首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The X-ray crystal structures of oxidized and reduced plastocyanin obtained from the fern Dryopteris crassirhizoma have been determined at 1.7 and 1.8 A resolution, respectively. The fern plastocyanin is unique in the longer main chain composed of 102 amino acid residues and in the unusual pH dependence due to the pi-pi stacking interaction around the copper site [Kohzuma, T., et al. (1999) J. Biol. Chem. 274, 11817-11823]. Here we report the structural comparison between the fern plastocyanin and other plastocyanins from cyanobacteria, green algae, and other higher plants, together with the structural changes of fern plastocyanin upon reduction. Glu59 hydrogen bonds to the OH of Tyr83, which is thought to be a possible conduit for electrons, in the oxidized state. However, it moves away from Tyr83 upon reduction like poplar plastocyanin.  相似文献   

2.
The reaction of plastocyanin with tetranitromethane results in the nitration of only one of the three tyrosyl residues present in the protein. The modification does not affect the blue copper chromophore as both the characteristic visible spectrum of the chromophore and the redox potential of the protein are unchanged. Photochemical assays show that the modified plastocyanin is fully active in the reduction of photooxidized P700 and in the photooxidation of cytochrome f. The pK of the nitro-tyrosyl residue is about 7.3 indicating that the modified residue may be located in a negatively charged environment. Examination of the recently published X-ray structure of poplar plastocyanin suggests that Tyr-80 would be a likely candidate for the site of modification.  相似文献   

3.
Chemical modification of plastocyanin was carried out using ethylenediamine plus a water-soluble carbodiimide, which has the effect of replacing a negatively charged carboxylate group with a positively charged amino group at pH 6-8. The conditions were adjusted to produce a series of singly and doubly modified forms of plastocyanin. Differences in charge configuration allowed separation of these forms on a Pharmacia fast protein liquid chromatograph using a Mono Q anion exchange column. These forms were used to study the interaction of plastocyanin with its reaction partner cytochrome f. The rate of cytochrome f oxidation was progressively inhibited upon incorporation of increasing numbers of ethylenediamine moieties indicating a positively charged binding site on cytochrome f. However, differential inhibition was obtained for the various singly modified forms allowing mapping of the binding site on plastocyanin. The greatest inhibition was found for forms modified at negatively charged residues Nos. 42-45 and Nos. 59-61 which comprise a negative patch surrounding Tyr-83. In contrast, the form modified at residue No. 68, on the opposite side of the globular plastocyanin molecule, showed the least inhibition. It can be concluded that the binding site for cytochrome f is located in the vicinity of residues Nos. 42-45 and Nos. 59-61. Modification of plastocyanin at residues Nos. 42-45 showed no effect on the rate of P-700+ reduction, suggesting that these residues are not involved in the binding of Photosystem I. However, an increase in the rate of P-700+ reduction was observed for plastocyanins modified at residue No. 68 or Nos. 59-61, which is consistent with the idea that the reaction domain of Photosystem I is negatively charged and Photosystem I binds at the top of the molecule and accepts electrons via His-87 in plastocyanin. These results raise the possibility that plastocyanin can bind both cytochrome f and Photosystem I simultaneously. The effect of ethylenediamine modification on the formal potential of plastocyanin was also examined. The formal potential of control plastocyanin was found to be +372 +/- 5 mV vs. normal hydrogen electrode at pH 7. All modified forms showed a positive shift in formal potential. Singly modified forms showed increases in formal potentials between +8 and +18 mV with the largest increases being observed for plastocyanins modified at residues Nos. 42-45 or Nos. 59-61.  相似文献   

