首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims: In this work, we aimed to identify an effective treatment of infections caused by Enterococcus spp. strains resistant to conventional antibiotics. Methods and Results: We report the isolation and characterization of a new lytic bacteriophage, designated bacteriophage EFAP‐1, that is capable of lysing Enterococcus faecalis bacteria that exhibit resistance to multiple antibiotics. EFAP‐1 has low sequence similarity to all known bacteriophages. Transmission electron microscopy confirmed that EFAP‐1 belongs to the Siphoviridae family. A putative lytic protein of EFAP‐1, endolysin EFAL‐1, is encoded in ORF 2 and was expressed in Escherichia coli. Recombinant EFAL‐1 had broad‐spectrum lytic activity against several Gram‐positive pathogens, including Ent. faecalis and Enterococcus faecium. Conclusions: The complete genome sequence of the newly isolated enterococcal lytic phage was analysed, and it was demonstrated that its recombinant endolysin had broad lytic activity against various Gram‐positive pathogens. Significance and Impact of the Study: Bacteriophage EFAP‐1 and its lytic protein, EFAL‐1, can be utilized as potent antimicrobial agents against Enterococcus spp. strains resistant to conventional antibiotics in hospital infections and also as environmental disinfectants to control disease‐causing Enterococcus spp. in dairy farms.  相似文献   

2.
Aims: The isolation of lytic bacteriophage of Vibrio harveyi with potential for phage therapy of bacterial pathogens of phyllosoma larvae from the tropical rock lobster Panulirus ornatus. Methods and Results: Water samples from discharge channels and grow‐out ponds of a prawn farm in northeastern Australia were enriched for 24 h in a broth containing four V. harveyi strains. The bacteriophage‐enriched filtrates were spotted onto bacterial lawns demonstrating that the bacteriophage host range for the samples included strains of V. harveyi, Vibrio campbellii, Vibrio rotiferianus, Vibrio parahaemolyticus and Vibrio proteolyticus. Bacteriophage were isolated from eight enriched samples through triple plaque purification. The host range of purified phage included V. harveyi, V. campbellii, V. rotiferianus and V. parahaemolyticus. Transmission electron microscope examination revealed that six purified phage belonged to the family Siphoviridae, whilst two belonged to the family Myoviridae. The Myoviridae appeared to induce bacteriocin production in a limited number of host bacterial strains, suggesting that they were lysogenic rather than lytic. A purified Siphoviridae phage could delay the entry of a broth culture of V. harveyi strain 12 into exponential growth, but could not prevent the overall growth of the bacterial strain. Conclusions: Bacteriophage with lytic activity against V. harveyi were isolated from prawn farm samples. Purified phage of the family Siphoviridae had a clear lytic ability and no apparent transducing properties, indicating they are appropriate for phage therapy. Phage resistance is potentially a major constraint to the use of phage therapy in aquaculture as bacteria are not completely eliminated. Significance and Impact of the Study: Phage therapy is emerging as a potential antibacterial agent that can be used to control pathogenic bacteria in aquaculture systems. The development of phage therapy for aquaculture requires initial isolation and determination of the bacteriophage host range, with subsequent creation of suitable phage cocktails.  相似文献   

3.
The Staphylococcus aureus bacteriophage phi11 endolysin has two peptidoglycan hydrolase domains (endopeptidase and amidase) and an SH3b cell wall-binding domain. In turbidity reduction assays, the purified protein can lyse untreated staphylococcal mastitis pathogens, Staphylococcus aureus and coagulase-negative staphylococci (Staphylococcus chronogenes, Staphylococcus epidermidis, Staphylococcus hyicus, Staphylococcus simulans, Staphylococcus warneri and Staphylococcus xylosus), making it a strong candidate protein antimicrobial. This lytic activity is maintained at the pH (6.7), and the "free" calcium concentration (3 mM) of milk. Truncated endolysin-derived proteins containing only the endopeptidase domain also lyse staphylococci in the absence of the SH3b-binding domain.  相似文献   

4.
Bacteriophage SPN1S infects the pathogenic Gram‐negative bacterium Salmonella typhimurium and expresses endolysin for the release of phage progeny by degrading peptidoglycan of the host cell walls. Bacteriophage SPN1S endolysin exhibits high glycosidase activity against peptidoglycans, resulting in antimicrobial activity against a broad range of outer membrane‐permeabilized Gram‐negative bacteria. Here, we report a crystal structure of SPN1S endolysin, indicating that unlike most endolysins from Gram‐negative bacteria background, the α‐helical protein consists of two modular domains, a large and a small domain, with a concave groove between them. Comparison with other structurally homologous glycoside hydrolases indicated a possible peptidoglycan binding site in the groove, and the presence of a catalytic dyad in the vicinity of the groove, one residue in a large domain and the other in a junction between the two domains. The catalytic dyad was further validated by antimicrobial activity assay against outer membrane‐permeabilized Escherichia coli. The three‐helix bundle in the small domain containing a novel class of sequence motif exhibited binding affinity against outer membrane‐permeabilized E. coli and was therefore proposed as the peptidoglycan‐binding domain. These structural and functional features suggest that endolysin from a Gram‐negative bacterial background has peptidoglycan‐binding activity and performs glycoside hydrolase activity through the catalytic dyad.  相似文献   

