设及开展的大量调查监测和研究,为青藏高原濒危兽类保护生物学研究提供了法律保障和科学依据。鉴于目前保护与管理工作的局限性,建议构建全面系统的大数据平台,开展青藏高原地区保护成效快速评估及自然保护地空间优化布局研究,将国际先进的交叉学科理论方法与实践创新优势相结合,为濒危兽类的保护与管理提供指导与建议,从而为我国生物多样性保护和生态文明建设提供重要的科技支撑。  相似文献   

5.
Ecuador has the largest number of species by area worldwide, but also a low representation of species within its protected areas. Here, we applied systematic conservation planning to identify potential areas for conservation in continental Ecuador, with the aim of increasing the representation of terrestrial species diversity in the protected area network. We selected 809 terrestrial species (amphibians, birds, mammals, and plants), for which distributions were estimated via species distribution models (SDMs), using Maxent. For each species we established conservation goals based on conservation priorities, and estimated new potential protected areas using Marxan conservation planning software. For each selected area, we determined their conservation priority and feasibility of establishment, two important aspects in the decision-making processes. We found that according to our conservation goals, the current protected area network contains large conservation gaps. Potential areas for conservation almost double the surface area of currently protected areas. Most of the newly proposed areas are located in the Coast, a region with large conservation gaps and irreversible changes in land use. The most feasible areas for conservation were found in the Amazon and Andes regions, which encompass more undisturbed habitats, and already harbor most of the current reserves. Our study allows defining a viable strategy for preserving Ecuador''s biodiversity, by combining SDMs, GIS-based decision-support software, and priority and feasibility assessments of the selected areas. This approach is useful for complementing protected area networks in countries with great biodiversity, insufficient biological information, and limited resources for conservation.  相似文献   

6.
Costa Rica has one of the greatest percentages (26%) of protected land in the world. The National Protected Areas System (NPAS) of Costa Rica was established in 1976 and currently includes >190 protected areas within seven different protection categories. The effectiveness of the NPAS to represent species, populations, and areas with high species richness has not been properly evaluated. Such evaluations are fundamental to understand what is necessary to strengthen the NPAS and better protect biodiversity. We present a novel assessment of NPAS effectiveness in protecting mammal species. We compiled the geographical ranges of all terrestrial Costa Rican mammals then determined species lists for all protected areas and the estimated proportion of each species’ geographic range protected. We also classified mammal species according to their conservation status using the IUCN Red List of Threatened Species. We found almost complete representation of mammal species (98.5%) in protected areas, but low relative coverage (28.3% on average) of their geographic ranges in Costa Rica and 25% of the species were classified as underprotected according to a priori representation targets. Interestingly, many species-rich areas are not protected, and at least 43% of cells covering the entire country are not included in protected areas. Though protected areas in Costa Rica represent species richness well, strategic planning for future protected areas to improve species complementarity and range protection is necessary. Our results can help to define sites where new protected areas can have a greater impact on mammal conservation, both in terms of species richness and range protection.  相似文献   

7.
房志  徐卫华  张晶晶  肖燚  张路 《生态学报》2017,37(16):5334-5341
生物多样性与生态系统服务是目前生态保护的两大主要目标,在保护区体系规划设计中兼顾两个保护目标有助于发挥自然保护区的综合效益。以生物多样性与生态系统服务功能都重要的秦岭山系为研究区域,在生物多样性、水源涵养和土壤保持重要性评估的基础上,通过空缺分析,提出了秦岭山系的保护区体系优化方案。研究结果表明,现有的自然保护区保护了33.5%的生物多样性极重要区,22.9%的水源涵养极重要区,但是只保护了7.4%的土壤保持极重要区;建议在秦岭主峰、秦岭西部和东南部分别建立自然保护区群和生态功能保护区,保护区面积占秦岭山系总面积的31.4%,使生物多样性、水源涵养、土壤保持的极重要区的保护比例达76.2%、70.5%和41.5%,生态保护效益得到提升。研究结果可以为秦岭山系生态保护政策的制定提供参考,同时对于其他地区自然保护体系规划、以及国家公园构建也具有重要的借鉴意义。  相似文献   