4.
Chemical modification of plastocyanin was carried out using ethylenediamine plus a water-soluble carbodiimide, which has the effect of replacing a negatively charged carboxylate group with a positively charged amino group at pH 6–8. The conditions were adjusted to produce a series of singly and doubly modified forms of plastocyanin. Differences in charge configuration allowed separation of these forms on a Pharmacia fast protein liquid chromatograph using a Mono Q anion exchange column. These forms were used to study the interaction of plastocyanin with its reaction partner cytochrome f. The rate of cytochrome f oxidation was progressively inhibited upon incorporation of increasing numbers of ethylenediamine moieties indicating a positively charged binding site on cytochrome f. However, differential inhibition was obtained for the various singly modified forms allowing mapping of the binding site on plastocyanin. The greatest inhibition was found for forms modified at negatively charged residues Nos. 42–45 and Nos. 59–61 which comprise a negative patch surrounding Tyr-83. In contrast, the form modified at residue No. 68, on the opposite side of the globular plastocyanin molecule, showed the least inhibition. It can be concluded that the binding site for cytochrome f is located in the vicinity of residues Nos. 42–45 and Nos. 59–61. Modification of plastocyanin at residues Nos. 42–45 showed no effect on the rate of P-700+ reduction, suggesting that these residues are not involved in the binding of Photosystem I. However, an increase in the rate of P-700+ reduction was observed for plastocyanins modified at residue No. 68 or Nos. 59–61, which is consistent with the idea that the reaction domain of Photosystem I is negatively charged and Photosystem I binds at the top of the molecule and accepts electrons via His-87 in plastocyanin. These results raise the possibility that plastocyanin can bind both cytochrome f and Photosystem I simultaneously. The effect of ethylenediamine modification on the formal potential of plastocyanin was also examined. The formal potential of control plastocyanin was found to be +372 ± 5 mV vs. normal hydrogen electrode at pH 7. All modified forms showed a positive shift in formal potential. Singly modified forms showed increases in formal potentials between +8 and +18 mV with the largest increases being observed for plastocyanins modified at residues Nos. 42–45 or Nos. 59–61.  相似文献   

5.
The orientation of poplar plastocyanin in the complex with turnip cytochrome f has been determined by rigid-body calculations using restraints from paramagnetic NMR measurements. The results show that poplar plastocyanin interacts with cytochrome f with the hydrophobic patch of plastocyanin close to the heme region on cytochrome f and via electrostatic interactions between the charged patches on both proteins. Plastocyanin is tilted relative to the orientation reported for spinach plastocyanin, resulting in a longer distance between iron and copper (13.9 A). With increasing ionic strength, from 0.01 to 0.11 M, all observed chemical-shift changes decrease uniformly, supporting the idea that electrostatic forces contribute to complex formation. There is no indication for a rearrangement of the transient complex in this ionic strength range, contrary to what had been proposed earlier on the basis of kinetic data. By decreasing the pH from pH 7.7 to pH 5.5, the complex is destabilized. This may be attributed to the protonation of the conserved acidic patches or the copper ligand His87 in poplar plastocyanin, which are shown to have similar pK(a) values. The results are interpreted in a two-step model for complex formation.  相似文献   

6.
Crystal structure of plastocyanin from a green alga, Enteromorpha prolifera   总被引:4,自引:0,他引:4  
The crystal structure of the Cu-containing protein plastocyanin (Mr 10,500) from the green alga Enteromorpha prolifera has been solved by molecular replacement. The structure was refined by constrained-restrained and restrained reciprocal space least-squares techniques. The refined model includes 111 solvent sites. There is evidence for alternate conformers at eight residues. The residual is 0.12 for a data set comprising 74% of all observations accessible at 1.85 A resolution. The beta-sandwich structure of the algal plastocyanin is effectively the same as that of poplar leaf (Populus nigra var. italica) plastocyanin determined at 1.6 A resolution. The sequence homology between the two proteins is 56%. Differences between the contacts in the hydrophobic core create some significant (0.5 to 1.2 A) movements of the polypeptide backbone, resulting in small differences between the orientations and separations of corresponding beta-strands. These differences are most pronounced at the end of the molecule remote from the Cu site. The largest structural differences occur in the single non-beta strand, which includes the sole turn of helix in the molecule: two of the residues in a prominent kink of the poplar plastocyanin backbone are missing from the algal plastocyanin sequence, and there is a significant change in the position of the helical segment in relation to the beta-sandwich. Several other small but significant structural differences can be correlated with intermolecular contacts in the crystals. An intramolecular carboxyl-carboxylate hydrogen bond in the algal plastocyanin may be associated with an unusually high pKa. The dimensions of the Cu site in the two plastocyanins are, within the limits of precision, identical.  相似文献   

