首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Monocots and dicots have diverged for 120 million years. The floral morpha of cereals isunique and much different from that of dicot plants. Nevertheless, it has been found that most genes controlling flower development share a conserved sequence called MADS-box[1]. Therefore,it is likely that monocots and dicots could have similar basic characteristics of flower developmentbut the mechanisms of genetic regulation for flowering induction and floral differentiation might be different[2,3]. Du…  相似文献   

2.
A mutant of spikelet differentiation in rice called frizzle panicle (fzp) was discovered in the progeny of a cross between Oryza sativa ssp. indica cv. V20B and cv. Hua1B. The mutant exhibits normal plant morphology but has apparently fewer tillers. The most striking change in fzp is that its spikelet differentiation is completely blocked, with unlimited subsequent rachis branches generated from the positions where spikelets normally develop in wild-type plants. Genetic analysis suggests that fzp is controlled by a single recessive gene, which is temporarily named fzp(t). Based on its mutant phenotype, fzp(t) represents a key gene controlling spikelet differentiation. Some F2 mutant plants derived from various genetic background appeared as the “middle type”, suggesting that the action of fzp(t) is influenced by the presence of redundant, modifier or interactive genes. By using simple sequence repeat (SSR) markers and bulked segregant analysis (BSA) method, fzp(t) gene was mapped in the terminal region of the long arm of chromosome 7, with RM172 and RM248 on one side, 3.2 cM and 6.4 cM from fzp(t), and RM18 and RM234 on the other side, 23.1 cM and 26.3 cM from fzp(t), respectively. These results will facilitate the positional cloning and function studies of the gene.  相似文献   

3.
Green-revertible albino is a novel type of chlorophyll deficiency in rice (Oryza sativa L.), which is helpful for further research in chlorophyll synthesis and chloroplast development to illuminate their molecular mechanism. In the previous study, we had reported a single recessive gene, gra(t), controlling this trait on the long arm of chromosome 2. In this paper, we mapped the gra(t) gene using 1,936 recessive individuals with albino phenotype in the F2 population derived from the cross between themo-photoperiod-sensitive genic male-sterile (T/PGMS) line Pei'ai 64S and the spontaneous mutant Qiufeng M. Eventually, it was located to a confined region of 42.4 kb flanked by two microsatellite markers RM2-97 and RM13553. Based on the annotation results of RiceGAAS system, 11 open reading frames (ORFs) were predicted in this region. Among them, ORF6 was the most possible gene related to chloroplast development, which encoded the chloroplast protein synthesis elongation factor Tu in rice. Therefore, we designated it as the candidate gene of gra(t). Sequence analysis indicated that only one base substitution C to T occurred in the coding region, which caused a missense mutation (Thr to Ile) in gra(t) mutant. These results are very valuable for further study on gra(t) gene.  相似文献   

4.
A rice mutant,G069, characteristic of few tiller numbers, was found in anther culture progeny from theF 1 hybrid between anindica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent,G069 was further backcrossed with the recurrent parent,02428, for two turns to develop aBC 2F2 population. Genetic analysis in theBC 2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants inBC 2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C424 and S13984 with a genetic distance of 2.4 cM and 0.6 cM, respectively. The gene is designatedft1.  相似文献   

5.
srs-1, a new floral organ identity gene in rice, was mapped using RAPD and RFLP markers. Firstly, the cross was made between "ZhaiYeQing 8" (ZYQ8, indica) and split rice spikelet (SRS, japonica) mutant. The ratio of wild-type individuals and mutant plants in F2 population is 3:1, which indicates that the mutant characteristics are controlled by single recessive gene, srs-1. Consequently, BSA method was adopted and 520 random 10-mer primers were used to screen polymorphic bands between two bulks. Six primers could amplify polymorphic bands, of which S465 generates the most stable RAPD patterns. Then, S465 that cosegregates in F2 population has been converted into an RFLP marker successfully. Furthermore, srs-1 gene was mapped on chromosome 3 using DH mapping population. The effect of srs-1 gene results in the mutant of split rice spikelet. The mutant has longer and softer palea/lemma than those of wild-type, and two small palea/lemma-like organs between palea and lemma. In addition, there is a flower wit  相似文献   

