首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the transfer of tritium from [2-3H]xylitol or (1R)-[1-3H]ethanol into lactate in cells from fed rats either untreated or triiodothyronine-treated. The labelling pattern of lactate during the metabolism of [2-3H]xylitol or (1R)-[1-3H]ethanol follows the equation L = K(1?e?tτ) (μmol tritium/μmol lactate). The yield in lactate together with the minimum value of the total flux of reducing equivalents are used to estimate the specific radioactivity of NADH. We have calculated the lactate dehydrogenase-catalysed oxidation rate of NADH from the experimental values of lactate labelling and the specific radioactivity of NADH. We found the calculated flux of reducing equivalents from NADH to pyruvate to be of the same order of magnitude whether labelled ethanol or labelled xylitol was metabolized. We found the flux to be only a few percent of the maximal activity of lactate dehydrogenase. The results obtained suggest that the cytoplasm can be regarded as one compartment, containing a single pool of NAD(H).  相似文献   

2.
(2R)-[3H]Isovaleric acid and (2S)-[3H]isovaleric acid (ammonium salts) have been synthesized. These substances, mixed with [1-14C]isovalerate, have been administered to biotin-deficient rats, which accumulate β-hydroxyisovaleric acid in their urine, the metabolite being formed via isovaleryl-CoA and β-methylcrotonyl-CoA. The results show that most of the tritium from (2R)-[3H]isovalerate was lost, and most of the tritium from (2S)-[3H]isovalerate retained in the conversion to β-hydroxyisovalerate. The stereochemistry of the isovaleryl-CoA dehydrogenase reaction is compared with the stereochemistry of other short-chain acyl-CoA dehydrogenase reactions.  相似文献   

3.
A-Side (4-R)-(4-2H)-reduced nicotinamide adenine dinucleotide (NADD) was prepared by a stepwise oxidation of ethanol-d6 to acetate in the presence of NAD, alcohol dehydrogenase, and aldehyde dehydrogenase. The B-side (4-S) isomer of NADD was prepared using the glucose dehydrogenase activity of glucose-6-phosphate dehydrogenase to oxidize to oxidize glucose-1-d in 40% dimethyl aulfoxide. Subsequent purifieation of the reduced nucleotides was achieved using a column of strongly basic polystyrene macroporous resin (AG MP-1) eluted with 0.2 m LiCl, pH 10, and applying the pooled NADD peak to a polyacrylamide gel (Bio-Gel P-2) column. The final A260A340 ratio obtained for these preparations was below 2.3. Preparation of the deuterated reduced nucleotides in this manner allows production of specifieally deuterated substrates by coupled enzymatic synthesis. L-Malate-2-d was prepared by coupled synthesis of A-side NADD to the reduction of oxaloacetate by the A-side enzyme malate dehydrogenase.  相似文献   

4.
The solubilization and subsequent separation of the hepatic microsomal ethanol-oxidizing system from alcohol dehydrogenase and catalase activities by DEAE-cellulose column chromatography is described. Absence of alcohol dehydrogenase in the column eluates exhibiting microsomal ethanol-oxidizing system activity was demonstrated by the failure of NAD+ to promote ethanol oxidation at pH 9.6. Differentiation of the microsomal ethanol-oxidizing system from alcohol dehydrogenase was further shown by the apparent Km for ethanol (7.2 mm, insensitivity of the microsomal ethanol-oxidizing system to the alcohol dehydrogenase inhibitor pyrazole (0.1 mm) and by the failure of added alcohol dehydrogenase to increase the ethanol oxidation. Absence of catalatic activity in these fractions was demonstrated by spectrophotometric and polarographic assay. Differentiation of the microsomal ethanol-oxidizing system from the peroxidatic activity of catalase was shown by the apparent Km for oxygen (8.3 μm), insensitivity of the microsomal ethanol-oxidizing system to the catalase inhibitors azide and cyanide, and by the lack of a H2O2-generating system (glucose-glucose oxidase) to sustain ethanol oxidation in the eluates. The oxidation of ethanol to acetaldehyde by the alcohol dehydrogenase- and catalase-free fractions required NADPH and oxygen and was inhibited by CO. The column eluates showing microsomal ethanol-oxidizing system activity contained cytochrome P-450, NADPH-cytochrome c reductase, and phospholipids and also metabolized aminopyrine, benzphetamine, and aniline.  相似文献   

