首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of cholesterol sulfate (CS) and calcium on the phase behavior of lipid mixtures mimicking the stratum corneum (SC) lipids was examined using vibrational spectroscopy. Raman microspectrocopy showed that equimolar mixtures of ceramide, palmitic acid, and cholesterol underwent a phase transition in which, at low temperatures, lipids formed mainly a mosaic of microcrystalline phase-separated domains, and above 45 degrees C, a more fluid and disordered phase in which the three lipid species were more miscible. In the presence of Ca(2+), there was the formation of fatty acid-Ca(2+) complexes that led to domains stable on heating. Consequently, these lipid mixtures remained heterogeneous, and the fatty acid molecules were not extensively involved in the formation of the fluid lipid phase, which included mainly ceramide and cholesterol. However, the presence of CS displaced the association site of Ca(2+) ions and inhibited the formation of domains formed by the fatty acid molecules complexed with Ca(2+) ions. This work reveals that CS and Ca(2+) modulate the lipid mixing properties and the lipid order in SC lipid models. The balance in the equilibria involving Ca(2+), CS, and fatty acids is proposed to have an impact on the organization and the function of the epidermis.  相似文献   

2.
3.
Lipid lamellae present in the outermost layer of the skin protect the body from uncontrolled water loss. In human stratum corneum (SC), two crystalline lamellar phases are present, which contain mostly cholesterol, free fatty acids, and nine types of free ceramides. Previous studies have demonstrated that the SC lipid organization can be mimicked with model mixtures based on isolated SC lipids. However, those studies are hampered by low availability and high interindividual variability of the native tissue. To elucidate the role of each lipid class in the formation of a competent skin barrier, the use of synthetic lipids would offer an alternative. The small- and wide-angle X-ray diffraction results of the present study show for the first time that synthetic lipid mixtures, containing only three synthetic ceramides, reflect to a high extent the SC lipid organization. Both an appropriately chosen preparation method and lipid composition promote the formation of two characteristic lamellar phases with repeat distances similar to those found in native SC. From all synthetic lipid mixtures examined, equimolar mixtures of cholesterol, ceramides, and free fatty acids equilibrated at 80 degrees C resemble to the highest extent the lamellar and lateral SC lipid organization, both at room and increased temperatures.  相似文献   

4.
The stratum corneum (SC) plays a fundamental role in the barrier function of the skin. The SC consists of corneocytes embedded in a lipid matrix. The main lipid classes in the lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to examine the effect of the chain length of FFAs on the thermotropic phase behavior and mixing properties of SC lipids. Fourier transform infrared spectroscopy and Raman imaging spectroscopy were used to study the mixing properties using either protonated or deuterated FFAs. We selected SC model lipid mixtures containing only a single CER, CHOL and either a single FFA or a mixture of FFAs mimicking the FFA SC composition. The single CER consists of a sphingoid base with 18 carbon atoms and an acyl chain with a chain length of 24 carbon atoms. When using lignoceric acid (24 carbon atoms) or a mixture of FFAs, the CER and FFAs participated in mixed crystals, but hydration of the mixtures induced a slight phase separation between CER and FFA. The mixed crystalline structures did not phase separate during storage even up to a time period of 3 months. When using palmitic acid (16 carbon atoms), a slight phase separation was observed between FFA and CER. This phase separation was clearly enhanced during hydration and storage. In conclusion, the thermotropic phase behavior and the mixing properties of the SC lipid mixtures were shown to strongly depend on the chain length and chain length distribution of FFAs, while hydration enhanced the phase separation.  相似文献   

