首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been established in a number of studies that the alkaline-denatured state of pepsin (the I(P) state) is composed of a compact C-terminal lobe and a largely unstructured N-terminal lobe. In the present study, we have investigated the residual structure in the I(P) state in more detail, using limited proteolysis to isolate and characterize a tightly folded core region from this partially denatured pepsin. The isolated core region corresponds to the 141 C-terminal residues of the pepsin molecule, which in the fully native state forms one of the two lobes of the structure. A comparative study using NMR and CD spectroscopy has revealed, however, that the N-terminal lobe contributes a substantial amount of additional residual structure to the I(P) state of pepsin. CD spectra indicate in addition that significant nonnative alpha-helical structure is present in the C-terminal lobe of the structure when the N-terminal lobe of pepsin is either unfolded or removed by proteolysis. This study demonstrates that the structure of pepsin in the I(P) state is significantly more complex than that of a fully folded C-terminal lobe connected to an unstructured N-terminal lobe.  相似文献   

2.
Pepsin, a gastric aspartic proteinase, is a zymogen-derived protein that undergoes irreversible alkaline denaturation at pH 6-7. Detailed knowledge of the structure of the alkaline-denatured state is an important step in understanding the mechanism of the formation of the active enzyme. An extensive analysis of the denatured state at pH 8.0 was performed using a variety of techniques including (1)H nuclear magnetic resonance spectroscopy and solution X-ray scattering. This analysis indicates that the denatured state under these conditions has a compact and globular conformation with a substantial amount of secondary and tertiary structures. The data suggest that this partially structured species has a highly folded region and a flexible region. The NMR measurements suggest that the folded region contains His53 and is located at least partly in the N-terminal lobe of the protein. The alkaline-denatured state experiences a further reversible denaturation step at higher pH or on heating; the midpoints of the unfolding transition are pH 11.5 (at 25 degrees C) and 53.1 degrees C (at pH 8.0), respectively. The present findings suggest that the proteolytic processing of pepsinogen has substantially modified the ability of the protein to fold, such that its folding process cannot progress beyond the partially folded intermediate of pepsin.  相似文献   

3.
Pepsin exists as alkaline denatured state (Ip) in pH range 8–10, where the N-terminal domain of the protein is mostly unfolded while the C-terminal domain is intact. The effects of fluorinated (TFE) and non-fluorinated (methanol) organic solvents on this partially unfolded state (Ip) of pepsin were investigated using various spectroscopic methods. Both, fluorinated (TFE) and non-fluorinated (methanol) organic solvents induce secondary structure (α-helix) after a critical concentration. The Ip state of pepsin unfolds in cooperative manner but the transition was found to be non-cooperative in the presence of 40% methanol or TFE. The differences in the unfolding of the protein in the presence and the absence of these organic solvents were interpreted. Our results indicate that unfolding transitions in Ip state are mostly dominated by unfolding of C-terminal domain because the N-terminal domain is largely unstructured in this state. The organic solvents (TFE and methanol) induce more secondary structure in N-terminal domain and make it another unfolding entity with different stability compare to C-terminal resulting into sequential unfolding of the domain.  相似文献   

4.
5.
The molecular structure of the archetypal aspartic proteinase, porcine pepsin (EC 3.4.23.1), has been refined using data collected from a single monoclinic crystal on a twin multiwire detector system to 1.8 A resolution. The current crystallographic R-factor (= sigma parallel to Fo/-/Fc parallel to/sigma/Fo/) is 0.174 for the 20,519 reflections with /Fo/ greater than or equal to 3 sigma (Fo) in the range 8.0 to 1.8 A (/Fo/ and /Fc/ are the observed and calculated structure factor amplitudes respectively). The refinement has shown conclusively that there are only 326 amino acid residues in porcine pepsin. Ile230 is not present in the molecule. The two catalytic residues Asp32 and Asp215 have dispositions in porcine pepsin very similar to the dispositions of the equivalent residues in the other aspartic proteinases of known structure. A bound solvent molecule is associated with both carboxyl groups at the active site. No bound ethanol molecule could be identified conclusively in the structure. The average thermal motion parameter of the residues that comprise the C-terminal domain of pepsin is approximately twice that of the residues in the N-terminal domain. Comparisons of the tertiary structure of pepsin with porcine pepsinogen, penicillopepsin, rhizopus pepsin and endothia pepsin reveal that the N-terminal domains are topographically more similar than the conformationally flexible C-terminal domains. The conformational differences may be modeled as rigid-body movements of "reduced" C-terminal domains (residues 193 to 212 and 223 to 298 in pepsin numbering). A similar movement of the C-terminal domain of endothia pepsin has been observed upon inhibitor binding. A phosphoryl group covalently attached to Ser68 O gamma has been identified in the electron density map of porcine pepsin. The low pKa1 value for this group, coupled with unusual microenvironments for several of the aspartyl carboxylate groups, ensures a net negative charge on porcine pepsin in a strongly acid medium. Thus, there is a structural explanation for the very early observations of "anodic migration" of porcine pepsin at pH 1. In the crystals, the molecules are packed tightly into a monoclinic unit cell. There are 190 direct contacts (less than or equal to 4.0 A) between a central pepsin molecule and the five unique symmetry-related molecules surrounding it in the crystalline lattice. The tight packing in this cell makes pepsin's active site and binding cleft relatively inaccessible to substrate analogs or inhibitors.  相似文献   

