首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, thereby partially mimicking human disease. Using this model, we have demonstrated that mice deficient in gammadelta T cells are more susceptible to WN virus infection. TCRdelta(-/-) mice have elevated viral loads and greater dissemination of the pathogen to the CNS. In wild-type mice, gammadelta T cells expanded significantly during WN virus infection, produced IFN-gamma in ex vivo assays, and enhanced perforin expression by splenic T cells. Adoptive transfer of gammadelta T cells to TCRdelta(-/-) mice reduced the susceptibility of these mice to WN virus, and this effect was primarily due to IFN-gamma-producing gammadelta T cells. These data demonstrate a distinct role for gammadelta T cells in the control of and prevention of mortality from murine WN virus infection.  相似文献   

2.
3.
T cell receptors consist either of an alpha-chain combined with a beta-chain or a gamma-chain combined with a delta-chain. alphabeta T cells constitute the majority of T cells in human blood throughout life. Flow cytometric analyses presented in this study, which focus on the representation of the developmental (naive and memory) subsets of gammadelta T cells, show by function and phenotype that this lineage contains both naive and memory cells. In addition, we show that the representation of naive T cells is higher among alphabeta than gammadelta T cells in adults and that the low frequency of naive gammadelta T cells in adults reflects ontological differences between the two major gammadelta subsets, which are distinguished by expression of Vdelta1 vs Vdelta2 delta-chains. Vdelta1 cells, which mirror alphabeta cells with respect to naive representation, predominate during fetal and early life, but represent the minority of gammadelta cells in healthy adults. In contrast, Vdelta2 cells, which constitute the majority of adult gammadelta cells, show lower frequencies of naive cells than Vdelta1 early in life and show vanishingly small naive frequencies in adults. In essence, nearly all naive Vdelta2 cells disappear from blood by 1 year of life. Importantly, even in children less than 1 year old, most of the nonnaive Vdelta2 cells stain for perforin and produce IFN-gamma after short-term in vitro stimulation. This represents the earliest immunological maturation of any lymphocyte compartment in humans and most likely indicates the importance of these cells in controlling pathology due to common environmental challenges.  相似文献   

4.
Richard Boismenu  Wendy L Havran 《Genome biology》2001,2(11):reviews1031.1-reviews10314
Epithelial tissues house γδ T cells, which are important for the mucosal immune system and may be involved in controlling malignancies, infections and inflammation. Whole-genome gene-expression analysis provides a new way to study the signals required for the activation of γδ T cells, their mode of action and relationships among cells of the mucosal immune system.  相似文献   

5.
We have analyzed the requirements for the induction of proliferative responses by thymic CD4-CD8- gamma delta T cells. Enriched populations of CD4-CD8- thymocytes from newborn mice, purified by negative selection with anti-CD4, anti-CD8, and anti-TCR alpha beta mAbs were found to contain approximately 20% gamma delta T cells that were p55IL-2R-. When these cells were cultured with a panel of lymphokines (IL-1, -2, -4, and -7), a small response was observed to some of the cytokines tested individually; however, combinations of certain lymphokines (IL-1 + 2, IL-1 + 7, and IL-2 + 7) were found to induce significant proliferation and the selective outgrowth (75-90%) of gamma delta T cells. These cells were IL-2R+, remained CD4-, yet expressed variable levels of CD8. A limited analysis with specific anti-V gamma and V delta mAb suggested that there had not been a selective expansion of preexisting V gamma 2, V gamma 3, or V delta 4 populations in response to the stimulatory lymphokine combinations. Thymic CD4-CD8- gamma delta T cells were unresponsive to stimulation with immobilized anti-pan gamma delta mAb alone. However, in the presence of immobilized anti-pan gamma delta mAb and IL-1, IL-2, or IL-7, but not IL-4, a vigorous proliferative response was observed. Phenotypic analysis showed that 80 to 95% of the proliferating cells were polyclonally expanded gamma delta T cells, expressed the p55IL-2R, and the majority remained CD4-CD8-. Blocking studies with anti-IL-2R mAb showed that stimulation with anti-pan gamma delta + IL-1, but not anti-pan gamma delta + IL-7 was dependent on endogenously produced IL-2. Collectively, these studies suggest that the activation requirements of newborn thymic gamma delta T cells differ markedly from alpha beta T cells in that gamma delta T cells 1) respond to combinations of cytokines in the absence of TCR cross-linking, 2) can respond to TCR cross-linking in the presence of exogenous cytokines, 3) but are unable to activate endogenous cytokine production solely in the presence of TCR cross-linking.  相似文献   