7.
A combination of site-directed mutagenesis and NMR chemical shift perturbation analysis of backbone and side-chain protons has been used to characterize the transient complex of the photosynthetic redox proteins plastocyanin and cytochrome f. To elucidate the importance of charged residues on complex formation, the complex of cytochrome f and E43Q/D44N or E59K/E60Q spinach plastocyanin double mutants was studied by full analysis of the (1)H chemical shifts by use of two-dimensional homonuclear NMR spectra. Both mutants show a significant overall decrease in chemical shift perturbations compared with wild-type plastocyanin, in agreement with a large decrease in binding affinity. Qualitatively, the E43Q/D44N mutant showed a similar interaction surface as wild-type plastocyanin. The interaction surface in the E59K/E60Q mutant was distinctly different from wild type. It is concluded that all four charged residues contribute to the affinity and that residues E59 and E60 have an additional role in fine tuning the orientation of the proteins in the complex.  相似文献   

8.
The three-dimensional solution structure of reduced (CuI) plastocyanin from French bean leaves has been determined by distance geometry and restrained molecular dynamics methods using constraints obtained from 1H n.m.r. (nuclear magnetic resonance) spectroscopy. A total of 1244 experimental constraints were used, including 1120 distance constraints, 103 dihedral angle constraints and 21 hydrogen bond constraints. Stereospecific assignments were made for 26 methylene groups and the methyls of 11 valines. Additional constraints on copper co-ordination were included in the restrained dynamics calculations. The structures are well defined with average atomic root-mean-square deviations from the mean of 0.45 A for all backbone heavy atoms and 1.08 A for side-chain heavy atoms. French bean plastocyanin adopts a beta-sandwich structure in solution that is similar to the X-ray structure of reduced poplar plastocyanin; the average atomic root-mean-square difference between 16 n.m.r. structures and the X-ray structure is 0.76 A for all backbone heavy atoms. The conformations of the side-chains that constitute the hydrophobic core of French bean plastocyanin are very well defined. Of 47 conserved residues that populate a single chi 1 angle in solution, 43 have the same rotamer in the X-ray structure. Many surface side-chains adopt highly preferred conformations in solution, although the 3J alpha beta coupling constants often indicate some degree of conformational averaging. Some surface side-chains are disordered in both the solution and crystal structures of plastocyanin. There is a striking correlation between measures of side-chain disorder in solution and side-chain temperature factors in the X-ray structure. Side-chains that form a distinctive acidic surface region, believed to be important in binding other electron transfer proteins, appear to be disordered. Fifty backbone amide protons form hydrogen bonds to carbonyls in more than 60% of the n.m.r. structures; 45 of these amide protons exchange slowly with solvent deuterons. Ten hydrogen bonds are formed between side-chain and backbone atoms, eight of which are correlated with decreased proton exchange. Of the 60 hydrogen bonds formed in French bean plastocyanin, 56 occur in the X-ray structure of the poplar protein; two of the missing hydrogen bonds are absent as a result of mutations. It appears that molecular dynamics refinement of highly constrained n.m.r. structures allows accurate prediction of the pattern of hydrogen bonding.  相似文献   

9.
The complete amino acid sequence of the blue copper protein amicyanin of Thiobacillus versutus, induced when the bacterium is grown on methylamine, has been determined as follows: QDKITVTSEKPVAAADVPADAVVVGIEKMKYLTPEVTIKAGETVYWVNGEVMPHNVA FKKGIVGEDAFRGEMMTKDQAYAITFNEAGSYDYFCTPHPFMRGKVIVE. The four copper ligand residues in this 106-residue-containing polypeptide chain are His54, Cys93, His96, and Met99. The Thiobacillus amicyanin is 52% similar to the amicyanin of Pseudomonas AM1, the only other copper protein known with the same spacing between the second histidine ligand and the methionine ligand. T. versutus amicyanin contains no cysteine bridge and is more closely related to the plant copper protein plastocyanin than to the bacterial copper protein azurin. Alignment of the two known amicyanin sequences with the consensus sequence of the plastocyanins and comparison with the known three-dimensional structure of poplar leaves plastocyanin reveals that the bacterial proteins have the same overall structure with two beta-sheets packed face to face. The major structural differences between the amicyanins and the plastocyanins appear to be located in two of the five loops that connect the six identified beta-strands of the amicyanins. The first of these two loops, connecting strands F and G, contains a ligand histidine and must have a different conformation from the same loop in the plastocyanins because it is shorter by two amino acids. Further differences occur in the loop connecting the strands D and E. This loop contains only 17 residues in amicyanin whereas the corresponding loop of plastocyanin contains 25 residues. Despite these differences the amicyanins appear much closer related to the plastocyanins than to the azurins. The present findings demonstrate that the occurrence of blue copper proteins with clearly plastocyanin-like features is not restricted to photosynthetic redox chains.  相似文献   

