首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: BACKGROUND: Genomic imprinting refers to parent-of-origin dependent gene expression caused by differential DNA methylation of the paternally and maternally derived alleles. Imprinting is increasingly recognized as an important source of variation in complex traits, however, its role in explaining variation in muscle and physiological traits, especially those of commercial value, is largely unknown compared with genetic effects. RESULTS: We investigated both genetic and genomic imprinting effects on key muscle traits in mice from the Berlin Muscle Mouse population, a key model system to study muscle traits. Using a genome scan, we first identified loci with either imprinting or genetic effects on phenotypic variation. Next, we established the proportion of phenotypic variation explained by additive, dominance and imprinted QTL and characterized the patterns of effects. In total, we identified nine QTL, two of which show large imprinting effects on glycogen content and potential, and body weight. Surprisingly, all imprinting patterns were of the bipolar type, in which the two heterozygotes are different from each other but the homozygotes are not. Most QTL had pleiotropic effects and explained up to 40% of phenotypic variance, with individual imprinted loci accounting for 4-5% of variation alone. CONCLUSION: Surprisingly, variation in glycogen content and potential was only modulated by imprinting effects. Further, in contrast to general assumptions, our results show that genomic imprinting can impact physiological traits measured at adult stages and that the expression does not have to follow the patterns of paternal or maternal expression commonly ascribed to imprinting effects.  相似文献   

2.
Analysis of genetic effects on nutrient quality traits in indica rice   总被引:7,自引:0,他引:7  
Nine cytoplasmic male-sterile lines and five restorer lines were used in an incomplete diallel cross to analyze seed effects, cytoplasmic effects, and maternal gene effects on nutrient quality traits of indica rice (Oryza sauva L.). The results indicated that nutrient quality traits were controlled by cytoplasmic and maternal effects as well as by seed direct effects. Maternal effects for lysine content (LC), lysine index (LI), and the ratio of lysine content to protein content (RLP) were more important than seed direct effects, while protein content (PC) and protein index (PI) were mainly affected by seed direct effects. Cytoplasmic effects accounted for 2.41–20.80% of the total genetic variation and were significant for all nutrient quality traits. Additive genetic effects were much more important than dominance effects for all of the traits studied, so that selection could be applied for these traits in early generations.  相似文献   

3.
Polygenic effects and genetic changes affecting quantitative traits   总被引:1,自引:0,他引:1  
C Ramel 《Mutation research》1983,114(1):107-116
  相似文献   

4.
Plant–insect interactions are ubiquitous, and have been studied intensely because of their relevance to damage and pollination in agricultural plants, and to the ecology and evolution of biodiversity. Variation within species can affect the outcome of these interactions. Specific genes and chemicals that mediate these interactions have been identified, but genome‐ or metabolome‐scale studies might be necessary to better understand the ecological and evolutionary consequences of intraspecific variation for plant–insect interactions. Here, we present such a study. Specifically, we assess the consequences of genome‐wide genetic variation in the model plant Medicago truncatula for Lycaeides melissa caterpillar growth and survival (larval performance). Using a rearing experiment and a whole‐genome SNP data set (>5 million SNPs), we found that polygenic variation in M. truncatula explains 9%–41% of the observed variation in caterpillar growth and survival. Genetic correlations among caterpillar performance and other plant traits, including structural defences and some anonymous chemical features, suggest that multiple M. truncatula alleles have pleiotropic effects on plant traits and caterpillar performance (or that substantial linkage disequilibrium exists among distinct loci affecting subsets of these traits). A moderate proportion of the genetic effect of M. truncatula alleles on L. melissa performance can be explained by the effect of these alleles on the plant traits we measured, especially leaf toughness. Taken together, our results show that intraspecific genetic variation in M. truncatula has a substantial effect on the successful development of L. melissa caterpillars (i.e., on a plant–insect interaction), and further point toward traits potentially mediating this genetic effect.  相似文献   

5.
In order to assess the relative importance of genomic imprinting for the genetic variation of traits economically relevant for pork production, a data set containing 21 209 records from Large White pigs was analysed. A total of 33 traits for growth, carcass composition and meat quality were investigated. All traits were recorded between 1997 and 2006 at a test station in Switzerland and the pedigree included 15 747 ancestors. A model with two genetic effects for each animal was applied: the first corresponds to a paternal and the second to a maternal expression pattern of imprinted genes. The imprinting variance was estimated as the sum of both corresponding genetic variances per animal minus twice the covariance. The null hypothesis of no imprinting was tested by a restricted maximum likelihood ratio test with two degrees of freedom. Genomic imprinting significantly contributed to the genetic variance of 19 traits. The proportion of the total additive genetic variance that could be attributed to genomic imprinting was of the order between 5% and 19%.  相似文献   