8.
A crucial stage in systematic conservation planning is the definition of explicit conservation targets to be achieved by a network of protected areas. A wide variety of targets have been employed, including overall percentage area, uniform representation of biodiversity features, and variable targets according to conservation interest. Despite the diversity of options, most studies adopt a particular set of targets without further explanation, and few have investigated the effect of target selection on their results. Here, using a data set on the distribution of plants and terrestrial vertebrates in southern France, we investigate how variation in targets can affect both stages of a gap analysis: the assessment of the completeness of an existing reserve network, and the prioritization of areas for its expansion. Target selection had a major impact on the gap analysis results, with uniform targets (50% of each species’ range) emphasizing the representation of common species, and contrasting targets (weighted according to species’ conservation interest) concentrating attention on high conservation interest species and the areas where they occur. Systematic conservation planning exercises should thus pay close attention to the definition and justification of the representation targets employed.  相似文献   

9.
Conservation policies and environmental impact assessments commonly target threatened species and habitats. Nevertheless, macroecological research provides reasons why also common species should be considered. We investigate the consequences of focussing solely on legally protected species and habitats in a spatial conservation planning context using a comprehensive, benthic marine data set from the northern Baltic Sea. Using spatial prioritization and surrogacy analysis, we show that the common approach in conservation planning, where legally listed threatened species and habitats are the focus of conservation efforts, could lead to poor outcomes for common species (and therefore biodiversity as a whole), allowing them to decline in the future. If conservation efforts were aimed solely at threatened species, common species would experience a loss of 62% coverage. In contrast, if conservation plans were based only on common species, threatened species would suffer a loss of 1%. Threatened species are rare and their ecological niches distinct, making them poor surrogates for biodiversity. The best results are achieved by unified planning for all species and habitats. The minimal step towards acknowledging common species in conservation planning would be the inclusion of the richness of common species, complemented by information on indicator species or species of high importance for ecosystem functioning. The trade-off between planning for rare and common species should be evaluated, to minimize losses to biodiversity.  相似文献   

10.
The Government of Madagascar plans to increase marine protected area coverage by over one million hectares. To assist this process, we compare four methods for marine spatial planning of Madagascar's west coast. Input data for each method was drawn from the same variables: fishing pressure, exposure to climate change, and biodiversity (habitats, species distributions, biological richness, and biodiversity value). The first method compares visual color classifications of primary variables, the second uses binary combinations of these variables to produce a categorical classification of management actions, the third is a target-based optimization using Marxan, and the fourth is conservation ranking with Zonation. We present results from each method, and compare the latter three approaches for spatial coverage, biodiversity representation, fishing cost and persistence probability. All results included large areas in the north, central, and southern parts of western Madagascar. Achieving 30% representation targets with Marxan required twice the fish catch loss than the categorical method. The categorical classification and Zonation do not consider targets for conservation features. However, when we reduced Marxan targets to 16.3%, matching the representation level of the "strict protection" class of the categorical result, the methods show similar catch losses. The management category portfolio has complete coverage, and presents several management recommendations including strict protection. Zonation produces rapid conservation rankings across large, diverse datasets. Marxan is useful for identifying strict protected areas that meet representation targets, and minimize exposure probabilities for conservation features at low economic cost. We show that methods based on Zonation and a simple combination of variables can produce results comparable to Marxan for species representation and catch losses, demonstrating the value of comparing alternative approaches during initial stages of the planning process. Choosing an appropriate approach ultimately depends on scientific and political factors including representation targets, likelihood of adoption, and persistence goals.  相似文献   

11.
中国生物多样性就地保护成效与展望   总被引:1,自引:0,他引:1  
王伟  李俊生 《生物多样性》2021,29(2):133-1754
生物多样性就地保护是指通过开展自然保护地体系的建立与管理, 结合自然保护地以外其他有效的基于区域的保护措施(other effective area-based conservation measures, OECMs), 从而实现物种种群及其栖息地的保护与恢复以及保障和提升生态系统服务的目标。就地保护是实现2020年全球生物多样性保护目标最为重要的措施之一。本文从自然保护地数量与面积、代表性、有效性, 以及其他生物多样性就地保护措施等方面, 整理和综述了国内外近年来的相关报道。总体来看, 我国基本建立了具有中国特色的生物多样性就地保护与管理体系, 实施了各项生物多样性保护恢复措施, 取得了一系列重大进展。自然保护地的面积和数量均呈现上升趋势, 已覆盖陆域国土面积的18%, 对一些重要生态系统及重点保护物种的保护取得了一定成效。正在建设的10处国家公园体制试点提升了部分重点物种的保护连通性。自然保护区总体管理状况相对较好, 保护了90%以上的哺乳动物和97%的兰科植物。此外, 其他有效的基于区域的保护措施亦为生物多样性就地保护贡献了民间力量。在此基础上, 本文对照《中国生物多样性保护战略与行动计划(2011-2030年)》中对“加强生物多样性就地保护”的各项要求, 分析总结了当前我国生物多样性就地保护仍然存在的问题与不足, 具体表现在以下几个方面: 自然保护地整体保护能力仍有待提升; 生物多样性保护优先区域仍然存在保护空缺; 自然保护区管理质量有待提升; 缺乏公共协商机制; 自然保护地以外的其他就地保护工作仍在探索阶段等。在此基础上, 对将来我国生物多样性就地保护提出了进一步建议与展望: (1)制定更为具体和量化的生物多样性就地保护目标; (2)加大力度减少物种受威胁程度, 特别是受关注较少的物种; (3)以保障和提升生态系统服务为目标, 提升生态系统保护修复的系统性与整体性; (4)加强自然保护地以外的生物多样性就地保护; (5)完善长期监测体系, 为生物多样性就地保护成效评估提供数据支撑。本文可为“2020年后全球生物多样性框架”特别是就地保护目标的制定与实施提供参考。  相似文献   