5.
Portions of crude homogenates of etiolated wheat seedlings incubated with Mg-protoporphyrin IX and S-adenosyl-L-methionine and then added to other portions of the same crude homogenates that were pretreated with [1-3H]ethanol and yeast alcohol dehydrogenase provided, after a short reaction period, 3H-labeled Mg-protoporphyrin IX monomethyl ester. The 3H-labeled Mg-protoporphyrin IX monomethyl ester thus obtained was shown to contain the 3H in one reduced (to ethyl) vinyl side-chain. Subsequently, 3H-labeled Mg-monoethyl-(monodivinyl)-protoporphyrin IX monomethyl ester was obtained when Mg-protoporphyrin IX monomethyl ester and [3H]NADH were added to dialyzed crude homogenates of etiolated wheat seedlings. Insignificant amounts of 3H were incorporated into poprhyrin substrates when Mg-2,4-divinylpheoporphyrin a5 or [3H]NADPH were substituted in reaction mixtures for Mg-protoporphyrin IX monomethyl ester or [3H]NADPH, respectively. The results of these and further experiments suggest that an NADPH-dependent enzyme in the crude homogenates of etiolated wheat seedlings was capable of catalyzing the reduction to ethyl of one vinyl side-chain of Mg-protoporphyrin IX monomethyl ester. These findings suggest that the 4-vinyl side-chain reductive reaction likely occurs after the biosynthesis IX monomethyl ester, but before isocyclic ring formation in the pathway to chlorophyll a.  相似文献   

6.
Strain X4 was isolated several years ago from an anaerobic mesophilic plant treating vegetable cannery waste waters. It was the first example of propionic fermentation from ethanol. Morphologic and physiologic characterizations of the strain are presented here. This strain is described as type strain of a new species, Clostridium neopropionicum sp. nov. Whole cells of strain X4 ferment [1-13C]ethanol and CO2 to [2-13C]propionate, [1-13C]acetate and [2-13C]propanol, suggesting the absence of a randomizing pathway during the propionate formation. Enzymes involved in this fermentation were assayed in cell-free extracts of cells grown with ethanol as sole substrate. Alcohol dehydrogenase, aldehyde dehydrogenase, phosphate acetyl transferase, acetate kinase, pyruvate synthase, lactate dehydrogenases, and the enzymes of the acrylate pathway were detected at activities sufficient to be involved in ethanol fermentation. The same pathway may be used for the degradation of lactate or acrylate to acetate.  相似文献   

7.
Using horse liver alcohol dehydrogenase, stereospecifically tritiated (R)- and (S)-(γ-3H)-coniferyl alcohol was synthesized. Using both of these substrates it was demonstrated that cinnamyl alcohol dehydrogenase from lignifying Forsythia tissue specifically removes the pro-R-hydrogen atom of coniferyl alcohol in the oxidation to the aldehyde. This also means that in the reverse reaction the A-hydrogen of NADPH is transferred to the Re-site of coniferyl aldehyde.  相似文献   

8.
Datura innoxia plants were fed the R- and S-isomers of [3-14C]-3-hydroxy-3-phenylpropanoic acid, and [3-14C]cinnamic acid along with dl-[4-3H]phenylalanine. The hyoscyamine and scopolamine isolated from the plants 7 days later were labeled with tritium, but devoid of 14C, indicating that 3-hydroxy-3-phenylpropanoic acid and cinnamic acid are not intermediates between phenylalanine and tropic acid. The [3H] tropic acid obtained by hydrolysis of the hyoscyamine was degraded and shown to have essentially all its tritium located at the para position of its phenyl group, a result consistent with previous work.  相似文献   

9.
The hydrogen-transfer stereospecificity of cabbage histidinol dehydrogenase at the C-4 position of NAD + was determined by means of 1H-NMR. A dehydrogenase reaction with enzymatically prepared [4-2H]NAD + was performed. The NMR spectrum of the reaction mixture showed a peak at about 2.8 ppm, indicating the production of [(4S)-2H]NADH, indicating that the stereospecificity of the enzyme was pro-R-specific.  相似文献   