5.
The main diffusion barrier for drugs penetrating through the skin is located in the intercellular lipid matrix in the upper layer of the skin, the stratum corneum (SC). The main lipid classes in the SC are ceramides (CER), free fatty acids (FFA) and cholesterol (CHOL). The lipids in SC are organized into two lamellar phases with periodicities of approximately 13 and 6 nm, respectively. Similar lipid organization has been found with equimolar CHOL:CER:FFA mixtures in SAXD studies performed at room temperature. However, one may conclude that the phase behavior of the mixtures is similar to that in SC only when the lipid organization of the lipid mixtures resembles that in SC over a wide temperature range. Therefore, in the present study, the organization of the lipid mixtures has been studied in a temperature range between 20 degrees and 95 degrees C. From these experiments it appeared that at elevated temperatures in equimolar CHOL:CER:FFA mixtures a new prominent 4.3 nm phase is formed between 35;-55 degrees C, which is absent or only weakly formed in intact human and pig SC, respectively. As it has been suggested that gradients of pH and cholesterol sulfate exist in the SC and that Ca(2+) is present only in the lowest SC layers, the effect of pH, cholesterol sulfate, and Ca(2+) on the lipid phase behavior has been investigated with lipid mixtures. Both an increase in pH from 5 (pH at the skin surface) to 7.4 (pH at the SC;-stratum granulosum interface) and the presence of cholesterol sulfate promote the formation of the 13 nm lamellar phase. Furthermore, cholesterol sulfate reduces the amount of CHOL that is present in crystalline domains, causes a shift in the formation of the 4.3 nm phase to higher temperatures, and makes this phase less prominent at higher temperatures. The finding that Ca(2+) counteracts the effects of cholesterol sulfate indicates the importance of a proper balance of minor SC components for appropriate SC lipid organization. In addition, when the findings are extrapolated to the in vivo situation, it seems that cholesterol sulfate is required to dissolve cholesterol in the lamellar phases and to stabilize SC lipid organization. Therefore, a drop in cholesterol sulfate content in the superficial layers of the SC is expected to destabilize the lipid lamellar phases, which might facilitate the desquamation process.  相似文献   

6.
The main function of the skin is to protect the body against exogenous substances. The skin barrier is located in the outermost layer of the skin, the stratum corneum (SC). This layer consists of keratin enriched cells embedded in lipid lamellae that form the main barrier for diffusion of substances through the skin. The main lipid classes in this barrier are ceramides, cholesterol and free fatty acids. Cholesterol sulfate and calcium are also present in SC. Furthermore it has been suggested that a pH gradient exists. In a previous paper the effect of cholesterol sulfate and calcium on the lipid phase behaviour of mixtures prepared from cholesterol, ceramides and free fatty acids at pH 5 was reported (approximate pH at the skin surface). In the present study the phase behaviour of mixtures prepared from cholesterol, ceramides and free fatty acids prepared at pH 7.4 (the pH of viable cells) has been examined between 25 and 95 degrees C. Our studies reveal that a reversed hexagonal phase has been formed at elevated temperatures. Addition of calcium inhibits the formation of the reversed hexagonal phase, while cholesterol sulfate promotes the presence of the reversed hexagonal phase at increased temperatures. From our results we can conclude that the lipid mixtures prepared at pH 5 resemble more closely the lipid phase behaviour in intact SC than the lipid mixtures prepared at pH 7.4.  相似文献   

7.
The conformational disordering and lateral packing of lipids in porcine and human isolated stratum corneum (SC) was compared using Fourier transform infrared spectroscopy (FTIR). It was shown that SC of both species differ markedly, porcine SC lipids being arranged predominantly in a hexagonal lattice while lipids in human SC are predominantly packed in the denser orthorhombic lattice. However, the lipid organization of equimolar ceramide:cholesterol:free fatty acid (CER:CHOL:FFA) mixtures prepared with isolated porcine CER or human CER is very similar, only the transition temperatures differed being slightly lower in mixtures with porcine CER. Therefore, the difference in lateral packing between human and porcine stratum corneum is not due to the difference in CER composition. Furthermore, it is possible to use more readily available porcine CER in model lipid mixtures to mimic lipid organization in human SC. As the equimolar porcine CER:CHOL:FFA mixtures closely mimic the lipid organization in human SC, both human SC and this mixture were selected to examine the effect of glycerol on the lipid phase behaviour. It was found that high concentrations of glycerol change the lamellar organization slightly, while domains with an orthorhombic lateral packing are still observed.  相似文献   