12.
Governments have agreed to expand the global protected area network from 13% to 17% of the world''s land surface by 2020 (Aichi target 11) and to prevent the further loss of known threatened species (Aichi target 12). These targets are interdependent, as protected areas can stem biodiversity loss when strategically located and effectively managed. However, the global protected area estate is currently biased toward locations that are cheap to protect and away from important areas for biodiversity. Here we use data on the distribution of protected areas and threatened terrestrial birds, mammals, and amphibians to assess current and possible future coverage of these species under the convention. We discover that 17% of the 4,118 threatened vertebrates are not found in a single protected area and that fully 85% are not adequately covered (i.e., to a level consistent with their likely persistence). Using systematic conservation planning, we show that expanding protected areas to reach 17% coverage by protecting the cheapest land, even if ecoregionally representative, would increase the number of threatened vertebrates covered by only 6%. However, the nonlinear relationship between the cost of acquiring land and species coverage means that fivefold more threatened vertebrates could be adequately covered for only 1.5 times the cost of the cheapest solution, if cost efficiency and threatened vertebrates are both incorporated into protected area decision making. These results are robust to known errors in the vertebrate range maps. The Convention on Biological Diversity targets may stimulate major expansion of the global protected area estate. If this expansion is to secure a future for imperiled species, new protected areas must be sited more strategically than is presently the case.  相似文献   

13.
Aim Most approaches to conservation prioritization are focused on biodiversity features that are already threatened. While this is necessary in the face of accelerating anthropogenic threats, there have been calls to conserve large intact landscapes, often termed ‘wilderness’, to ensure the long‐term persistence of biodiversity. In this study, we examine the consequences of directing conservation expenditure using a threat‐based framework for wilderness conservation. Location The Australian continent. Methods We measured the degree of congruence between the extent of wilderness and the Australian protected area network in 2000 and 2006, which was established using a threat‐based systematic planning framework. We also assessed priority areas for future reserve acquisitions identified by the Australian government under the current framework. Results In 2000, 14% of Australia’s wilderness was under formal protection, while the protected area network covered only 8.5% of the continent, suggesting a historical bias towards wilderness protection. However, the expansion of the reserve system from 2000 to 2006 was biased towards non‐wilderness areas. Moreover, 90% of the wilderness that was protected over this period comprised areas not primarily designated for biodiversity conservation. We found a significant (P < 0.05) negative relationship between bioregions considered to be a priority for future reserve prioritization and the amount of wilderness they contain. Main conclusions While there is an urgent need to overcome past biases in reserve network design so as to better protect poorly represented species and habitats, prioritization approaches should not become so reactive as to ignore the role that large, intact landscapes play in conserving biodiversity, especially in a time of human‐induced climate change. This can be achieved by using current or future threats rather than past threats to prioritize areas, and by incorporating key ecological processes and costs of acquisition and management within the planning framework.  相似文献   