10.
Cyclization of trans,trans-[1-3H2,12,13-14C]farnesyl pyrophosphate (2a) by a preparation of trichodiene synthetase isolated from the fungus, Trichothecium roseum, gave trichodiene (5a), which was shown by chemical degradation to retain both tritium atoms of the precursor at C-11. Incubation of 1S-[1-3H,12,13-14C]farnesyl pyrophosphate (2b) and 1R-[1-3H,12,13-14C]farnesyl pyrophosphate (2c) with trichodiene synthetase and degradation of the resulting labeled trichodienes, 5b and 5c, established that the displacement of the pyrophosphate moiety from C-1 of the precursor and formation of the new C-C bond in the formation of trichodiene takes place with net retention of configuration. These results are accounted for by an isomerization-cyclization mechanism involving the intermediacy of nerolidyl pyrophosphate (4).  相似文献   

11.
The respective role of alcohol dehydrogenase, of the microsomal ethanol-oxidizing system, and of catalase in ethanol metabolism was assessed quantitatively in liver slices using various inhibitors and ethanol at a final concentration of 50 mm. Pyrazole (2 mm) virtually abolished cytosolic alcohol dehydrogenase activity but inhibited ethanol metabolism in liver slices by only 50–60%. The residual pyrazole-insensitive ethanol oxidation in liver slices remained unaffected by in vitro addition of the catalase inhibitor sodium azide (1 mm). At this concentration, sodium azide completely abolished catalatic activity of catalase in liver homogenate as well as peroxidatic activity of catalase in liver slices in the presence of dl-alanine. Similarly, in vivo administration of 3-amino-1,2,4-triazole, a compound which inhibits the activity of catalase but not that of the microsomal ethanol-oxidizing system, failed to decrease both the overall rates of ethanol oxidation and the activity of the pyrazole-insensitive pathway. Finally, butanol, a substrate and inhibitor of the microsomal ethanol-oxidizing system but not of catalase-H2O2, significantly decreased the pyrazole-insensitive ethanol metabolism in liver slices. These results indicate that alcohol dehydrogenase is responsible for half or more of ethanol metabolism by liver slices and that the microsomal ethanol-oxidizing system rather than catalase-H2O2 accounts for most if not all of the alcohol dehydrogenase-independent pathway.  相似文献   

12.
Earlier observations of Dawson on the relative incorporation of [2-3H]- and [6-3H]-nicotinic acid into nicotine have been confirmed in intact Nicotiana tabacum plants. All the tritium in the nicotine derived from [2-3H]-nicotinic acid was located at C-2 of the pyridine ring. However the radioactive nicotine derived from [6-3H]-nicotinic acid was not labelled specifically at C-6 with tritium. By carrying out feeding experiments with [6-14-C, 2-3H]- and [6-14C, 3H]-nicotinic acids, it was established that there was very little loss of tritium from C-2 and C-6 of nicotinic acid during 5 days of metabolism in the tobacco plant.  相似文献   

13.
Using highly purified ornithine decarboxylase isolated from androgen-treated mice, [1R-2H]putrescine was generated by the decarboxylation of l-ornithine in D2O, and [1S-2H]putrescine was generated from [2-2H]ornithine by carrying out the decarboxylation in H2O. Chirality of the putrescines was then determined from the 200-MHz 1H NMR spectra of their bis-camphanamides in the presence of Eu(fod)3. These results demonstrated that decarboxylation had taken place with retention of configuration.  相似文献   