10.
J M Moore  W J Chazin  R Powls  P E Wright 《Biochemistry》1988,27(20):7806-7816
Two-dimensional 1H NMR methods have been used to make sequence-specific resonance assignments for the 97 amino acid residues of the plastocyanin from the green alga Scenedesmus obliquus. Assignments were obtained for all backbone protons and the majority of the side-chain protons. Spin system identification relied heavily on the observation of relayed connectivities to the backbone amide proton. Sequence-specific assignments were made by using the sequential assignment procedure. During this process, an extra valine residue was identified that had not been detected in the original amino acid sequence. Elements of regular secondary structure were identified from characteristic NOE connectivities between backbone protons, 3JHN alpha coupling constant values, and the observation of slowly exchanging amide protons. The protein in solution contains eight beta-strands, one short segment of helix, five reverse turns, and five loops. The beta-strands may be arranged into two beta-sheets on the basis of extensive cross-strand NOE connectivities. The chain-folding topology determined from the NMR experiments is that of a Greek key beta-barrel and is similar to that observed for French bean plastocyanin in solution and poplar plastocyanin in the crystalline state. While the overall structures are similar, several differences in local structure between the S. obliquus and higher plant plastocyanins have been identified.  相似文献   

11.
A detailed study of the tyrosine spectral characteristics was carried out in a broad range of pHs for both isoforms of plastocyanin from poplar. It was found that Tyr 80 is always protonated while Tyr 83 can form a tirosinate at high pHs. The pK(a) of Tyr 83 is practically identical in plastocyanin a and b, but the quenching of its spectrum is different in the isoforms. This provides insights that the acidic patches surrounding Tyr 83 have different electrostatic properties in plastocyanin a and b. The protonation states and the electrostatic interactions were numerically modeled on the existing plastocyanin a structure and on a homology model of plastocyanin b. The results of numerical calculations agree with the experimental findings and identify several differences in the titration behavior of the acidic patches. The difference of the tyrosine quenching pH profiles of the isoforms is rationalized by the differences in the calculated pK(a)'s of amino acids in the neighboring acidic clusters.  相似文献   

12.
In the three-dimensional structure of a rice class I chitinase (OsChia1b) determined recently, a loop structure (loop II) is located at the end of the substrate-binding cleft, and is thus suggested to be involved in substrate binding. In order to test this assumption, deletion of the loop II region from the catalytic domain of OsChia1b and replacement of Trp159 in loop II with Ala were carried out. The loop II deletion and the W159A mutation increased hydrolytic activity not only towards (GlcNAc)6 but also towards polysaccharide substrates. Similar results were obtained for kcat/Km values determined for substrate reduced-(GlcNAc)5. The two mutations shifted the splitting positions in (GlcNAc)6 to the reducing end side, but the shift was less intensive in the Trp mutant. Theoretical analysis of the reaction time course indicated that sugar residue affinity at the +3 subsite was reduced from -2 kcal/mol to +0.5 kcal/mol by loop II deletion. Reduced affinity at the +3 subsite might enhance the release of product fragments, resulting in higher turnover and higher enzymatic activities. Thus, we concluded that loop II is involved in sugar residue binding at the +3 subsite, but that Trp159 itself appears to contribute only partly to sugar residue interaction at the subsite.  相似文献   