6.
V gamma 9V delta 2 T cell response to colon carcinoma cells   总被引:7,自引:0,他引:7  
During analysis of CD8 T cells derived from ascites of a colon cancer patient, we isolated a Vgamma9Vdelta2 T cell clone showing strong reactivity against autologous tumor cell lines. This clone killed a large fraction of allogeneic colon carcinoma and melanoma cell lines, but did not affect a normal colon cell line, colon fibroblasts, or melanocytes. Tumor cell recognition was TCR and NKG2D dependent and induced TNF-alpha and IFN-gamma secretion by the clone; accordingly, tumor targets expressed several NKG2D ligands, such as MHC class I chain-related gene A and UL16-binding protein molecules. Colon tumor recognition by Vgamma9Vdelta2 T cells was highly dependent on isopentenyl pyrophosphate production and ICAM-1 expression by target cells. Finally, similar reactivity patterns against colon carcinoma cell lines were observed using polyclonal Vgamma9Vdelta2 T cells of various origins, and Vgamma9Vdelta2 lymphocytes were present in the majority of colon tumor samples studied. Together, these results suggest that Vgamma9Vdelta2 T cells contribute to the natural immune surveillance against colon cancers. Therefore, this study provides a strong rationale for the use of Vgamma9Vdelta2 T cell agonists in immunotherapies targeting colon tumors.  相似文献   

7.
The purpose of this study was to determine whether gamma delta T cells were able to regulate graft-vs-host (GVH) reactivity mediated by alpha beta T cells in murine recipients transplanted with MHC-mismatched marrow grafts. Studies were conducted using ex vivo-activated gamma delta T cells because this was a more clinically relevant strategy, and these cells have been shown to be capable of facilitating alloengraftment without causing GVH disease (GVHD). Coadministration of activated gamma delta T cells and naive alpha beta T cells at the time of bone marrow transplantation (BMT) significantly exacerbated GVHD when compared with naive alpha beta T cells alone. In contrast, when the administration of naive alpha beta T cells was delayed for 2 wk post-BMT, survival was significantly enhanced in mice transplanted with BM plus activated gamma delta T cells vs those given marrow cells alone. Mitigation of GVHD by activated gamma delta T cells occurred only at high doses (150 x 106) and was a unique property of gamma delta T cells, as activated alpha beta T cells were incapable of ameliorating the subsequent development of GVHD. Protection from GVHD was not due to the direct inhibition of naive alpha beta T cells by gamma delta T cells. Rather, gamma delta T cells mediated this effect indirectly through donor BM-derived alpha beta T cells that acted as the proximate regulatory population responsible for the decrease in GVH reactivity. Collectively, these data demonstrate that activated gamma delta T cells are capable of modulating the ability of MHC-incompatible nontolerant alpha beta T cells to cause GVHD after allogeneic BMT.  相似文献   

8.
Thy-1+ dendritic cells isolated from the epidermis of normal mice (dEC)3 bear the gamma delta TCR associated with the CD3 complex. We have analyzed the effects of antibodies directed against the TCR complex, Ly-6C, and Thy-1, as well as pharmacologic agents which have been shown to activate T cells without engagement of the TCR complex, on levels of intracellular free calcium, activation of protein kinase C, cytolysis, IL-2R expression, and secretion of lymphokines by dEC clones. We have found that the dEC cells express a fully functional TCR complex which can function to transmit signals upon perturbation leading to an increase in IL-2R expression, release of lymphokines, and cytolytic activity. These results indicate that the gamma delta TCR+ dEC are capable of responding to activation signals in the same manner as mature alpha beta TCR+ cells and suggests that they may play a functional role in the skin.  相似文献   