6.
Various factors (pollen diameter, in vitro germination and tube length, in vivo growth rate in selfed and nonselfed styles) which could possibly contribute to the competitive ability of pollen were investigated on 30 Zea mays L. inbred lines. The only factor with which pollen diameter was positively correlated was in vitro pollen-tube growth. Traits related to the early stages of growth (in vitro germination, in vitro tube length, early in vivo pollen growth rate) were all positively correlated with each other, and these early characteristics were negatively correlated with late in vivo tube growth rate, which is largely influenced by the stylar genotype.  相似文献   

7.
The indirect genetic effects of fathers on the expression and evolution of female reproductive traits in the wild is not well understood. In a wild population of great tits (Parus major), Evans et al. estimated the genetic and nongenetic effects of male mates on two female reproductive traits, lay date and clutch size. The estimated heritability of lay date (but not of clutch size) was increased by 1.5 times after accounting for male indirect genetic effects. This finding illustrates the importance of considering the effects of social partners in classic quantitative genetic models.  相似文献   

8.
Pigs are housed in groups during the test period. Social effects between pen mates may affect average daily gain (ADG), backfat thickness (BF), feed conversion rate (FCR), and the feeding behaviour traits of pigs sharing the same pen. The aim of our study was to estimate the genetic parameters of feeding behaviour and production traits with statistical models that include social genetic effects (SGEs). The data contained 3075 Finnish Yorkshire, 3351 Finnish Landrace, and 968 F1-crossbred pigs. Feeding behaviour traits were measured as the number of visits per day (NVD), time spent in feeding per day (TPD), daily feed intake (DFI), time spent in feeding per visit (TPV), feed intake per visit (FPV), and feed intake rate (FR). The test period was divided into five periods of 20 days. The number of pigs per pen varied from 8 to 12. Two model approaches were tested, i.e. a fixed group size model and a variable group size model. For the fixed group size model, eight random pigs per pen were included in the analysis, while all pigs in a pen were included for the variable group size model. The linear mixed-effects model included sex, breed, and herd*year*season as fixed effects and group (batch*pen), litter, the animal itself (direct genetic effect (DGE)), and pen mates (SGEs) as random effects. For feeding behaviour traits, estimates of the total heritable variation (T2 ± SE) and classical heritability (h2 ± SE, values given in brackets) from the variable group size model (e.g. period 1) were 0.34 ± 0.13 (0.30 ± 0.04) for NVD, 0.41 ± 0.10 (0.37 ± 0.04) for TPD, 0.40 ± 0.15 (0.14 ± 0.03) for DFI, 0.53 ± 0.15 (0.28 ± 0.04) for TPV, 0.66 ± 0.17 (0.28 ± 0.04) for FPV, and 0.29 ± 0.13 (0.22 ± 0.03) for FR. The effect of social interaction was minimal for ADG (T2 = 0.29 ± 0.11 and h2 = 0.29 ± 0.04), BF (T2 = 0.48 ± 0.12 and h2 = 0.38 ± 0.07), and FCR (T2 = 0.37 ± 0.12 and h2 = 0.29 ± 0.04) using the variable group size model. In conclusion, the results indicate that social interactions have a considerable indirect genetic effect on the feeding behaviour and FCR of pigs but not on ADG and BF.  相似文献   

9.
朱智  吴登俊  徐宁迎 《遗传》2007,29(5):593-598
以180只3个品系的温岭草鸡为材料, 采用PCR-RFLP方法对鸡MSTN基因外显子1的2个多态位点进行研究, 并分析对屠体性状的遗传效应。Bsh1236Ⅰ识别G(2100)A突变, 产生MN和NN 2种基因型, MspⅠ识别G(2109)A突变, 产生AA、AB和BB 3种基因型, 联合2个位点分析出现了5种基因型。基因型频率在品系间的c2检验表明差异均不显著(P>0.05)。方差分析显示不同基因型的屠宰率有显著或极显著的差异(P<0.01或P<0.05)。多重比较显示:杂合型MN的腹脂重和屠宰率显著(P<0.05)高于突变型NN; 杂合型AB的胸肌重和胸肌率显著(P<0.01或P<0.05 )高于基因型AA, 基因型AA的腹脂重和腹脂率都极显著(P<0.01)高于突变型BB, 在腿肌重性状上, BB型显著(P<0.05)低于AA型和AB型;2个位点联合分析时, NA/MA基因型的腹脂重、腹脂率和胸肌率均极显著(P<0.01)高于或低于其他基因型。  相似文献   