14.
Primate conservation requires a better knowledge of the distributions and statuses of populations in both large areas of habitat and in areas for which we currently have no information. We focused on spider monkeys (Ateles geoffroyi) and howler monkeys (Alouatta palliata) in the state of Oaxaca, Mexico. This Mexican state has protected large tracts of forest, and has historical records for both primates, although very little is known about them. To update our knowledge of the distributions of these primates and identify potential areas in which they are present, we modeled their geographic distributions by characterizing their ecological niches using the genetic algorithm for rule-set production (GARP), performed interviews and carried out field surveys. The predicted distributions, surveys and interviews indicate that the distributions of these primates are restricted to northeastern Oaxaca. The results suggest that spider monkeys occupy a wider area and elevational range than howler monkeys. Throughout that range there is a wide variety of suitable habitats for these primates. Most of the sites where monkeys were recorded in the field are not officially protected and there was evidence of hunting and habitat destruction. It is important to improve protection, economic alternatives and environmental education as we move towards an integral solution for the conservation of these species. Validation of the GARP model was done for A. geoffroyi, since we had obtained enough field data for this species; this validation indicated that the predicted distribution of the species was statistically better than expected by chance. Hence, ecological niche modeling is a useful approach when performing an initial assessment to identify distribution patterns, detecting suitable areas for future exploration, and for conservation planning. Our findings provide an improved basis for primate conservation and productive fieldwork in Oaxaca.  相似文献   

15.
Seven forms of rarity in mammals   总被引:4,自引:0,他引:4  
Conservation biologists have identified threats to the survival of about a quarter of the mammalian species; to identify patterns of rarity and commonness of mammals, we studied a global sample of 1212 species (about 28% of the mammals) using the ‘7 forms of rarity’ model (in which species are roughly divided into above and below the median for local population density, species’ range area, and number of habitat types). From a niche‐based hypothesis of abundance and distribution, we predicted that mammals would exhibit a bimodal pattern of rarity and commonness, with an overabundance of species in the relatively rarest and most common categories; and just such a significant bimodal pattern emerged, with over a quarter of the species classified as exceedingly rare and a further quarter very common, supporting the niche‐based hypothesis. Orders that include large mammals, including perissodactyls, primates, diprotodonts, and carnivores, exhibited significantly high proportions of relatively rare species; and tropical zoogeographic regions, especially Indomalaya, had relatively high proportions of species in the rarest category. Significant biases in the available data on mammals included under‐sampling of small species like rodents and bats, and a relative paucity of data on zoogeographic regions outside of North America and Australia. Mammalian species listed as of conservation concern by the IUCN occurred in all cells of the model, indicating that even relatively common species can be listed as threatened under some conditions; but we also found that sixty‐three species were relatively rare in all three criteria of the 7‐forms model but were not listed as threatened, indicating potential candidates for further study. Mammals may be a group of animals where rarity or commonness is a natural aspect of species biology, both confirming and perhaps partly explaining the large proportion of mammals assigned threatened status.  相似文献   

16.
Forested ecosystems of south‐eastern Australia now differ physically, compositionally and functionally from their condition prior to European settlement. Understanding these changes, and how native species and entire ecosystems have responded, is crucial for biodiversity conservation and ecosystem management. Here I argue that a combination of limited historical information and a knowledge base biased towards modern ecological studies has resulted in a distorted perception of ecosystem condition, hindering the instigation of effective biodiversity conservation measures. This argument is based on recently obtained information about changes to the non‐volant mammal community, which reveals relatively recent but underreported ecological changes, including major declines in species distribution and abundance, shifts in niche utilization and associated disruption of ecosystem functions. Ultimately, many mammal species are being denied the capacity to function to the extent they did historically. Following this re‐assessment, it is evident that current forest management does not adequately address contemporary conservation dilemmas posed by detrimental ecosystem changes. This is especially salient when most of the factors responsible for causing changes to the mammal community are still active and include forest management and utilization activities. Therefore, additional conservation measures are essential to meet forest stewardship and biodiversity conservation obligations. For the health, functionality and sustainability of forested ecosystems, native mammal species must be capable of functioning to their ecological potential and occupy their original niche. This will be facilitated by the suppression of threatening processes (primarily exotic species), ensuring ecologically sensitive fire regimes and the reintroduction/translocation of missing species. The recovery or restoration of forest functionality based on mammal conservation should have wide‐scale benefits for biodiversity conservation.  相似文献   

17.
The ability of low‐status protected areas under community management to achieve a conservation objective is frequently questioned, particularly in developing countries. The lack of sound, scientific‐based biodiversity monitoring frequently undermines attempts to evaluate the extent to which these areas are contributing to biodiversity conservation. Based on data collected between 2008 and 2010 in a Forest Reserve under community management in western Tanzania, our study tested fives methods: camera trapping, walking line transects, vehicle transects, opportunistic encounters and indirect signs, to find the most appropriate for future monitoring. Method comparisons confirmed a higher performance of camera trapping compared to other methods for the ability to detect species. However, our results identified the need of a better survey design to ensure a sound monitoring in the future. Besides method comparisons, our study provides the first fine‐scale data on mammal communities in such a low‐status protected area. Combined methods allow the identification of 49 species of medium and large mammals, a surprisingly high diversity for such area. These findings outline the potential conservation value of this type of protected area and call for better biodiversity monitoring throughout complexes of protected areas of different statuses and management regimes.  相似文献   