6.
Pepsin, a member of the aspartate protease family, exists in a partially unfolded state at alkaline pH where the N-terminal domain of pepsin has a flexible structure while the C-terminal domain has a highly folded structure. In this work, the conformational stability of porcine pepsin in an alkaline denatured (A(D)) state against acetonitrile and ethanol solvents was studied using a combination of electronic circular dichroism (ECD) and fluorescence techniques. The ECD results demonstrate that both ethanol and acetonitrile induce secondary structural changes in pepsin at A(D) state. However, the minimum concentration required to induce significant secondary structural changes in pepsin varies for ethanol (>30%, v/v) and acetonitrile (>60%, v/v) solvents. At maximum concentration used (90%, v/v), both solvents induce predominantly β-sheet conformation. Unlike acetonitrile, ethanol induces significant amount of non-native α-helical conformations at the intermediate concentrations (50-80%). The tryptophan fluorescence results demonstrate that both acetonitrile and ethanol induce substantial changes in the tertiary structure of pepsin in the A(D) state above certain concentrations. The current results have important implications in understanding the effect of co-solvents on the conformation of proteins in the "denatured state".  相似文献   

7.
Immunochemical Studies on the Components of the Pepsinogen System   总被引:3,自引:0,他引:3       下载免费PDF全文
Rabbit antisera to pepsin and pepsinogen were characterized by several immunological criteria. Both antisera inhibited the rennet activity of pepsin. Antipepsinogen protected pepsin from alkaline denaturation. Using antipepsinogen, precipitin analysis at pH 5.5 indicated that the native enzyme resembles the precursor more closely than did the denatured enzyme. However, all three proteins have some antigenic sites in common. Both antisera reacted more efficiently with their homologous antigens. When measured by C' fixation, the pepsinogen-antipepsinogen system was inhibited by pepsin and to a greater degree, by the activation mixture and the pepsin-inhibitor complex. Pepsin-antipepsin was inhibited by pepsinogen. The specificity of these two antibodies toward pepsin and pepsinogen conformation was used to measure the disappearance of pepsinogen and the concomitant appearance of pepsin during autocatalytic conversion at pH 4.6. The experimental results obtained during the conversion could be duplicated by using varying proportions of pepsin and pepsinogen in the model system. The potentialities of employing these antisera to detect conformational changes such as the unmasking of the pepsin moiety in pepsinogen molecules modified by physical or chemical reagents are discussed.  相似文献   

8.
Pepsin D: A minor component of commercial pepsin preparations   总被引:7,自引:6,他引:1       下载免费PDF全文
Methods are described for the isolation and purification of pepsin D, an enzyme which accounts for about 10% of the enzymic activity in commercial preparations of pepsin. Pepsin D is similar to pepsin in having a molecular weight of about 35000, the same C-terminal amino acid sequence, and an N-terminal isoleucine residue. It differs in having no phosphate residue. Pepsin D is similar to pepsin in its ability to digest haemoglobin, acetyl-l-phenylalanyl-l-di-iodotyrosine and gelatin but it is twice as active as pepsin in the clotting of milk. It has the same specificity as pepsin in its action on the B-chain of oxidized insulin. It is probable that the pepsin D in commercial preparations of pepsin arises from the activation of gastric pepsinogen D.  相似文献   

