共查询到20条相似文献,搜索用时 0 毫秒
1.
Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis 总被引:3,自引:0,他引:3 下载免费PDF全文
The Arabidopsis cell wall-associated kinase (WAK) and WAK-like kinase (WAKL) family of receptor-like kinase genes encodes transmembrane proteins with a cytoplasmic serine/threonine kinase domain and an extracellular region containing epidermal growth factor-like repeats. Previous studies have suggested that some WAK members are involved in plant defense and heavy metal responses, whereas others are required for cell elongation and plant development. The WAK/WAKL gene family consists of 26 members in Arabidopsis and can be divided into four groups. Here, we describe the characterization of group 2 members that are composed of a cluster of seven tandemly arrayed WAKL genes. The predicted WAKL proteins are highly similar in their cytoplasmic region but are more divergent in their predicted extracellular ligand-binding region. WAKL7 encodes a truncated WAKL isoform that is predicted to be secreted from the cytoplasm. Ratios of nonsynonymous to synonymous substitutions suggest that the extracellular region is subject to diversifying selection. Comparison of the WAKL and WAK gene clusters suggests that they arose independently. Protein gel-blot and immunolocalization analyses suggest that WAKL6 is associated with the cell wall. Histochemical analyses of WAKL promoters fused with the beta-glucuronidase reporter gene have shown that the expressions of WAKL members are developmentally regulated and tissue specific. Unlike WAK members whose expressions were found predominately in green tissues, WAKL genes are highly expressed in roots and flowers. The expression of WAKL5 and WAKL7 can be induced by wounding stress and by the salicylic acid analog 2,6-dichloroisonicotinic acid in an nonexpressor of pathogenesis-related gene 1-dependent manner, suggesting that they, like some WAK members, are wound inducible and can be defined as pathogenesis-related genes. 相似文献
2.
Tandemly arrayed genes (TAGs) play an important functional and physiological role in the genome. Most previous studies have focused on individual TAG families in a few species, yet a broad characterization of TAGs is not available. Here we identified all TAGs in the genomes of humans, mouse, and rat and performed a comprehensive analysis of TAG distribution, TAG sizes, TAG orientations and intergenic distances, and TAG functions. TAGs account for about 14-17% of all genes in the genome and nearly one-third of all duplicated genes, highlighting the predominant role that tandem duplication plays in gene duplication. For all species, TAG distribution is highly heterogeneous along chromosomes and some chromosomes are enriched with TAG forests, whereas others are enriched with TAG deserts. The majority of TAGs are of size 2 for all genomes, similar to the previous findings in Caenorhabditis elegans, Arabidopsis thaliana, and Oryza sativa, suggesting that it is a rather general phenomenon in eukaryotes. The comparison with the genome patterns shows that TAG members have a significantly higher proportion of parallel gene orientation in all species, corroborating Graham's claim that parallel orientation is the preferred form of orientation in TAGs. Moreover, TAG members with parallel orientation tend to be closer to each other than all neighboring genes in the genome with parallel orientation. The analyses of Gene Ontology function indicate that genes with receptor or binding activities are significantly overrepresented by TAGs. Computer simulation reveals that random gene rearrangements have little effect on the statistics of TAGs for all genomes. Finally, the average proportion of TAGs shows a trend of increase with the increase of family sizes, although the correlation between TAG proportions in individual families and family sizes is not significant. 相似文献
3.
4.
5.
Extended comparison of gene sequences found on homeologous soybean Bacterial Artificial Chromosomes to Medicago truncatula and Arabidopsis thaliana genomic sequences demonstrated a network of synteny within conserved regions interrupted by gene addition and/or deletions. Consolidation of gene order among all 3 species provides a picture of ancestral gene order. The observation supports a genome history of fractionation resulting from gene loss/addition and rearrangement. In all 3 species, clusters of N-hydroxycinnamoyl/benzoyltransferase genes were identified in tandemly duplicated clusters. Parsimony-based gene trees suggest that the genes within the arrays have independently undergone tandem duplication in each species. 相似文献
6.