8.
The conformational disordering and lateral packing of lipids in porcine and human isolated stratum corneum (SC) was compared using Fourier transform infrared spectroscopy (FTIR). It was shown that SC of both species differ markedly, porcine SC lipids being arranged predominantly in a hexagonal lattice while lipids in human SC are predominantly packed in the denser orthorhombic lattice. However, the lipid organization of equimolar ceramide:cholesterol:free fatty acid (CER:CHOL:FFA) mixtures prepared with isolated porcine CER or human CER is very similar, only the transition temperatures differed being slightly lower in mixtures with porcine CER. Therefore, the difference in lateral packing between human and porcine stratum corneum is not due to the difference in CER composition. Furthermore, it is possible to use more readily available porcine CER in model lipid mixtures to mimic lipid organization in human SC. As the equimolar porcine CER:CHOL:FFA mixtures closely mimic the lipid organization in human SC, both human SC and this mixture were selected to examine the effect of glycerol on the lipid phase behaviour. It was found that high concentrations of glycerol change the lamellar organization slightly, while domains with an orthorhombic lateral packing are still observed.  相似文献   

9.
Deuterium NMR investigation of polymorphism in stratum corneum lipids   总被引:3,自引:0,他引:3  
The intercellular lipid lamellae of stratum corneum constitute the major barrier to percutaneous penetration. Deuterium magnetic resonance and freeze-fracture electron microscopic investigation of hydrated lipid mixtures consisting of ceramides, cholesterol, palmitic acid and cholesteryl sulfate and approximating the stratum corneum intercellular lipid composition, revealed thermally induced polymorphism. The transition temperature of bilayer to hexagonal transition decreased as the ratio of cholesterol to ceramides in these mixtures was lowered. Lipid mixtures in which the stratum corneum ceramides were replaced by synthetic dipalmitoylphosphatidylcholine did not show any polymorphism throughout the temperature range used in the present study. The ability of the ceramide-containing samples to form hexagonal structures establishes a plausible mechanism for the assembly of the stratum corneum intercellular lamellae during the final stages of epidermal differentiation. Also, the bilayer to hexagonal phase transition of these nonpolar lipid mixtures could be used to enhance the penetration of drugs through skin.  相似文献   

10.
The sphingoid bases of sphingolipids, including ceramides, can vary in length from 12 to >20 carbons. To study how such length variation affects the bilayer properties of ceramides, we synthesized ceramides consisting of a C12-, C14-, C16-, C18-, or C20-sphing-4-enin derivative coupled to palmitic acid. The ceramides were studied in mixtures with palmitoyloleoylphosphocholine (POPC) and/or palmitoylsphingomyelin (PSM), and in more complex bilayers also containing cholesterol. The trans-parinaric acid lifetimes showed that 12:1- and 14:1-PCer failed to increase the order of POPC bilayers, whereas 16:1-, 18:1-, and 20:1-PCer induced ordered- or gel-phase formation. Nevertheless, all of the analogs were able to thermally stabilize PSM, and a chain-length-dependent increase in the main phase transition temperature of equimolar PSM/Cer bilayers was revealed by differential scanning calorimetry. Similar thermal stabilization of PSM-rich domains by the ceramides was observed in POPC bilayers with a trans-parinaric acid-quenching assay. A cholestatrienol-quenching assay and sterol partitioning experiments showed that 18:1- and 20:1-PCer formed sterol-excluding gel phases with PSM, reducing the overall bilayer affinity of sterol. The effect of 16:1-PCer on sterol distribution was less dramatic, and no displacement of sterol from the PSM environment was observed with 12:1- and 14:1-PCer. The results are discussed in relation to other structural features that affect the bilayer properties of ceramides.  相似文献   