14.
15.
6-N-[3-3H]Trimethyl-dl-lysine was synthesized from 6-N-acetyl-l-lysine by the following chemical scheme: 6-N-acetyl-l-lysine → 2-keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid oxime → 6-N-[3-3H]acetyl-dl-lysine → dl-[3-3H]lysine → 2-N-[3-3H]formyl-dl-lysine → 2-[3-3H]formyl-6-N-trimethyl-dl-lysine → 6-N-[3-3H]trimethyl-dl-lysine. Using a 70% ammonium sulfate fraction obtained from a high-speed rat kidney supernatant, the cosubstrate and cofactor requirements for 6-N-trimethyl-l-lysine hydroxylase activity as measured by tritium release from 6-N-[3-3H]trimethyl-dl-lysine were: α-ketoglutarate, ferrous ions, l-ascorbate, and oxygen, with added catalase showing a slight but distinct stimulatory effect. On incubation with the crude rat kidney preparation, the release of tritium from 6-N-[3-3H]trimethyl-dl-lysine was linear with both time of incubation and protein concentration. Hydroxylation of 6-N-trimethyl-l-lysine, as measured by tritium release from the labeled substrate, was examined in rat kidney, heart, liver, and skeletal muscle tissues, and found to be most active in the kidney.  相似文献   

16.
Pyrazole and 4-methylpyrazole, which are potent inhibitors of alcohol dehydrogenase, inhibited the oxidation of ethanol and of dimethyl sulfoxide by two model hydroxyl radical-generating systems. The systems used were the iron-catalyzed oxidation of ascorbic acid and the coupled oxidation of xanthine by xanthine oxidase. Pyrazole and 4-methylpyrazole were more effective inhibitors at lower substrate concentrations than at higher substrate concentrations; the oxidation of ethanol was inhibited to a greater extent than the oxidation of dimethyl sulfoxide. These results are consistent with competition between pyrazole or 4-methylpyrazole with the substrates for the generated hydroxyl radicals. Pyrazole and 4-methylpyrazole appear to be equally effective in reacting with hydroxyl radicals. An approximate rate constant of about 8 × 109m?1 s?1 was calculated from the inhibition curves, indicating that pyrazole and 4-methylpyrazole are potent scavengers of the hydroxyl radical. Previous studies have implicated a role for hydroxyl radicals in the microsomal pathway of ethanol oxidation. In the presence of azide (to inhibit catalase), pyrazole and 4-methylpyrazole inhibited the NADPH-dependent microsomal oxidation of ethanol, as well as several other hydroxyl radical-scavenging agents. This inhibition by pyrazole and by 4-methylpyrazole may reflect a mechanism involving competition for hydroxyl radicals generated by the microsomes. However, the kinetics of inhibition by pyrazole were mixed, not competitive, and pyrazole and 4-methylpyrazole also inhibited aminopyrine demethylase activity. Pyrazole has been shown by others to interact with cytochrome P-450. It is suggested that pyrazole and 4-methylpyrazole affect microsomal oxidation of ethanol via effects on the mixed-function oxidase system and via competition for the generated hydroxyl radicals. In view of these results, low concentrations of pyrazole and 4-methylpyrazole should be used in studies on pathways of alcohol metabolism, and caution should be made in interpreting the actions of these compounds when used at high concentrations.  相似文献   

17.
Samples of (3R)- and (3S)-4′hydroxyphenyl[3-2H1, 3-3H]pyruvate were prepared by taking advantage of the known stereospecificity of phenylpyruvate keto-enol isomerase (tautomerase). 4′-Hydroxyphenyl[3-14C]pyruvate was obtained by the action of l-amino acid oxidase on dl-[3-14C]tyrosine, whereas a simple base-catalyzed exchange procedure yielded samples of 4′-hydroxyphenyl[3-3H]- and 4′-hydroxyphenyl[3-2H2]pyruvate. All labeled samples were converted in situ into the corresponding homogentisic acids on 4′-hydroxyphenyl-pyruvate dioxygenase that is known to catalyze the migration of the acetate side chain with retention of configuration. The isolated doubly labeled homogentisic acids were incubated with chloroplasts from Raphanus sativus cv. saxa Treib, and from the lipophilic products a fraction containing inter alia tocopherol, tocoquinone, and plastoquinone was obtained by chromatographic procedures. The incorporation of radioactivity was between 0.5 and 11% based on homogentisate. Reductive acetylation of the quinones yielded crystalline diacetylhydroquinones, which were submitted to Kuhn-Roth degradation. The radioactive acetate samples thus obtained were analyzed for chirality by an enzymatic procedure previously published. (2R)-[2-2H1, 2-3H]Homogentisate gave mainly (S)-acetate, whereas (2S)-[2-2H1, 2-3H]homogentisate was converted mainly into (R)-acetate. It is concluded that the decarboxylation of the side chain occurred with stereochemical retention during the biosynthetic process.  相似文献   