9.
Y Yoshikai 《Human cell》1990,3(3):213-219
There have been several lines of evidence that at least significant fraction of gamma delta--T cells are specialized to recognize epitopes on mycobacterial antigens including 65 KD heat shock protein(HSP). Since HSP is known to be highly conserved in amino acid sequences from prokaryotes to eukaryotes, it is possible that the HSP--specific gamma delta--T cells may recognize the endogenous HSP expressed by autologous cells. The broad--reactive gamma delta--T cells may be responsible for protection during the period between an early stage covered mainly by phagocytes and a late stage covered by typical immunities in terms of the time sequence after microbial invasions.  相似文献   

10.
Luteal cells are potent activators of T cell proliferation in vitro. The purpose of this study was to determine which subset of T cells is stimulated by luteal cells and whether luteal cell-induced T cell activation elicits a proinflammatory or anti-inflammatory T cell response. The first objective was to determine if luteal cell-stimulated T cell proliferation was mediated by class I or II major histocompatibility complex (MHC) molecules. T cell proliferation was inhibited by anti-MHC class I but not anti-MHC class II antibodies. The second objective was to determine which T cell subtype proliferates when cultured with luteal cells. The proportions of CD4(+) and CD8(+) cells were unchanged, but the number of gamma delta T cells was increased by coculture with luteal cells. Immunohistochemistry confirmed the presence of gamma delta T cells in midcycle and regressing corpus luteum. The final objective was to characterize T cell cytokine production stimulated by luteal cells. The concentrations of interferon-gamma (IFNG) and interleukin 10 (IL10) were increased in luteal cell-T cell cocultures, whereas IL4 was undetectable, and IL12 was barely detectable in culture medium. It was concluded that coculture of luteal cells and T cells resulted in activation of a somewhat unique T cell subset, gamma delta T cells, as well as production of both pro- and anti-inflammatory cytokines. To our knowledge, this is the first report of gamma delta T cell activation by luteal parenchymal cells of any species, raising the possibility that tissue-resident gamma delta T cells are involved in regulating the balance between tissue homeostasis and luteolysis.  相似文献   

11.
Metastatic renal cell carcinoma, inherently resistant to conventional treatments, is considered immunogenic. Indeed, partial responses are obtained after treatment with cytokines such as IL-2 or IFN-alpha, suggesting that the immune system may control the tumor growth. In this study, we have investigated the ability of the main subset of peripheral gammadelta lymphocytes, the Vgamma9Vdelta2-TCR T lymphocytes, to induce an effective cytotoxic response against autologous primary renal cell carcinoma lines. These gammadelta T cells were expanded ex vivo using a Vgamma9Vdelta2 agonist, a synthetic phosphoantigen called Phosphostim. From 11 of 15 patients, the peripheral Vgamma9Vdelta2 T cells were amplified in vitro by stimulating PBMCs with IL-2 and Phosphostim molecule. These expanded Vgamma9Vdelta2 T cells express activation markers and exhibit an effector/memory phenotype. They display a selective lytic potential toward autologous primary renal tumor cells and not against renal NC. The lytic activity involves the perforin-granzyme pathway and is mainly TCR and NKG2D receptor dependent. Furthermore, an increased expression of MHC class I-related molecule A or B proteins, known ligands of NKG2D, are detected on primary renal tumor cells. Interestingly, from 2 of the 11 positive cultures in response to Phosphostim, expanded-Vgamma9Vdelta2 T cells present an expression of killer cell Ig-like receptors, suggesting their prior recruitment in vivo. Unexpectedly, on serial frozen sections from three tumors, we observe a gammadelta lymphocyte infiltrate that was mainly composed of Vgamma9Vdelta2 T cells. These results outline that Vgamma9Vdelta2-TCR effectors may represent a promising approach for the treatment of metastatic renal cell carcinoma.  相似文献   