11.
The outermost layer of the skin, the stratum corneum, consists of corneocytes surrounded by lipid domains. The main lipid classes in stratum corneum are cholesterol, ceramides (CER), and free fatty acids forming two crystalline lamellar phases. However, only limited information is available on whether the various lipid classes participate in the same crystalline lattices or if separate domains are formed within the lipid lamellae. In this article infrared spectroscopic studies are reported of hydrated mixtures prepared from cholesterol, human CER, and free fatty acids. Evaluation of the methylene stretching vibrations revealed a conformational disordering starting at approximately 60 degrees C for all mixtures. Examination of the rotational ordering (scissoring and rocking vibrations) of mixtures prepared from equimolar cholesterol and CER with a variation in the level of free fatty acids showed that at lower free fatty acid content orthorhombic and hexagonal domains coexist in the lipid lamellae. Increasing the fatty acid level to an equimolar cholesterol/CER/fatty acid mixture reveals the dominant presence of an orthorhombic lattice, confirming x-ray diffraction studies. Replacing the protonated free fatty acid chains by their perdeuterated counterparts demonstrates that free fatty acids and CER participate in the same orthorhombic lattice up to a level of slightly less than 1:1:0.75 cholesterol/CER/free fatty acids molar ratio but that free fatty acids also form separate domains within the lipid lamellae at equimolar ratios at room temperature. However, no evidence for this has been observed at 32 degrees C. Extrapolating these findings to the situation in stratum corneum led us conclude that in stratum corneum, fatty acids and CER participate in the orthorhombic lattice at 32 degrees C, the skin temperature.  相似文献   

12.
Lipid lamellae present in the outermost layer of the skin, the stratum corneum, form the main barrier for the diffusion of molecules through the skin. The presence of a unique 13 nm lamellar phase and its high crystallinity are characteristic for the stratum corneum lipid phase behavior. In the present study, small-angle and wide-angle X-ray diffraction were used to examine the organization in lipid mixtures prepared with a unique set of well-defined synthetic ceramides, varying from each other in head group architecture and acyl chain length. The results show that equimolar mixtures of cholesterol, free fatty acids, and synthetic ceramides (resembling the composition of pig ceramides) closely resemble the lamellar and lateral stratum corneum lipid organization, both at room and higher temperatures. Exclusion of several ceramide classes from the mixture does not affect the lipid organization. However, complete substitution of ceramide 1 (acylceramide with a sphingosine base) with ceramide 9 (acylceramide with a phytosphingosine base) reduces the formation of the long periodicity lamellar phase. This indicates that the head group architecture of acylceramides affects the lipid organization. In conclusion, lipid mixtures prepared with well-defined synthetic ceramides offer an attractive tool with which to unravel the importance of the molecular structure of individual ceramides for proper lipid organization.  相似文献   

13.
The lipid regions in the outermost layer of the skin (stratum corneum) form the main barrier for diffusion of substances through the skin. In this layer the main lipid classes are ceramides, cholesterol (CHOL), and FFA. Previous studies revealed a coexistence of two crystalline lamellar phases with periodicities of approximately 13 nm (referred to as long periodicity phase) and 6 nm (short periodicity phase). Additional studies showed that lipid mixtures prepared with isolated pig ceramides (pigCER) mimic lipid phase behavior in stratum corneum closely. Because the molecular structure of pigCER differs in some important aspects from that of human ceramides (HCER), in the present study the phase behavior of mixtures prepared with HCER has been examined. Phase behavior studies of mixtures based on HCER revealed that in CHOL:HCER mixtures the long periodicity phase dominates. In the absence of HCER1 the short periodicity phase is dominant. Addition of FFA promotes the formation of the short periodicity phase and induces a transition from a hexagonal sublattice to an orthorhombic sublattice. Furthermore, the presence of FFA promotes the formation of a liquid phase. Finally, cholesterol sulfate, a minor but important lipid in the stratum corneum, reduces the amount of cholesterol that phase separates in crystalline domains. From these observations it can be concluded that the phase behavior of mixtures prepared from HCER differs in some important aspects from that prepared from pigCER. The most prevalent differences are the following: i) the addition of FFA promotes the formation of the short periodicity phase; and ii) liquid lateral packing is obviously present in CHOL:HCER:FFA mixtures. These changes in phase behavior might be due to a larger amount of linoleic acid moiety in HCER mixtures compared with that in pigCER mixtures.  相似文献   