13.
Fungal laccase B from Polyporus versicolor is a “blue” oxidase containing four copper ions. It consists of a single polypeptide chain of about 545 amino acid residues. The enzyme has been hydrolyzed with pepsin, pronase and thermolysin, and peptides containing the single sulfhydryl group and one of the disulfide bridges have been isolated and characterized. The results show that there is some similarity in amino acid sequence on both sides of the disulfide bridge indicating an internal homology in the laccase molecule. The structure around the single cysteine residue (Leu-His-Cys-His-Ile-Asx-Phe) differs considerably from the cysteine region in low-molecular-weight “blue” proteins like plastocyanin and azurin which contain a single copper ion. However, it shows a pronounced similarity with the sequence around a cysteine residue in human ceruloplasmin suggesting that this structure has an important role in the multi-copper oxidases that is absent or different in the small “blue” proteins. We propose that this role is to constitute a bridge between different copper ions in the molecule and mediate the specific interaction between those which is a crucial feature in the catalytic action of the multi-copper oxidases.  相似文献   

14.
The amino acid sequence of plastocyanin from Chlorella fusca   总被引:5,自引:2,他引:3       下载免费PDF全文
The amino acid sequence of the plastocyanin from the green alga Chlorella fusca was determined. The protein consists of a single polypeptide chain of 98 residues, and was determined by characterization of chymotryptic and thermolysin peptides. The amino acid sequence shows considerable similarity to that of higher plant plastocyanins. The protein contains a single cysteine, and the sequence in the vicinity of this residue is similar to that around the cysteine residue of bacterial azurins. The plastocyanin contains some uncharacterized carbohydrate. Detailed evidence for the sequence of the protein has been deposited as Supplementary Publication SUP 50 036 (17pp., 1 microfiche) at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.  相似文献   

15.
Cytochrome f and plastocyanin are redox partners in the photosynthetic electron-transfer chain. Electron transfer from cytochrome f to plastocyanin occurs in a specific short-lived complex. To obtain detailed information about the binding interface in this transient complex, the effects of binding on the backbone and side-chain protons of plastocyanin have been analyzed by mapping NMR chemical-shift changes. Cytochrome f was added to plastocyanin up to 0.3 M equiv, and the plastocyanin proton chemical shifts were measured. Out of approximately 500 proton resonances, 86% could be observed with this method. Nineteen percent demonstrate significant chemical-shift changes and these protons are located in the hydrophobic patch (including the copper ligands) and the acidic patches of plastocyanin, demonstrating that both areas are part of the interface in the complex. This is consistent with the recently determined structure of the complex [Ubbink, M., Ejdeb?ck, M., Karlsson, B. G., and Bendall, D. S. (1998) Structure 6, 323-335]. The largest chemical-shift changes are found around His87 in the hydrophobic patch, which indicates tight contacts and possibly water exclusion from this part of the protein interface. These results support the idea that electron transfer occurs via His87 to the copper in plastocyanin and suggest that the hydrophobic patch determines the specificity of the binding. The chemical-shift changes in the acidic patches are significant but small, suggesting that the acidic groups are involved in electrostatic interactions but remain solvent exposed. The existence of small differences between the present data and those used for the structure may imply that the redox state of the metals in both proteins slightly affects the structure of the complex. The chemical-shift mapping is performed on unlabeled proteins, making it an efficient way to analyze effects of mutations on the structure of the complex.  相似文献   