12.
Human Vgamma9delta2 T lymphocytes are suggested to play an important role in the immune response to various microbial pathogens. In contrast to alphabeta T cells, gammadelta T lymphocytes recognize small, non-protein, phosphate-bearing antigens (phosphoantigens) in a major histocompatibility complex-independent manner. Four different phosphoantigens termed TUBag1 to TUBag4 with a common 3-formyl-1-butyl-pyrophosphate moiety and isopentenyl-pyrophosphate have been isolated and identified from mycobacteria. However, natural occurring gammadelta T cell ligands from other bacterial species were not characterized so far. Here, we describe the structural identification of the two compounds responsible for the gammadelta T cell-stimulating capacity of Escherichia coli as similar to the mycobacterial phosphoantigens 3-formyl-1-butyl-pyrophosphate and its M(r) 275 homologue TUBag2. In addition, E. coli phosphoantigens exert bioactivities on gammadelta T cells with similar potencies to the mycobacterial phosphoantigens at 5-15 nm concentration. Furthermore, our results clearly prove that the deoxyxylulose 5-phophate pathway (also referred to as Rohmer metabolic route of isoprenoid biosynthesis) is essential for the biosynthesis of the phosphoantigens in E. coli. Because this pathway is absent from human cells, it proves an ideal target for focusing efficiently the antimicrobial selectivity of human gammadelta T lymphocytes.  相似文献   

13.
The Vgamma4(+) pulmonary subset of gammadelta T cells regulates innate airway responsiveness in the absence of alphabeta T cells. We now have examined the same subset in a model of allergic airway disease, OVA-sensitized and challenged mice that exhibit Th2 responses, pulmonary inflammation, and airway hyperreactivity (AHR). In sensitized mice, Vgamma4(+) cells preferentially increased in number following airway challenge. Depletion of Vgamma4(+) cells before the challenge substantially increased AHR in these mice, but had no effect on airway responsiveness in normal, nonchallenged mice. Depletion of Vgamma1(+) cells had no effect on AHR, and depletion of all TCR-delta(+) cells was no more effective than depletion of Vgamma4(+) cells alone. Adoptively transferred pulmonary lymphocytes containing Vgamma4(+) cells inhibited AHR, but lost this ability when Vgamma4(+) cells were depleted, indicating that these cells actively suppress AHR. Eosinophilic infiltration of the lung and airways, or goblet cell hyperplasia, was not affected by depletion of Vgamma4(+) cells, although cytokine-producing alphabeta T cells in the lung increased. These findings establish Vgamma4(+) gammadelta T cells as negative regulators of AHR and show that their regulatory effect bypasses much of the allergic inflammatory response coincident with AHR.  相似文献   

14.
Freshly isolated and resting gamma/delta T cell lines, although capable of lysing a variety of MHC-unrestricted targets, fail to lyse K562. Yet, the killing of K562 can be specifically induced by antibodies to CD3 or delta-chains. Although this phenomenon may be caused by redirected lysis, it also raised the possibility that K562 may possess ligands capable of specifically interacting with the gamma/delta receptor. We found that K562 specifically induced both CD3 and delta modulation as well as IL-2R expression and IL-2 production by gamma/delta cells, supporting the idea that the TCR-gamma/delta is specifically triggered by K562 cells. Moreover, although the gamma/delta cell clones lysed other target cells (e.g., Molt 4, U937, Jurkat etc.), these latter targets did not induce delta modulation or IL-2R expression. In addition, F(ab)2 anti-CD3 antibodies inhibited activated gamma/delta T cells from killing K562 but did not inhibit the lysis of the other targets. Taken together, these results suggest that gamma/delta cells lyse some targets by utilizing receptors (perhaps NK-like) distinct from the gamma/delta receptor. We also found that triggering of the gamma/delta receptor by K562 inhibited the capacity of resting gamma/delta to lyse Molt 4 cells under conditions in which the K562 cells were not lysed. These findings suggest that the gamma/delta receptor maybe directly involved in the lysis of certain targets (i.e., K562) and, importantly, may potentially regulate the function of NK-like receptors that are involved in the lysis of other targets.  相似文献   