14.
The lipid lamellae in the stratum corneum (SC) play a key role in the barrier function of the skin. The major lipids are ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA). In pig SC at least six subclasses of ceramides (referred to as CER 1, 2-6) are present. Recently it was shown that in mixtures of isolated pig SC ceramides (referred to as CER(1-6)) and CHOL two lamellar phases are formed, which mimic SC lipid organisation very closely [J.A. Bouwstra et al., 1996, J. Lipid Res. 37, 999-1011] [1]. Since the CER composition in SC originating from different sources/donors often varies, information on the effect of variations in CER composition on the SC lipid organisation is important. The results of the present study with mixtures of CHOL including two different CER mixtures that lack CER 6 (CER(1-5) mixtures) revealed that at an equimolar molar ratio their lipid organisation was similar to that of the equimolar CHOL:CER(1-6) and CHOL:CER(1,2) mixtures, described previously. These observations suggest that at an equimolar CHOL:CER ratio the lipid organisation is remarkably insensitive toward a change in the CER composition. Similar observations have been made with equimolar CHOL:CER:FFA mixtures. The situation is different when the CHOL:CER molar ratio varies. While in the CHOL:CER(1-6) mixture the lamellar organisation hardly changed with varying molar ratio from 0.4 to 2, the lamellar organisation in the CHOL:CER(1-5) mixtures appeared to be more sensitive to a change in the relative CHOL content, especially concerning the changes in the periodicities of the lamellar phases. In summary, these findings clearly indicate that at an equimolar CHOL:CER molar ratio the lamellar organisation is least sensitive to a variation in CER composition, while at a reduced CHOL:CER molar ratio the CER composition plays a more prominent role in the lamellar phases. This observation may have an implication for the in vivo situation when both the CER composition and the CHOL:CER molar ratio change simultaneously.  相似文献   

15.
The superficial layer of the skin, the stratum corneum, is the main barrier for diffusion of substances across the skin. The stratum corneum is composed of corneocytes embedded in lipid lamellae. In previous studies two lamellar phases have been identified with periodicities of 6.4 and 13.4 nm of which the 13.4 nm phase (long periodicity phase = LPP) is considered to be very important for the skin banier function. The main lipid classes in stratumcorneum are ceramides, free fatty acids and cholesterol. Until now 8 subclassesof ceramides are identified in human stratum corneum referred to as ceramide 1 to 8. Studies with mixtures prepared with isolated human ceramides revealed that cholesterol and ceramides are very important for the formation of the lamellar phases. After addition of free fatty acids the lipids are organised in an orthorhombic packing with a small proportion of lipids in a liquid phase. Our most recent results show that the presence of ceramide 1 and the formation of a liquid phase are crucial elements for the formation of the LPP. These observations and the broad-narrowbroad sequence of lipid layers in the LPP led us to propose a molecular model for this phase. This consists of one narrow central lipid layer with fluid domains with on both sides a broad layer with a crystalline structure. This model is referred to as `the sandwich model'.  相似文献   

16.
The barrier function of skin ultimately depends on the physical state and structural organisation of the stratum corneum extracellular lipid matrix. Ceramides, cholesterol and a broad distribution of saturated long-chain free fatty acids dominate the stratum corneum lipid composition. Additionally, smaller amounts of cholesterol sulfate and cholesteryl oleate may be present. A key feature determining skin barrier capacity is thought to be whether or not different lipid domains coexist laterally in the stratum corneum extracellular lipid matrix. In this study, the overall tendency for lipid domain formation in different mixtures of extracted human stratum corneum ceramides, cholesterol, free fatty acids, cholesterol sulfate and cholesteryl oleate were studied using atomic force microscopy (AFM) on Langmuir-Blodgett (LB) films on mica. It is shown that the saturated long-chain free fatty acid distribution of human stratum corneum prevents hydrocarbon chain segregation. Further, LB-films of human stratum corneum ceramides express a pattern of connected elongated domains with a granular domain interface. The dominating effect of both cholesterol and cholesterol sulfate is that of increased ceramide domain dispersion. This effect is counteracted by the presence of free fatty acids, which preferentially mix with ceramides and not with cholesterol. Cholesteryl oleate does not mix with other skin lipid components, supporting the hypothesis of an extra-endogenous origin. In the system composed of endogenous human ceramides and cholesterol plus 15 wt% stratum corneum distributed free fatty acids, i.e., the system mimicking most closely the lipid composition of the stratum corneum extracellular space, LB-films on mica express lateral domain formation.  相似文献   