16.
Structure of oxidized poplar plastocyanin at 1.6 A resolution   总被引:16,自引:0,他引:16  
The structure of poplar plastocyanin in the oxidized (CuII) state at pH 6.0 has been refined, using 1.6 A resolution counter data. The starting co-ordinates were obtained from the 2.7 A electron density map computed with phases derived by the multiple isomorphous replacement method. The model was refined successively by constrained real space, unrestrained reciprocal space, and restrained reciprocal space least-squares methods. The final residual R value is 0.17 for 8285 reflections (I greater than 2 sigma (I)). It is estimated that the root-mean-square standard deviation of the atomic positions is 0.1 A when averaged over all atoms, and 0.05 A for the Cu ligand atoms alone. The refined structure retains all the essential features of the 2.7 A model. The co-ordination geometry of the copper atom is confirmed as being distorted tetrahedral. The two Cu-N(His) bonds, 2.10 and 2.04 A, are within the range normally found in low molecular weight CuII complexes with Cu-N(imidazole) bonds. The Cu-S(Cys) bond, 2.13 A, is also normal, but the Cu-S(Met) bond, 2.90 A, is sufficiently long to raise important questions about its significance. The hydrogen-bonding and secondary structure can now be assigned confidently. Forty-four water molecules are included in the final model. Repetition of the refinement, using new data to 1.9 A resolution recorded from crystals at pH 4.2, has led to a residual R value of 0.16 for 6060 reflections (I greater than sigma (I)). There are few significant changes in the structure of poplar CuII-plastocyanin between pH 6.0 and pH 4.2. In particular, the geometry of the copper site is not affected. The observed changes in redox behaviour of plastocyanin at low pH are therefore unlikely to be connected with structural changes in the oxidized form of the protein. A number of features of the molecular structure appear to be directly related to the function of plastocyanin as an electron carrier in photosynthesis. Comparison between the known amino acid sequences of 67 plant plastocyanins reveals 52 conserved and 11 conservatively substituted residues in a total of 99. If three algal plastocyanin sequences are included in the comparison, there are still 26 conserved and 12 conservatively substituted residues. In many cases, the importance of these residues in determining the tertiary structure can be rationalized.  相似文献   

17.
The amino acid sequence of the small copper protein auracyanin A isolated from the thermophilic photosynthetic green bacterium Chloroflexus aurantiacus has been determined to be a polypeptide of 139 residues. His58, Cys123, His128, and Met132 are spaced in a way to be expected if they are the evolutionary conserved metal ligands as in the known small copper proteins plastocyanin and azurin. Secondary structure prediction also indicates that auracyanin has a general beta-barrel structure similar to that of azurin from Pseudomonas aeruginosa and plastocyanin from poplar leaves. However, auracyanin appears to have sequence characteristics of both small copper protein sequence classes. The overall similarity with a consensus sequence of azurin is roughly the same as that with a consensus sequence of plastocyanin, namely 30.5%. We suggest that auracyanin A, together with the B forms, is the first example of a new class of small copper proteins that may be descendants of an ancestral sequence to both the azurin proteins occurring in prokaryotic nonphotosynthetic bacteria and the plastocyanin proteins occurring in both prokaryotic cyanobacteria and eukaryotic algae and plants. The N-terminal sequence region 1-18 of auracyanin is remarkably rich in glycine and hydroxy amino acids, and required mass spectrometric analysis to be determined. The nature of the blocking group X is not yet known, although its mass has been determined to be 220 Da. The auracyanins are the first small blue copper proteins found and studied in anoxygenic photosynthetic bacteria and are likely to mediate electron transfer between the cytochrome bc1 complex and the photosynthetic reaction center.  相似文献   

18.
We have applied ultrafast pump-probe spectroscopy to investigate the excited state dynamics of the blue copper protein poplar plastocyanin, by exciting in the blue side of its 600-nm absorption band. The decay of the charge-transfer excited state occurs exponentially with a time constant of approximately 280 fs and is modulated by well visible oscillations. The Fourier transform of the oscillatory component, besides providing most of the vibrational modes found by conventional resonance Raman, presents additional bands in the low frequency region modes, which are reminiscent of collective motions of biological relevance. Notably, a high frequency mode at approximately 508 cm(-1), whose dynamics are consistent with that of the excited state and already observed for other blue copper proteins, is shown to be present also in poplar plastocyanin. This vibrational mode is reproduced by a molecular dynamics simulation involving the excited state of the copper site.  相似文献   

19.
The essentially complete assignment of the 1H-NMR spectrum of the Cu(i) form of spinach plastocyanin has been achieved using two-dimensional NMR techniques and sequence-specific resonance assignment procedures. A variety of pH and temperature conditions was utilised to overcome the problems of resonance overlap in the spectrum, degeneracy of C alpha H and solvent H2O chemical shifts, and cross-saturation of labile NH resonances. A qualitative analysis of the long-range nuclear Overhauser effects observed indicates that the backbone fold of spinach plastocyanin is very similar to that of poplar plastocyanin, whose structure has been solved by X-ray crystallography and differs in 22 of its 99 amino acid residues. The assignments provide a basis for further investigations into the structural and ion- and protein-binding properties of plastocyanin in solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号