15.
The existence of gammadelta T cells has been known for over 15 years, but their significance in innate immunity to virus infections has not been determined. We show here that gammadelta T cells are well suited to provide a rapid response to virus infection and demonstrate their role in innate resistance to vaccinia virus (VV) infection in both normal C57BL/6 and beta TCR knockout (KO) mice. VV-infected mice deficient in gammadelta T cells had significantly higher VV titers early postinfection (PI) and increased mortality when compared with control mice. There was a rapid and profound VV-induced increase in IFN-gamma-producing gammadelta T cells in the peritoneal cavity and spleen of VV-infected mice beginning as early as day 2 PI. This rapid response occurred in the absence of priming, as there was constitutively a significant frequency of VV-specific gammadelta T cells in the spleen in uninfected beta TCR KO mice, as demonstrated by limiting dilution assay. Also, like NK cells, another mediator of innate immunity to viruses, gammadelta T cells in uninfected beta TCR KO mice expressed constitutive cytolytic activity. This cytotoxicity was enhanced and included a broader range of targets after VV infection. VV-infected beta TCR KO mice cleared most of the virus by day 8 PI, the peak of the gammadelta T cell response, but thereafter the gammadelta T cell number declined and the virus recrudesced. Thus, gammadelta T cells can be mediators of innate immunity to viruses, having a significant impact on virus replication early in infection in the presence or absence of the adaptive immune response.  相似文献   

16.
Gammadelta T cells suppress airway hyperresponsiveness (AHR) induced in allergen-challenged mice but it is not clear whether the suppression is allergen specific. The AHR-suppressive cells express TCR-Vgamma4. To test whether the suppressive function must be induced, we adoptively transferred purified Vgamma4(+) cells into gammadelta T cell-deficient and OVA-sensitized and -challenged recipients (B6.TCR-Vgamma4(-/-)/6(-/-)) and measured the effect on AHR. Vgamma4(+) gammadelta T cells isolated from naive donors were not AHR-suppressive, but Vgamma4(+) cells from OVA-stimulated donors suppressed AHR. Suppressive Vgamma4(+) cells could be isolated from lung and spleen. Their induction in the spleen required sensitization and challenge. In the lung, their function was induced by airway challenge alone. Induction of the suppressors was associated with their activation but it did not alter their ability to accumulate in the lung. Vgamma4(+) gammadelta T cells preferentially express Vdelta4 and -5 but their AHR-suppressive function was not dependent on these Vdeltas. Donor sensitization and challenge not only with OVA but also with two unrelated allergens (ragweed and BSA) induced Vgamma4(+) cells capable of suppressing AHR in the OVA-hyperresponsive recipients, but the process of sensitization and challenge alone (adjuvant and saline only) was not sufficient to induce suppressor function, and LPS as a component of the allergen was not essential. We conclude that AHR-suppressive Vgamma4(+) gammadelta T cells require induction. They are induced by allergen stimulation, but AHR suppression by these cells does not require their restimulation with the same allergen.  相似文献   

17.
18.
T cells bearing gamma delta Ag receptors accumulate in the lesions of patients with localized American cutaneous leishmaniasis (LCL), and are thought to be involved in immunity to the parasite. To obtain clues as to the nature of the Ag recognized by these cells, we analyzed the diversity of the TCR delta-chain in LCL lesions. Using mAb against variable (V) encoded determinants with immunoperoxidase, both V delta 1 and V delta 2 subpopulations were identified in the dermal granulomas. However, within the epidermis of LCL lesions, the majority of the gamma delta T cells were V delta 1 positive. PCR analysis of lesion-derived DNA using oligonucleotide primers for V and junctional (J) gene segments revealed preferential usage of J delta 1 in lesions compared with the peripheral blood of these patients. Nucleotide sequence analysis of the V-J junction indicated limited diversity of gamma delta T cells within specific microanatomic regions. In addition, use of a single diversity (D) gene segment, D delta 3, in V delta 2 cells in lesions was observed, as opposed to multiple D delta gene segment usage in the blood of the same individuals. The distribution, gene segment usage and clonality of gamma delta T cells in lesions of leishmaniasis was remarkably similar to that observed in leprosy. Therefore, gamma delta T cells responding to infection may recognize a limited set of nominal Ag, perhaps common to distinct pathogens and/or those expressed by the host. Our findings are most consistent with a model in which specific gamma delta T cells are clonally selected by these Ag in lesions and undergo oligoclonal expansion within a microanatomic region.  相似文献   