9.
Most eukaryotic aspartic protease zymogens are synthesized as a single polypeptide chain that contains two distinct homologous lobes and a pro peptide, which is removed upon activation. In pepsinogen, the pro peptide precedes the N-terminal lobe (designated pep) and the C-terminal lobe (designated sin). Based on the three-dimensional structure of pepsinogen, we have designed a pepsinogen polypeptide with the internal rearrangement of domains from pro-pep-sin (native pepsinogen) to sin-pro-pep. The domain-rearranged zymogen also contains a 10-residue linker designed to connect sin and pro domains. Recombinant sin-pro-pep was synthesized in Escherichia coli, refolded from 8 M urea, and purified. Upon acidification, sin-pro-pep autoactivates to a two-chain enzyme. However, the emergence of activity is much slower than the conversion of the single-chain zymogen to a two-chain intermediate. In the activation of native pepsinogen and sin-pro-pep, the pro region is cleaved at two sites between residues 16P and 17P and 44P and 1 successively, and complete activation of sin-pro-pep requires an additional cleavage at a third site between residues 1P and 2P. In pepsinogen activation, the cleavage of the first site is rate limiting because the second site is cleaved more rapidly to generate activity. In the activation of sin-pro-pep, however, the second site is cleaved slower than the first, and cleavage of the third site is the rate limiting step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with alpha-, beta-, or kappa-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

11.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with α-, β-, or κ-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

12.
Purification of pepsinogen B from dog stomach was achieved. Activation of pepsinogen B to pepsin B is likely to proceed through a one-step pathway although the rate is very slow. Pepsin B hydrolyzes various peptides including beta-endorphin, insulin B chain, dynorphin A, and neurokinin A, with high specificity for the cleavage of the Phe-X bonds. The stability of pepsin B in alkaline pH is noteworthy, presumably due to its less acidic character. The complete primary structure of pepsinogen B was clarified for the first time through the molecular cloning of the respective cDNA. Molecular evolutional analyses show that pepsinogen B is not included in other known pepsinogen groups and constitutes an independent cluster in the consensus tree. Pepsinogen B might be a sister group of pepsinogen C and the divergence of these two zymogens seems to be the latest event of pepsinogen evolution.  相似文献   

13.
Bann JG  Frieden C 《Biochemistry》2004,43(43):13775-13786
The folding of the two-domain bacterial chaperone PapD has been studied to develop an understanding of the relationship between individual domain folding and the formation of domain-domain interactions. PapD contains six phenylalanine residues, four in the N-terminal domain and two in the C-terminal domain. To examine the folding properties of PapD, the protein was both uniformly and site-specifically labeled with p-fluoro-phenylalanine ((19)F-Phe) for (19)F NMR studies, in conjunction with those of circular dichroism and fluorescence. In equilibrium denaturation experiments monitored by (19)F NMR, the loss of (19)F-Phe native intensity for both the N- and C-terminal domains shows the same dependence on urea concentration. For the N-terminal domain the loss of native intensity is mirrored by the appearance of separate denatured resonances. For the C-terminal domain, which contains residues Phe 168 and Phe 205, intermediate as well as denatured resonances appear. These intermediate resonances persist at denaturant concentrations well beyond the loss of native resonance intensity and appear in kinetic refolding (19)F NMR experiments. In double-jump (19)F NMR experiments in which proline isomerization does not affect the refolding kinetics, the formation of domain-domain interactions is fast if the protein is denatured for only a short time. However, with increasing time of denaturation the native intensities of the N- and C-terminal domains decrease, and the denatured resonances of the N-terminal domain and the intermediate resonances of the C-terminal domain accumulate. The rate of loss of the N-terminal domain resonances is consistent with a cis to trans isomerization process, indicating that from an equilibrium denatured state the slow refolding of PapD is due to the trans to cis isomerization of one or both of the N-terminal cis proline residues. The data indicate that both the N- and C-terminal domains must fold into a native conformation prior to the formation of domain-domain interactions.  相似文献   