10.
Summary A model for the effects of single gene (SG), polygenes (PG) and their interaction on quantitative traits was developed. It is a mixed model where the SG is a fixed effect and the PG is a random effect. A two-way factorial experiment, in which the SG and the PG are the main effects, is proposed. The experimental material is comprised of F3 families derived from F2 plants heterozygous for the SG. For this experiment an ANOVA table with expected mean square is proposed, which facilitates estimation of the components of the model and testing of their significance. A detailed method for the interpretation of results from such an experiment is proposed, with emphasis on the analysis of the SG × PG interaction. Theoretical and applied aspects of SG × PG interaction is discussed.This paper is part of a Ph.D. Thesis of the senior author to be submitted to the Hebrew University of Jerusalem  相似文献   

11.
Genetic parameters for survival, reproduction and production traits were estimated for a sire and dam line, originating from one Large White breed separated more than 25 years ago. The change in parameters due to different selection pressure on reproduction and production traits in both lines was also examined. Data collected between 1990 and 2007 were available for the analysis of reproduction traits in 4713 litters (sire line) and 14836 litters (dam line) and for the production traits in 58329 pigs (sire line) and 108912 pigs (dam line). Genetic parameters were estimated using a Bayesian approach. Average phenotypic differences between lines were substantial with 1.5 more piglets born in the dam line and 1.7 mm less backfat thickness (BF) in the sire line. Based on a multiple trait analysis which included both reproduction and production traits, heritabilities for survival and litter size traits in the sire (or dam) line were estimated at 0.03 ± 0.01 (0.06 ± 0.01) for percentage of stillborn piglets (SB), 0.10 ± 0.03 (0.11 ± 0.01) for total number of piglets born (NBT) and 0.09 ± 0.03 (0.09 ± 0.01) for number of piglets born alive. Heritabilities for production traits were estimated at 0.29 ± 0.01 (0.29 ± 0.01) for average daily gain, 0.50 ± 0.01 (0.42 ± 0.01) for BF and 0.41 ± 0.01 for muscle depth. Selection pressure on litter size in the dam line resulted in a slightly unfavourable correlation for SB-NBT (0.21 ± 0.11), which was only marginally unfavourable in the sire line (0.06 ± 0.24). Selection pressure on BF in the sire line may have resulted in the moderately undesirable correlation with SB (-0.46 ± 0.15), which was not significant in the dam line (-0.08 ± 0.06). Changing the base population in the dam line to animals born since the year 2000 indicated that selection pressure on different traits has altered the heritabilities and correlations of the traits within the line. The undesirable correlations between survival at birth and reproduction traits or production traits were low so that simultaneous improvement of all traits can be achieved. Heritabilities for survival at birth and reproduction traits were low, but genetic variation was substantial and extensive pedigree information can be used to improve the accuracy of breeding values, so that genetic improvement is expected to be efficient.  相似文献   

12.
A genetic model was proposed to simultaneously investigate genetic effects of both polygenes and several single genes for quantitative traits of diploid plants and animals. Mixed linear model approaches were employed for statistical analysis. Based on two mating designs, a full diallel cross and a modified diallel cross including F2, Monte Carlo simulations were conducted to evaluate the unbiasedness and efficiency of the estimation of generalized least squares (GLS) and ordinary least squares (OLS) for fixed effects and of minimum norm quadratic unbiased estimation (MINQUE) and Henderson III for variance components. Estimates of MINQUE (1) were unbiased and efficient in both reduced and full genetic models. Henderson III could have a large bias when used to analyze the full genetic model. Simulation results also showed that GLS and OLS were good methods to estimate fixed effects in the genetic models. Data on Drosophila melanogaster from Gilbert were used as a worked example to demonstrate the parameter estimation. Received: 11 November 2000 / Accepted: 2 May 2001  相似文献   

13.
Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.  相似文献   

14.
Simulations were used to study the influence of model adequacy and data structure on the estimation of genetic parameters for traits governed by direct and maternal effects. To test model adequacy, several data sets were simulated according to different underlying genetic assumptions and analysed by comparing the correct and incorrect models. Results showed that omission of one of the random effects leads to an incorrect decomposition of the other components. If maternal genetic effects exist but are neglected, direct heritability is overestimated, and sometimes more than double. The bias depends on the value of the genetic correlation between direct and maternal effects. To study the influence of data structure on the estimation of genetic parameters, several populations were simulated, with different degrees of known paternity and different levels of genetic connectedness between flocks. Results showed that the lack of connectedness affects estimates when flocks have different genetic means because no distinction can be made between genetic and environmental differences between flocks. In this case, direct and maternal heritabilities are under-estimated, whereas maternal environmental effects are overestimated. The insufficiency of pedigree leads to biased estimates of genetic parameters.  相似文献   