Multigene families are features of most eukaryotic genomes, which evolve through a variety of mechanisms. This study describes
the structure, expression, and evolution of a novel family in the oomycete Phytophthora. In the heterothallic species P. infestans, M96 is expressed specifically during sexual sporogenesis, and encodes a low-complexity extracellular protein that may be a component
of oospore walls. Intriguingly, M96 exists in P. infestans as 22 relatively homogeneous loci tandemly repeated at a single site, which is partitioned by inversions and retroelements
into subclusters exhibiting semi-independent evolution. M96 relatives were detected in other heterothallic and homothallic oomycetes including species closely (P. mirabilis, P. phaseoli) or distantly (P. ramorum, P. sojae) related to P. infestans. Those M96 relatives also exhibit oosporogenesis-specific expression and are arrayed multigene families. Nucleotide changes and repeat
expansion diversify M96 in each species, however, paralogues are more related than orthologues. Concerted evolution through gene conversion and not
strong purifying selection appears to be the major contributor to intraspecific homogenization. Divergence and concerted evolution
was also detected between isolates of P. infestans. The divergence of M96 proteins between P. infestans, P. ramorum, and P. sojae exceeds that of typical proteins, reflecting trends in reproductive proteins from other kingdoms.
Sequence data from this article have been deposited with the GenBank Data Libraries under accessions DQ196155 to DQ196175. 相似文献
7.
Striking similarities between the regulatory mechanisms governing yeast mating-type genes and mammalian major histocompatibility complex genes. 下载免费PDF全文
Expression of a mammalian major histocompatibility complex (MHC) class I gene is in part regulated by a silencer DNA sequence element which binds a complex of silencer factors. This negative regulatory system is shown to be strikingly similar to the yeast alpha 2 mating-type repression system. A moderate DNA sequence homology exists between the MHC class I silencer DNA element and the yeast alpha 2 operator. Mammalian silencer factors specifically bind to the yeast alpha 2 operator DNA and also specifically interact with a yeast alpha 2-binding protein. Furthermore, the alpha 2 operator functions as a silencer element in mammalian cells when placed upstream of a MHC class I promoter. 相似文献
8.
9.
Background
Simple sequence repeats (SSRs) in DNA have been traditionally thought of as functionally unimportant and have been studied mainly as genetic markers. A recent handful of studies have shown, however, that SSRs in different positions of a gene can play important roles in determining protein function, genetic development, and regulation of gene expression. We have performed a detailed comparative study of the distribution of SSRs in the sequenced genomes of Arabidopsis thaliana and rice. 相似文献10.
J. Maluszynska J.S. Heslop-Harrison 《The Plant journal : for cell and molecular biology》1991,1(2):159-166
In-situ hybridization to interphase nuclei and chromosomes of Arabidopsis thaliana (2n= 10) shows that there are four sites of rDNA in a diploid nucleus. The sites are located on chromosomes 2 and 4, and the strength of hybridization indicates that copy number is similar at both pairs of sites. Hybridization to trisomic line 4 revealed five hybridization sites. Silver staining of nucleoli demonstrates that all four loci can be active in diploid interphase nuclei. The tandemly repeated probe pAL1 hybridizes near to the centromeres of all five chromosome pairs. In diploid interphase nuclei, 10 sites of hybridization are detected, while 15 are seen in triploid nuclei. The sites of hybridization co-localize with the centromeric heterochromatin visualized by staining DNA with the fluorochrome DAPI. The results demonstrate that molecular cytogenetics can be applied to A. thaliana and high resolution physical chromosome maps can be generated. Both probes may be useful for interphase cytogenetics, where they enable chromosome number and aneuploidy to be examined in tissues without divisions. The physical localization of these hybridization sites provides a starting point for linking RFLP and physical chromosome maps. 相似文献
11.
From a recombinant DNA-library from Crocus vernus, two closely related clones of highly repetitive DNA, pCvKB7 and pCvKB8, were sequenced and their genomic distribution and organization were investigated by Southern and in situ hybridization. The lengths of the clones were 181 and 178 bp respectively; the sequences were approximately 85% identical, and thus belonged to a sequence family, named the pCvKB8-family. No homologous sequences were found in the databases (BLAST made may 2004). The presence of pCvKB8 in 52 Crocus species and six species from other genera were analyzed by Southern hybridization. The sequence family was essentially Crocus-specific. However, the distribution of hybridization signal across the genus showed poor agreement with the taxonomic structure of the Crocus genus, suggesting that the subdivision does not follow the phylogeny of this sequence family. The chromosomal distribution on three Crocus species was essentially identical: tandem organization close to all telomeres and most centromeres, with a few additional intercalary sites. 相似文献
12.