14.
The lutropin (LH), follitropin, and thyrotropin receptors belong to the superfamily of G-protein coupled receptors and have some unique structural features. These glycoprotein hormone receptors comprise a C-terminal half and an N-terminal half of similar size. The C-terminal half is equivalent to the entire structure of other G-protein coupled receptors and has seven transmembrane domains, three cytoplasmic loops, three exoplasmic loops, and a C terminus. In contrast, the hydrophilic N-terminal half is exoplasmic and unique to the glycoprotein hormone receptors. This large N-terminal half of the LH receptor has recently been shown to be capable of binding the hormone. Therefore, these glycoprotein hormone receptors are structurally and functionally different from other G-protein coupled receptors. In an attempt to define the role of the membrane-associated C-terminal half of the LH receptor, we have prepared several mutant receptors in which an Asp or Glu in the seven transmembrane domains has been converted to Asn or Gln, respectively. These include Asp383----Asn in the second transmembrane domain, Glu410----Gln in the third transmembrane domain, and Asp556----Asn in the sixth transmembrane domain. All these mutant receptors were successfully expressed in Cos 7A cells. The Glu410----Gln and Asp556----Asn mutants maintained normal affinities for hormone binding and cAMP production, but the Asp383----Asn mutant showed significantly lower affinities. Although Asp383 of the LH receptor is conserved in all G-protein coupled receptors cloned to date except the substance P receptor, which has Glu in the place of the Asp residue, this is the first observation of the critical role of the Asp in hormone binding and subsequent stimulation of cAMP production.  相似文献   

15.
Pepsin was spin-labelled with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidyl) bromoacetamide, possibly at the active site, at a beta-catboxyl group of a reactive aspartic acid. The spectrum of the spin-labelled pepsin showed that the spin probe was strongly immobilized (correlation time is greater than or equal to 10(-8) sec). Spin-labelled pepsin was thermally denatured at various temperatures and electron paramagnetic resonance (e.p.r.) spectra were taken at various times. Rates of denaturation estimated from the e.p.r. spectra at various temperatures showed that the enthalpy and entropy of thermal denaturation of spin-labelled pepsin at pH 3.5 were 48.0+/-4.9 kcal/mole and 214.7+/-14.5 e.u. respectively. Addition of conc. NaOH or 1 M acetate buffer at pH 6.0 sharpened e.p.r. spectra of the spin-labelled pepsin, indicating that the spin probe became mobilized by alkaline denaturation. Addition of urea caused unfolding of the protein which increased with the urea concentration, although only slight transition of conformational changes was observed in the e.p.r. spectra.  相似文献   

16.
Multidomain protein folding is often more complex than a two-state process, which leads to the spontaneous folding of the native state. Pepsin, a zymogen-derived enzyme, without its prosegment (PS), is irreversibly denatured and folds to a thermodynamically stable, non-native conformation, termed refolded pepsin, which is separated from native pepsin by a large activation barrier. While it is known that PS binds refolded pepsin and catalyzes its conversion to the native form, little structural details are known regarding this conversion. In this study, solution NMR was used to elucidate the PS-catalyzed folding mechanism by examining the key equilibrium states, e.g. native and refolded pepsin, both in the free and PS-bound states, and pepsinogen, the zymogen form of pepsin. Refolded pepsin was found to be partially structured and lacked the correct domain-domain structure and active-site cleft formed in the native state. Analysis of chemical shift data revealed that upon PS binding refolded pepsin folds into a state more similar to that of pepsinogen than to native pepsin. Comparison of pepsin folding by wild-type and mutant PSs, including a double mutant PS, indicated that hydrophobic interactions between residues of prosegment and refolded pepsin lower the folding activation barrier. A mechanism is proposed for the binding of PS to refolded pepsin and how the formation of the native structure is mediated.  相似文献   

17.
Cathepsin D is a bilobed lysosomal aspartyl protease that contains one Asn-linked oligosaccharide/lobe. Each lobe also contains protein determinants that serve as recognition domains for binding of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the first enzyme in the biosynthesis of the mannose 6-phosphate residues on lysosomal enzymes. In this study we examined whether the location of the protein recognition domain influences the relative phosphorylation of the amino and carboxyl lobe oligosaccharides. To do this, chimeric proteins containing either amino or carboxyl lobe sequences of cathepsin D substituted into a glycosylated form of the homologous secretory protein pepsinogen were expressed in Xenopus oocytes. The amino and carboxyl lobe oligosaccharides were then isolated from the various chimeric proteins and independently analyzed for their mannose 6-phosphate content. This analysis has shown that a phosphotransferase recognition domain located on either lobe of a cathepsin D/glycopepsinogen chimeric molecule is sufficient to allow phosphorylation of oligosaccharides on both lobes. However, phosphorylation of the oligosaccharide on the lobe containing the recognition domain is favored. We also found that the majority of the carboxyl lobe oligosaccharides of cathepsin D acquire two phosphates, whereas the amino lobe oligosaccharides only acquire one phosphate.  相似文献   