15.
Asimple model system of two self-reproducing objects is considered. A set of equations, similar to Eigen's equation, describing competition of these objects is derived and analyzed under the effect of an ‘ecological constraint’. The relation with other constraints used in the literature is discussed.  相似文献   

16.
In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A.  相似文献   

17.
Performance and feeding behaviour traits in growing pigs could be affected by social interaction effects when animals are raised in group. So, properly knowing the genetic correlations between direct and social interaction effects among performance and feeding behaviour traits could improve the accuracy of the genetic evaluations. Our aim was to explore the role of feeding behaviour traits (FBT) and indirect genetic effects (IGEs) in the genetic evaluations of growing pigs. Thus, genetic parameters were estimated for production traits (PT): average daily gain, average daily feed consumption, feed conversion ratio and backfat thickness; as well as for FBT: average daily feeding rate, average daily feeding frequency, average daily occupation time and average daily time between consecutive visits. Traits were recorded in 1144 Duroc pigs during the fattening period. Two bivariate models were fitted: classic animal model and an animal model fitting IGE. Estimations were done following Bayesian procedures. Heritability estimates obtained with classic animal model for all studied traits were medium-high. The additional heritable variation captured by IGE supposed that the ratios of total genetic variance to phenotypic variance (T2) were higher than the heritability estimates obtained with the classic model, except for occupation time trait, when a lower value (0.20 ± 0.19) was estimated. This is due to a high and negative correlation between IGE and direct genetic effects (DGEs) of this particular trait (−0.78 ± 0.27). Results from classic animal model do not evidence a clear role of FBT to improve the accuracy of breeding value predictions for PT; only average daily feeding rate seems to show a positive correlation (around 0.50 to 0.60) with average daily gain, average daily feed consumption and backfat thickness. However, when IGE model was fitted, the number of estimates of genetic correlations between FBT and PT showing a relevant magnitude increased, generally for the correlations between IGE of FBT and DGE of PT; or particularly for the correlations between IGE of average daily feeding frequency, and the IGE of all the PT, except average daily gain. Thus, in evaluations using the animal model with IGE fitted, the inclusion of FBT could aid the improvement of the accuracy of breeding value predictions for PT. This is a consequence of the improved genetic relationships between traits that can be fitted when considering such models.  相似文献   

18.
Genetic prediction for complex traits is usually based on models including individual (infinitesimal) or marker effects. Here, we concentrate on models including both the individual and the marker effects. In particular, we develop a “Mendelian segregation” model combining infinitesimal effects for base individuals and realized Mendelian sampling in descendants described by the available DNA data. The model is illustrated with an example and the analyses of a public simulated data file. Further, the potential contribution of such models is assessed by simulation. Accuracy, measured as the correlation between true (simulated) and predicted genetic values, was similar for all models compared under different genetic backgrounds. As expected, the segregation model is worthwhile when markers capture a low fraction of total genetic variance.  相似文献   

19.
选取5份云南地方香型软米水稻种质资源和6份自育香型软米保持系按5×6不完全双列杂交设计(NCⅡ)配制成30个组合,采用加性-显性-上位性遗传模型,分析云南香型软米11个农艺性状的遗传效应。结果表明,云南香型软米多数农艺性状的遗传主要受加×加上位性效应、加性×环境效应、显性×环境效应的影响,还存在不同程度的加性效应和显性效应,单株产量受基因加性效应、显性效应、加×加上位性效应、加性×环境效应、显性×环境效应的影响;株高、有效穗的遗传率以普通狭义遗传率为主,其他性状的普通狭义遗传率和互作狭义遗传率均达极显著水平;产量构成性状之间存在不同类型和不同程度的遗传相关,多数性状之间以加×加上位性、加性×环境和显性×环境互作效应显著。  相似文献   

20.
A genetic analysis of cell culture traits in tomato   总被引:6,自引:0,他引:6  
Summary Tomato genotypes superior in regenerating plants from protoplast and callus cultures were obtained by transferring regeneration capacity from Lycopersicon peruvianum into L. esculentum by classical breeding. The genetics of regeneration and callus growth have been studied in selfed and backcross progenies of a selected plant (MsK93) which has 25% L. peruvianum in its ancestry. Segregation data showed that the favourable cell culture traits of L. peruvianum are dominant. Regeneration capacity from established callus cultures was controlled by two dominant genes. Callus growth on primary expiants, callus growth of established cultures and shoot regeneration from explants had high heritabilities (0.47, 0.78, 0.87, respectively). Callus growth and regeneration capacity were not correlated within the populations studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号