17.
The lipid matrix in stratum corneum (SC) plays a key role in the barrier function of the mammalian skin. The major lipids are ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA). Especially the unique-structured omega-acylceramide CER[EOS] is regarded to be essential for skin barrier properties by inducing the formation of a long-periodicity phase of 130 angstroms (LPP). In the present study, the arrangement of CER[EOS], either mixed with CER[AP] and CHOL or with CER[AP], CHOL and palmitic acid (PA), inside a SC lipid model membrane has been studied for the first time by neutron diffraction. For a mixed CER[EOS]/CER[AP]/CHOL membrane in a partly dehydrated state, the internal membrane nanostructure, i.e. the neutron scattering length density profile in the direction normal to the surface, was obtained by Fourier synthesis from the experimental diffraction patterns. The membrane repeat distance is equal to that of the formerly used SC lipid model system composed of CER[AP]/CHOL/PA/ChS. By comparing both the neutron scattering length density profiles, a possible arrangement of synthetic long-chain CER[EOS] molecules inside a SC lipid model matrix is suggested. The analysis of the internal membrane nanostructure implies that one CER[EOS] molecule penetrates from one membrane layer into an adjacent layer. A 130 angstroms periodicity phase could not be observed under experimental conditions, either in CER/CHOL mixtures or in CER/CHOL/FFA mixture. CER[EOS] can be arranged inside a phase with a repeat unit of 45.2 angstroms which is predominately formed by short-chain CER[AP] with distinct polarity.  相似文献   

18.
Human stratum corneum (SC) consists of several layers of keratinized corneocytes embedded in a lipid matrix of ordered lamellar structure which is considered to constitute the major barrier to percutaneous penetration. Artificial mixtures of SC lipids are often used as model systems to mimic the skin barrier or to investigate the effects of substances on the phase behaviour of the models. In the present study a SC lipid model composed of cholesterol, fatty acids and ceramides was used to investigate the effect of three different commercially available ceramide types on the microstructure and the physicochemical behaviour of the lipids. Polarized light microscopy, transmission electron microscopy, small-angle X-ray diffraction, wide-angle X-ray diffraction and differential scanning calorimetry (DSC) were used for physicochemical characterization. The results revealed a lamellar structure for all models but showed differences with regard to the thermal and optical behaviour depending obviously on the composition of the ceramide mixtures. A model containing a mixture of Cer[AS] was comparable to human SC lipids.  相似文献   

19.
Dimethyl sulfoxide (DMSO), an efficient transdermal enhancer, is proposed to alter the skin barrier by, at least partially, disturbing the lipid phase of the stratum corneum (SC). We have investigated, using differential scanning calorimetry and vibrational microspectroscopy, the effect of DMSO on the phase behavior of a lipid mixture formed by N-palmitoyl-d-erythro-sphingosine, deuterated palmitic acid, and cholesterol, mimicking the SC lipid phase. Our results reveal that DMSO favors the disordering of the lipid acyl chains. Moreover, the effect of DMSO is strongly concentration dependent and this dependence is reminiscent of that describing the DMSO transdermal enhancement. DMSO-induced fluidification affects primarily the fatty acid in the mixture. Therefore, it is proposed that the molecular mechanism of the transdermal transport enhancement caused by DMSO is associated with its H-bonding properties; its presence alters the interfacial H-bond network involving the fatty acid molecules and consequently the cohesive lipid packing.  相似文献   

20.
The lipid lamellae present in the outermost layer of the skin, the stratum corneum (SC), form the main barrier for diffusion of molecules across the skin. The main lipid classes in SC are cholesterol (CHOL), free fatty acids (FFA) and at least nine classes of ceramides (CER), referred to as CER1 to CER9. In the present study the phase behaviour of four synthetic CER, either single or mixed with CHOL or CHOL and FFA, has been studied using small and wide angle X-ray diffraction. The lipid mixtures showed complex phase behaviour with coexistence of several phases. The results further revealed that the presence of synthetic CER1 as well as a proper composition of the other CER in the mixture were crucial for the formation of a phase with a long periodicity, characteristic for SC lipid phase behaviour. Only a mixture containing synthetic CER1 and CER3, CHOL and FFA showed similar phase behaviour to that of SC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号