18.
Porcine pepsin, an aspartic protease, is unstable at neutral pHs where it rapidly loses activity, however, its zymogen, pepsinogen, is stable at neutral pHs. The difference between the two is the presence of the prosegment in pepsinogen. In this study, possible factors responsible for instability were investigated and included: (i) the distribution of positively charged residues on the surface, (ii) an insertion of a peptide in the C-terminal domain and (iii) the dissociation of the N-terminal fragment of pepsin. Mutations to change the number and the distribution of positive charges on the surface had a minor effect on stability. No effect on stability was observed for the deletion of a peptide from the C-terminal domain. However, mutations on the N-terminal fragment had a major impact on stability. At pH 7.0, the N-fragment mutant was inactivated 5.8 times slower than the wild-type. The introduction of a disulfide bond between the N-terminal fragment and the enzyme body prevented the enzyme from denaturing. The above results showed that the inactivation of pepsin was initiated by the dissociation of the N-fragment and that the sequence of this portion was a major determinant for enzyme stability. Through this study, we have created porcine pepsin with increased pH stability at neutral pHs.  相似文献   

19.
Ribonuclease HIII (Bst-RNase HIII) from the moderate thermophile Bacillus stearothermophilus is a type 2 RNase H but shows poor amino acid sequence identity with another type 2 RNase H, RNase HII. It is composed of 310 amino acid residues and acts as a monomer. Bst-RNase HIII has a large N-terminal extension with unknown function and a unique active-site motif (DEDE), both of which are characteristics common to RNases HIII. To understand the role of these N-terminal extension and active-site residues, the crystal structure of Bst-RNase HIII was determined in both metal-free and metal-bound forms at 2.1-2.6 angstroms resolutions. According to these structures, Bst-RNase HIII consists of the N-terminal domain and C-terminal RNase H domain. The structures of the N and C-terminal domains were similar to those of TATA-box binding proteins and archaeal RNases HII, respectively. The steric configurations of the four conserved active-site residues were very similar to those of other type 1 and type 2 RNases H. Single Mn and Mg ions were coordinated with Asp97, Glu98, and Asp202, which correspond to Asp10, Glu48, and Asp70 of Escherichia coli RNase HI, respectively. The mutational studies indicated that the replacement of either one of these residues with Ala resulted in a great reduction of the enzymatic activity. Overproduction, purification, and characterization of the Bst-RNase HIII derivatives with N and/or C-terminal truncations indicated that the N-terminal domain and C-terminal helix are involved in substrate binding, but the former contributes to substrate binding more greatly than the latter.  相似文献   

20.
The nucleotide sequence of the gene for a highly alkaline, low-molecular-mass pectate lyase (Pel-15) from an alkaliphilic Bacillus isolate was determined. It harbored an open reading frame of 672 bp encoding the mature enzyme of 197 amino acids with a predicted molecular mass of 20 924 Da. The deduced amino-acid sequence of the mature enzyme showed very low homology (< 20.4% identity) to those of known pectinolytic enzymes in the large pectate lyase superfamily (the polysaccharide lyase family 1). In an integrally conserved region designated the BF domain, Pel-15 showed a high degree of identity (40.5% to 79.4%) with pectate lyases in the polysaccharide lyase family 3, such as PelA, PelB, PelC, and PelD from Fusarium solani f. sp. pisi, PelB from Erwinia carotovora ssp. carotovora, PelI from E. chrysanthemi, and PelA from a Bacillus strain. By site-directed mutagenesis of the Pel-15 gene, we replaced Lys20 in the N-terminal region, Glu38, Lys41, Glu47, Asp63, His66, Trp78, Asp80, Glu83, Asp84, Lys89, Asp106, Lys107, Asp126, Lys129, and Arg132 in the BF domain, and Arg152, Tyr174, Lys182, and Lys185 in the C-terminal region of the enzyme individually with Ala and/or other amino acids. Consequently, some carboxylate and basic residues selected from Glu38, Asp63, Glu83, Asp106, Lys107, Lys129, and Arg132 were suggested to be involved in catalysis and/or calcium binding. We constructed a chimeric enzyme composed of Ala1 to Tyr105 of Pel-15 in the N-terminal regions, Asp133 to Arg159 of FsPelB in the internal regions, and Gln133 to Tyr197 of Pel-15 in the C-terminal regions. The substituted PelB segment could also express beta-elimination activity in the chimeric molecule, confirming that Pel-15 and PelB share a similar active-site topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号