We present a novel approach to deal with the problem of reconstructing the duplication history of tandemly repeated genes that are supposed to have arisen from unequal recombination. We first describe the mathematical model of evolution by tandem duplication and introduce duplication histories and duplication trees. We then provide a simple recursive algorithm which determines whether or not a given rooted phylogeny can be a duplication history and another algorithm that simulates the unequal recombination process and searches for the best duplication trees according to the maximum parsimony criterion. We use real data sets of human immunoglobulins and T-cell receptors to validate our methods and algorithms. Identity between most parsimonious duplication trees and most parsimonious phylogenies for the same data, combined with the agreement with additional knowledge about the sequences, such as the presence of polymorphisms, shows strong evidence that our reconstruction procedure provides good insights into the duplication histories of these loci. 相似文献
13.
14.
15.
16.
17.
Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants 总被引:1,自引:0,他引:1
Extrachromosomal circular DNA (eccDNA) is one characteristic of the plasticity of the eukaryotic genome. It was found in various non-plant organisms from yeast to humans. EccDNA is heterogeneous in size and contains sequences derived primarily from repetitive chromosomal DNA. Here, we report the occurrence of eccDNA in small and large genome plant species, as identified using two-dimensional gel electrophoresis. We show that eccDNA is readily detected in both Arabidopsis thaliana and Brachycome dichromosomatica , reflecting a normal phenomenon that occurs in wild-type plants. The size of plant eccDNA ranges from > 2 kb to < 20 kb, which is similar to the sizes found in other organisms. These DNA molecules correspond to 5S ribosomal DNA (rDNA), non-coding chromosomal high-copy tandem repeats and telomeric DNA of both species. Circular multimers of the repeating unit of 5S rDNA were identified in both species. In addition, similar multimers were also demonstrated with the B. dichromosomatica repetitive element Bdm29. Such circular multimers of tandem repeats were found in animal models, suggesting a common mechanism for eccDNA formation among eukaryotes. This mechanism may involve looping-out via intrachromosomal homologous recombination. The implications of these results on genome plasticity and evolutionary processes are discussed. 相似文献
18.
19.
Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis 总被引:15,自引:0,他引:15
Huge advances in plant biology are possible now that we have the complete genome sequences of several flowering plants. Now, genomes can be comprehensively compared and map-based cloning can be performed more easily. Association study is emerging as a powerful method for the functional identification of genes and molecular genetics has begun to reveal the basis of plant diversity. Taking the flowering pathways as an example, we discuss the potential of several approaches to comparative biology. 相似文献
20.
GAs are plant hormones that play fundamental roles in plant growth and development. GA2ox, GA3ox, and GA20ox are three key enzymes in GA biosynthesis. These enzymes belong to the 2OG-Fe (II) oxygenase superfamily and are independently encoded by different gene families. To date, genome-wide comparative analyses of GA oxidases in plant species have not been thoroughly carried out. In the present work, 61 GA oxidase family genes from rice (Oryza sativa), Arabidopsis, and soybean (Glycine max) were identified and a full study of these genes including phylogenetic tree construction, gene structure, gene family expansion and analysis of functional motifs was performed. Based on phylogeny, most of the GA oxidases were divided into four subgroups that reflected functional classifications. Intron/intron average length of GA oxidase genes in rice analysis revealed that GA oxidase genes in rice experienced substantial evolutionary divergence. Segmental duplication events were mainly found in soybean genome. However, in rice and Arabidopsis, no single expansion pattern exhibited dominance, indicating that GA oxidase genes from these species might have been subjected to a more complex evolutionary mechanism. In addition, special functional motifs were discovered in GA20ox, GA3ox, and GA2ox, which suggested that different functional motifs are associated with differences in protein function. Taken together our results suggest that GA oxidase family genes have undergone divergent evolutionary routes, especially at the monocot-dicot split, with dynamic evolution occurring in Arabidopsis thaliana and soybean. 相似文献