19.
Peripheral blood TCR-gamma delta cells with different functional V gamma or V delta gene rearrangements represent two nonoverlapping subsets. The major subset uses the V gamma 9 and the V delta 2 gene segments and the minor subset the V delta 1 gene segments in its functional TCR rearrangement. Upon in vitro activation, these TCR-gamma delta lymphocytes display MHC-unrestricted lytic activity, against a wide variety of tumor cells of distinct histologic origin. Here we show that fresh TCR-gamma delta lymphocytes that express a V gamma 9-V delta 2 encoded TCR display a specific proliferative response to Daudi, Burkitt's lymphoma cells. Moreover, cloned V gamma 9-V delta 2 lymphocytes show the capacity to lyse Daudi cells, whereas none of the cloned V gamma 1 TCR-gamma delta lymphocytes shows such specificity. Nucleotide diversity at the V-D-J junction of the TCR-V delta 2 gene did not contribute to this Daudi cell specificity. Comparison of the MHC-unrestricted cytolytic capacities of the V gamma 9-V delta 2 and the V delta 1 clones using a panel of distinct types of tumor target cells showed that on average, the level of MHC unrestricted lysis of V gamma 9-V delta 2 clones against these tumor cells exceeded that of V delta 1 clones. However, in contrast to all these tumor cell lines, only the Daudi cells showed such an absolute distinction in susceptibility to lysis by V gamma 9-V delta 2 and V delta 1 clones. V gamma 9-V delta 2 clones that were generated with a stimulator cell other than Daudi did not lyse their stimulator cells but nevertheless showed specific cytolysis of Daudi cells. The specific proliferation to and cytolysis of Daudi cells of the entire V gamma 9-V delta 2 subpopulation of TCR-gamma delta lymphocytes is reminiscent of a superantigen response.  相似文献   

20.
Gammadelta T lymphocytes play an important role in the immune defense against infection, based on the unique reactivity of human Vdelta2Vgamma9 gammadelta T cells toward bacterial phosphoantigens. Chemokines and their corresponding receptors orchestrate numerous cellular reactions, including leukocyte migration, activation, and degranulation. In this study we investigated the expression of various receptors for inflammatory and homeostatic chemokines on peripheral blood gammadelta T cells and compared their expression patterns with those on alphabeta T cells. Although several of the analyzed receptors (including CCR6, CCR7, CXCR4, and CXCR5) were not differentially expressed on gammadelta vs alphabeta T cells, gammadelta T cells expressed strongly increased levels of the RANTES/macrophage inflammatory protein-1alpha/-1beta receptor CCR5 and also enhanced levels of CCR1-3 and CXCR1-3. CCR5 expression was restricted to Vdelta2 gammadelta T cells, while the minor subset of Vdelta1 gammadelta T cells preferentially expressed CXCR1. Stimulation with heat-killed extracts of Mycobacterium tuberculosis down-modulated cell surface expression of CCR5 on gammadelta T cells in a macrophage-dependent manner, while synthetic phosphoantigen isopentenyl pyrophosphate and CCR5 ligands directly triggered CCR5 down-modulation on gammadelta T cells. The functionality of chemokine receptors CCR5 and CXCR3 on gammadelta T cells was demonstrated by Ca(2+) mobilization and chemotactic response to the respective chemokines. Our results identify high level expression of CCR5 as a characteristic and selective feature of circulating Vdelta2 gammadelta T cells, which is in line with their suspected function as Th1 effector T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号