18.
Pelagic ecosystems support a significant and vital component of the ocean's productivity and biodiversity. They are also heavily exploited and, as a result, are the focus of numerous spatial planning initiatives. Over the past decade, there has been increasing enthusiasm for protected areas as a tool for pelagic conservation, however, few have been implemented. Here we demonstrate an approach to plan protected areas that address the physical and biological dynamics typical of the pelagic realm. Specifically, we provide an example of an approach to planning protected areas that integrates pelagic and benthic conservation in the southern Benguela and Agulhas Bank ecosystems off South Africa. Our aim was to represent species of importance to fisheries and species of conservation concern within protected areas. In addition to representation, we ensured that protected areas were designed to consider pelagic dynamics, characterized from time-series data on key oceanographic processes, together with data on the abundance of small pelagic fishes. We found that, to have the highest likelihood of reaching conservation targets, protected area selection should be based on time-specific data rather than data averaged across time. More generally, we argue that innovative methods are needed to conserve ephemeral and dynamic pelagic biodiversity.  相似文献   

19.
Abstract. Conservation seeks ultimately to protect and maintain biodiversity indefinitely. Most biodiversity features targeted in past conservation planning have been largely aspects of ecological and biogeographical pattern rather than process. However, the persistence of biodiversity can only be ensured through consideration of the ecological and evolutionary processes that underpin biodiversity, as well as its present spatial pattern. This paper identifies spatial surrogates of ecological and evolutionary processes for regional conservation planning in one of the world's biodiversity hotspots, the Cape Floristic Region. We identified six types of spatial components (namely edaphic interfaces, upland–lowland interfaces, sand movement corridors, riverine corridors, upland–lowland gradients and macroclimatic gradients) as surrogates for key processes such as ecological and geographical diversification, and species migration. Spatial components were identified in a GIS using published data and expert knowledge. Options for achieving targets for process components have been seriously compromised by habitat transformation. Between 30 and 75% of the original extent of the spatial components currently remain functional. Options for achieving upland–lowland and macroclimatic gradients are very limited in the lowlands where most of the habitat has been transformed by agriculture. We recommend that future studies place their research on ecological and evolutionary processes in a spatially explicit framework. Areas maintaining adaptive diversification (e.g. environmental gradients, ecotones) or containing historically isolated populations should be identified and protected. The spatial dimensions of eco-logical processes such as drought and fire refugia also need to be determined and such insights incorporated in conservation planning. Finally, connectivity within these areas should be ensured to maintain species migration and gene flow.  相似文献   

20.
The Convention on Biological Diversity requires that member nations establish protected area networks that are representative of the country's biodiversity. The identification of priority sites to achieve outstanding representation targets is typically accomplished through formal conservation assessments. However, representation in conservation assessments or gap analyses has largely been interpreted based on a static view of biodiversity. In a rapidly changing climate, the speed of changes in biodiversity distribution and abundance is causing us to rethink the viability of this approach. Here we describe three explicit strategies for climate change adaptation as part of national conservation assessments: conserving the geophysical stage, identifying and protecting climate refugia, and promoting cross‐environment connectivity. We demonstrate how these three approaches were integrated into a national terrestrial conservation assessment for Papua New Guinea, one of the most biodiverse countries on earth. Protected areas identified based on representing geophysical diversity were able to capture over 90% of the diversity in vegetation communities, suggesting they could help protect representative biodiversity regardless of changes in the distribution of species and communities. By including climate change refugia as part of the national conservation assessment, it was possible to substantially reduce the amount of environmental change expected to be experienced within protected areas, without increasing the overall cost of the protected area network. Explicitly considering environmental heterogeneity between adjacent areas resulted in protected area networks with over 40% more internal environmental connectivity. These three climate change adaptation strategies represent defensible ways to guide national conservation priority given the uncertainty that currently exists in our ability to predict climate changes and their impacts. Importantly, they are also consistent with data and expertise typically available during national conservation assessments, including in developing nations. This means that in the vast majority of countries, these strategies could be implemented immediately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号