6.
A novel zebra mutant, zebra-15, derived from the restorer line JinhuilO (Oryza sativa L. ssp. indica) treated by EMS, displayed a distinctive zebra leaf from seedling stage to jointing stage. Its chlorophyll content decreased (55.4%) and the ratio of Chla/Chlb increased (90.2%) significantly in the yellow part of the zebra-15, compared with the wild type. Net photosynthetic rate and fluorescence kinetic parameters showed that the decrease of chlorophyll content significantly influenced the photosynthetic efficiency of the mutant. Genetic analysis of F2 segregation populations derived from the cross of XinonglA and zebra-15 indicated that the zebra leaf trait is controlled by a single recessive nuclear gene. Ninety-eight out of four hundred and eighty pairs of SSR markers showed the diversity between the XinonglA and the zebra-15, their F2 population was then used for gene mapping. Zebra-15 (Z-15) gene was primarily restricted on the short arm of chromosome 5 by 150 F2 recessive individuals, 19.6 cM from marker RM3322 and 6.0 cM from marker RM6082. Thirty-six SSR markers were newly designed in the restricted location, and the Z-15 was finally located between markers nSSR516 and nSSR502 with the physical region 258 kb by using 1,054 F2 recessive individuals.  相似文献   

7.
To understand the development of rice leaf blades,we identified a new rolled-leaf mutant,w32,from indica cultivar IR64 through EMS mutagenesis. The mutant showed a stable rolled-leaf phenotype throughout the life cycle. Two F2 populations were developed by crossing w32 to cultivar IR24 and PA64. Genetic analysis showed that the rolled-leaf phenotype was controlled by a single recessive gene. To determine the location of the gene,bulked segregant analysis was carried out using mutant and wild-type DNA pools ...  相似文献   

8.
利用化学诱变剂甲基磺酸乙酯(EMS)处理籼稻品种冈46B获得雄性不育突变体D63,并对该突变体进行表型鉴定、遗传分析和基因定位。结果显示D63突变体花药瘦小呈乳白色,花药内完全无花粉粒,属于无花粉型雄性不育。与野生型亲本冈46B相比,D63突变体成熟期株高降低了13.7%,穗伸出度减少了266.7%,自交结实率为0,其他农艺性状无显著差异。遗传分析表明该不育性状受1对隐性核基因控制,该突变基因定位于第2号染色体长臂靠近着丝粒区域In Del标记J2和J4之间,与J2和J4的遗传距离分别为0.2 c M和0.1 c M,该定位区间的物理距离为105.8 kb。候选基因分析结果表明,D63突变体在编码分泌性成束糖蛋白基因LOC_Os02g28970编码区第1580位碱基A突变为C,使编码蛋白的氨基酸序列第527位组氨酸(His)突变为脯氨酸(Pro)。D63突变体与已报道的mtr1突变体表型上不同之处主要是后者花药含有败育花粉粒,二者表型上的差异可能是由于LOC_Os02g28970基因序列突变位点不同,以及它们分别属于籼、粳亚种2个不同遗传背景所致。  相似文献   

9.
A rice mutant, G069, characteristic of few tiller numbers, was found in anther culture progeny from the F1 hybrid between an indica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent, G069 was further backcrossed with the recurrent parent, 02428, for two turns to develop a BC2F2 population. Genetic analysis in the BC2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants in BC2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the 02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C  相似文献   

10.
水稻苗期低温失绿的遗传分析及基因定位   总被引:3,自引:0,他引:3  
兰涛  梁康迳  陈志伟  段远霖  王俊兰  叶宁  吴为人 《遗传》2007,29(9):1121-1125
在早季低温条件下, 籼稻品种Dular的幼苗表现出白化失绿, 而粳稻品种Lemont幼苗表现正常绿色。以Lemont和Dular作亲本构建一个F2群体,通过该群体在早季低温条件下性状的表现,发现Lemont和Dular苗期耐冷性的差异受单个主基因控制,低温下白化失绿等位基因为隐性。将该基因暂时命名为cisc(t)。利用该F2群体,采用集团分离分析(BSA)法将cisc(t)定位在9号染色体上。经过对F2群体中100个典型的白化单株的简单序列长度多态性分析,将该基因定位在5.5 cM的区间内,分别与微卫星标记RM257和RM242相距3.9 cM和1.6 cM。  相似文献   