18.
Hepatic metabolism of 4-[3H]acetanilide in vivo and in vitro yields 4-hydroxyacetanilide which retains, respectively, 40 and 62% of the tritium. When the 4-tritio-substrate contains adjacent deuteriums the retention of tritium is reduced to 26 and 40%. Hepatic metabolism of 4-[3H]anisole in vivo and in vitro yields 4-hydroxyanisole with 78% of the tritium. This retention is reduced to 62% in the corresponding 3,5-[2H2]-4[3H]anisole. Similarly, the retention of tritium in trans-4-hydroxycinnamic acid derived by metabolism of trans-[4-3H]cinnamic acid with chick pea microsomes is reduced from 91% to 68% by the presence of adjacent deuteriums in the substrate. Hydroxylation at the 4-position does not result in selective loss of tritium from the 3-position of acetanilide, anisole, or cinnamic acid. The above isotope effects indicate that isomerization of the probable arene oxide intermediates proceeds mainly via the keto-tautomer of the phenolic product.  相似文献   

19.
《Insect Biochemistry》1986,16(1):17-23
The synthesis of [4-14C]cholesta-4,6-dien-3-one and [4-14C]3β-hydroxy-5α-cholestan-6-one is described. Both [4-14C]cholest-4-en-3-one and [4-14C]cholesta-4,6-dien-3-one were not incorporated significantly into ecdysteroids compared to [1α,2α-3H]cholesterol in fifth instar and maturing adult female Schistocerca gregaria. Similarly, [4-14C]3β-hydroxy-5α-cholestan-6-one was not incorporated significantly in the latter system. The results suggest that none of the three 14C-substrates are intermediates in ecdysteroid biosynthesis from cholesterol, although possible complications from permeability barriers cannot be discounted. [4-14C, 7-3H]7-dehydrocholesterol has been synthesized and incorporated into ecdysteroids in adult female Schistocerca gregaria and in Spodoptera littoralis pupae. Although approximately half the tritium was eliminated during ecdysteroid synthesis in S. gregaria, there was essentially complete retention of the tritium in Spodoptera. The results support the direct incorporation of 7-dehydrocholesterol into ecdysteroids and not via cholesterol. A possible explanation for the loss of appreciable tritium in S. gregaria is discussed.  相似文献   

20.
The NAD-dependent oxidation of ethanol, 2,3-butanediol, and other primary and secondary alcohols, catalyzed by alcohol dehydrogenases derived from Penicillium charlesii, was investigated. Alcohol dehydrogenase, ADH-I, was purified to homogeneity in a yield of 54%. The enzyme utilizes several primary alcohols as substrates, with Km values of the order of 10?4m. A Km value of 60 mm was obtained for R,R,-2,3-butanediol. The stereospecificity of the oxidation of 2-butanol was investigated, and S-(+)-2-butanol was found to be oxidized 2.4 times faster than was R-(?)-2-butanol. The reduction of 2-butanone was shown to produce S-(+)-2-butanol and R-(?)-butanol in a ratio of 7:3. ADH-I is the primary isozyme of alcohol dehydrogenase present in cultures utilizing glucose as the sole carbon source. The level of alcohol dehydrogenase activity increased 7.6-fold in mycelia from cultures grown with glucose and 2,3-butanediol (0.5%) as carbon sources compared with the activity in cultures grown on only glucose. Two additional forms of alcohol dehydrogenase, ADH-II and ADH-III, were present in the cultures supplemented with 2,3-butanediol. These forms of alcohol dehydrogenase catalyze the oxidation of ethanol and 2,3-butanediol. These data suggest that P. charlesii carries out an oxidation of 2,3-butanediol which may constitute the first reaction in the degradation of 2,3-butanediol as well as the last reaction in the mixed-acid fermentation. Alcohol dehydrogenase activities in P. charlesii may be encoded by multiple genes, one which is expressed constitutively and others whose expression is inducible by 2,3-butanediol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号