11.
srs-1, a new floral organ identity gene in rice, was mapped using RAPD and RFLP markers. Firstly, the cross was made between "ZhaiYeQing 8" (ZYQ8, indica) and split rice spikelet (SRS, japonica) mutant. The ratio of wild-type individuals and mutant plants in F2 population is 3:1, which indicates that the mutant characteristics are controlled by single recessive gene, srs-1. Consequently, BSA method was adopted and 520 random 10-mer primers were used to screen polymorphic bands between two bulks. Six primers could amplify polymorphic bands, of which S465 generates the most stable RAPD patterns. Then, S465 that cosegregates in F2 population has been converted into an RFLP marker successfully. Furthermore, srs-1 gene was mapped on chromosome 3 using DH mapping population. The effect of srs-1 gene results in the mutant of split rice spikelet. The mutant has longer and softer palea/lemma than those of wild-type, and two small palea/lemma-like organs between palea and lemma. In addition, there is a flower with three stamens and carpel in the axil of lemma. Thus, there are nine stamens and two carpels in the spikelet of mutant. srs-1 gene may belong to homeotic gene of class A according to the mutant characteristics and ABC model.  相似文献   

12.
文章通过对所构建的水稻突变体库进行大规模筛选,获得一个稳定遗传的矮秆突变体,与野生型日本晴相比,该突变体表现为植株矮化、叶片卷曲、分蘖减少和不育等性状,命名为dtl1(dwarf and twist leaf 1)。dtl1属于nl型矮秆,激素检测表明,矮秆性状与赤霉素和油菜素内酯无关。遗传分析显示,突变性状受单一隐性核基因控制。利用dtl1与籼稻品种Taichung Native 1杂交构建F2群体,将该突变基因DTL1定位于水稻第10染色体长臂2个SSR标记RM25923和RM6673之间约70.4 kb区域内,并与InDel标记Z10-29共分离,在该区域预测有13个候选基因,但未见调控水稻株高相关基因的报道,因此,认为DTL1基因是一个新的控制水稻株高的基因。  相似文献   

13.
Rac is a subfamily of small GTP-binding protein family. Its molecular weight is between 20 and 30 kilodaltons. As a signal protein, Rac directly or indirectly participates in many physiological processes, such as the regulation of cytoskeleton and the transduction of stress-induced signal. So Rac is also named ?molecular switch? The switch is based on the cycle from a GTP-bound 憃n?to a GDP-bound 憃ff?state[1]. In the superfamily of GTP-binding protein, only heterotrimeric G protein, Ra…  相似文献   

14.
水稻化感作用及其分子生态学研究进展   总被引:30,自引:2,他引:30  
综述了近年来国际上研究水稻化感作用的新进展,比较分析了当前常用于室内评价水稻化感作用潜力的几种生物测试法的优缺点,指出了琼脂迟播共培法是较为理想的室内生物测试法并已广泛应用于化感作用研究中。在此基础上,分析了水稻化感作用的数量遗传特性及其QTL定位的研究现状;阐明了水稻化感作用的遗传多样性及其分子生态特性;并就当前普遍关注的焦点问题:逆境条件(如低氮或高伴生杂草密度胁迫)常引起水稻化感作用潜力增大的生理过程与分子机制作了阐述。结合近年来应用差异蛋白组学和生物信息学的研究实例,阐明了逆境引起水稻化感作用增强与其酚类合成代谢相关酶蛋白表达丰度增加,萜类合成代谢相关酶蛋白表达丰度下降有关。就究竟什么是水稻的化感物质及其作用方式等问题作了分析与讨论.指出水稻的化感抑草效应是其众多化感物质综合作用的结果,应重视区分化感物质对靶标杂草的原生作用和进入土壤生态系统中经生物转化后的次生作用。根据当前植物化感作用研究的发展趋势,阐明了进一步研究水稻化感作用的焦点问题,提出了水稻化感作用的根际生物学特性与分子生态学机制,是未来国际上竞相角逐的重点研究领域,并认为以现代系统生物学理论为指导,运用基因组学、蛋白质组学和代谢组学等技术方法,是揭示这一分子生态学过程与机制的重要技术选择和优先研究领域。  相似文献   

15.
16.
A double haploid(DH)population,which consists of 120 lines derived from anther culture of a typical indica and japonica hybrid'CJ06'/'TN1',was used to investigate the genetic basis for rice leaffolder resistance.Using a constructed molecular linkage map,five QTLs for rolled leaves were detected on chromosomes 1,2,3,4,and 8.The positive alleles from C J06 on chromosomes 3,4,and 8 in-creased the resistance to dee leaffolder,and the alleles from TN1 on chromosomes 1 and 2 also enhanced resistance to leaffolder.The interactions between QTLs were identified and tested,and four conditional interactions were acquired for resistance to rice leaffolder.These loci were located on chromosomes 2,9,10,and 11,respectively.QTL pyramiding indicated that the positive alleles affect resis-tance to leaffolder.The prospective application of this data in rice breeding was also discussed.  相似文献   

17.
A double haploid(DH)population,which consists of 120 lines derived from anther culture of a typical indica and japonica hybrid 'CJ06'/'TN1',was used to investigate the genetic basis for rice leaffolder resistance.Using a constructed molecular linkage map,five QTLs for rolled leaves were detected on chromosomes 1,2,3,4,and 8.The positive alleles from CJ06 on chromosomes 3,4,and 8 in-creased the resistance to rice leaffolder,and the alleles from TN1 on chromosomes 1 and 2 also enhanced resistance to leaffolde...  相似文献   

18.
在籼稻品种R401辐射诱变的M2群体中筛选到一个苗期耐盐突变体, 在150 mmol/L的NaCl溶液处理下对照植株枯萎死亡, 而突变体植株依然存活。以粳稻品种Nipponbare(不耐盐)和耐盐突变体作亲本, 构建了一个F2群体, 调查该群体在150 mmol/L的NaCl溶液胁迫下的表现, 发现Nipponbare和耐盐突变体苗期耐盐性的差异受单个主基因控制, 耐盐为隐性, 将该基因暂时命名为SST(t)。利用该F2群体, 采用集团分离分析(Bulked segregant analysis, BSA)法将SST(t)定位在第6染色体上, 进一步对F2群体中137个典型的耐盐单株的分子标记进行分析, 将该基因定位在InDel标记ID26847和ID27253之间, 约2.3 cM (或406 kb)的区间内, 与两标记分别相距1.2 cM和1.1 cM。  相似文献   

19.
水稻生长发育多效基因DDF1的遗传分析与基因定位   总被引:1,自引:0,他引:1  
Li SP  Duan YL  Chen ZW  Guan HZ  Wang CL  Zheng LL  Zhou YC  Wu WR 《遗传》2011,33(12):1374-1379
植物中存在许多多效性基因,它们在调控植物的营养生长与生殖发育过程中起着关键性作用。文章在籼稻育种材料中发现了一个植株显著矮化且花器官明显变异的突变体ddf1(dwarf and deformed flower 1)。遗传分析表明,该突变体由单基因隐性突变所致,这说明该基因是一个同时控制营养生长和生殖发育的多效性基因,暂命名为DDF1。为了定位该基因,将ddf1杂合体与热带粳稻品种DZ60杂交,建立了F2定位群体,利用水稻RM系列微卫星标记,通过混合分离分析(BSA)和小群体连锁分析,将DDF1初步定位在水稻第6号染色体RM588和RM587标记之间,与两标记的遗传距离分别为3.8 cM和2.4 cM。进一步利用已经公布的水稻基因组序列,在初步定位的区间内开发新的SSR标记,将DDF1定位在165 kb的区间内。该结果为克隆DDF1奠定了基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号