5.
Group B streptococci (GBS) are the leading cause of neonatal meningitis and sepsis worldwide. Intrapartum antibiotic prophylaxis (IAP) is the current prevention strategy given to pregnant women with confirmed vaginal GBS colonization. Due to antibiotic resistance identified in GBS, we previously developed another strategy using a bacteriophage lytic enzyme, PlyGBS, to reduce vaginal GBS colonization. In this study, various DNA mutagenesis methods were explored to produce PlyGBS mutants with increased lytic activity against GBS. Several hyperactive mutants were identified that contain only the endopeptidase domain found in the N-terminal region of PlyGBS and represent only about one-third of the wild-type PlyGBS in length. Significantly, these mutants not only have 18–28-fold increases in specific activities compared to PlyGBS, but they also have a similar activity spectrum against several streptococcal species. One of the hyperactive mutants, PlyGBS90-1, reduced the GBS colonization from >5 logs of growth per mouse to <50 colony-forming units (cfu) 4 h post treatment (∼4-log reduction) using a single dose in a mouse vaginal model. A reduction in GBS colonization before delivery should significantly reduce neonatal GBS infection providing a safe alternative to IAP.  相似文献   

6.
The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug‐resistant pathogens. Biofilm‐forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra‐peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram‐positive medical device‐related pathogens. 3‐(4‐Hydroxyphenyl)propionic)‐Orn‐Orn‐Trp‐Trp‐NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24‐h biofilms at MBEC with 6‐h exposure. Reduced cell cytotoxicity, relative to Gram‐positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes). Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost‐effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
In this study, we sought to isolate Salmonella Enteritidis-specific lytic bacteriophages (phages), and we found a lytic phage that could lyse not only S. Enteritidis but also other Gramnegative foodborne pathogens. This lytic phage, SS3e, could lyse almost all tested Salmonella enterica serovars as well as other enteric pathogenic bacteria including Escherichia coli, Shigella sonnei, Enterobacter cloacae, and Serratia marcescens. This SS3e phage has an icosahedral head and a long tail, indicating belong to the Siphoviridae. The genome was 40,793 base pairs, containing 58 theoretically determined open reading frames (ORFs). Among the 58 ORFs, ORF49, and ORF25 showed high sequence similarity with tail spike protein and lysozyme-like protein of Salmonella phage SE2, respectively, which are critical proteins recognizing and lysing host bacteria. Unlike SE2 phage whose host restricted to Salmonella enterica serovars Enteritidis and Gallinarum, SS3e showed broader host specificity against Gram-negative enteric bacteria; thus, it could be a promising candidate for the phage utilization against various Gram-negative bacterial infection including foodborne pathogens.  相似文献   

8.
9.
Costa EM  Silva S  Pina C  Tavaria FK  Pintado MM 《Anaerobe》2012,18(3):305-309
The objective of this study was to assess the antimicrobial capability of non-chemically altered chitosan as an alternative to traditional antimicrobials used in the treatment of oral infections. The action mechanism of chitosan was also ascertained. High and low molecular weight chitosan showed antimicrobial activity at low concentrations for all tested bacteria with the MICs varying between 1 and 7 mg/ml with a drop of efficacy relatively to the action of LMW chitosan. In addition chitosan showed also to be an effective bactericidal presenting bactericidal effect within 8 h at the latest. Additionally the evaluation of chitosan's action mechanism showed that both MWs acted upon the bacterial cell wall and were not capable of interacting with the intracellular substances, as showed by the inefficacy obtained in the flocculation assay.  相似文献   

10.
11.
Resistant pathogens are the cause of clinical infections which threatening the patients lives and challenging the health systems through their economic importance. Therefore, new antibacterial agents with a broader spectrum of activity that protect against development of resistance are required. Tigecycline (Tygacil, Wyeth) is a relatively new FDA and EMEA approved glycylcycline antimicrobial with an expanded broad-spectrum activity against pathogens involved in complicated skin and skin structure infections. In this study we evaluated the in vitro activity of tigecycline in comparison to 14 other antibiotics against 182 clinical pathogens by use of the micro dilution method. In overall, tigecycline exhibited the lowest Minimum Inhibitory Concentration (MIC) values in almost all bacteria with a mean of 0.52 ± 1.25 mg/L, followed by meropenem and levofloxacin (mean MIC values 1.29 ± 2.52 and 1.45 ± 3.078 mg/L, respectively). MIC50 and MIC90 values of tigecycline were: 0.06 and 0.15 mg/L for E. coli, 0.12 and 1.00 mg/L for Klebsiella sp., 0.12 and 0.85 mg/L for various Enterobacter sp., 1.00 and 8.00 mg/L for Pseudomonas sp., 0.25 and 1.00 mg/L for Acinetobacter sp., 0.06 and 0.12 mg/L for Serratia sp., 0.12 and 0.25 mg/L for Staphylococcus aureus, 0.5 and 5.00 mg/L for Streptococcus sp. The MIC values recorded were among the lowest in recent literature for Acinetobacter sp. (included A. baumannii), and comparable to those obtained for Klebsiella, Serratia and Enterobacter indicating that tigecycline has a promising in vitro activity.  相似文献   

12.
There is a pressing need to develop novel antibacterial agents given the widespread antibiotic resistance among pathogenic bacteria and the low specificity of the drugs available. Endolysins are antibacterial proteins that are produced by bacteriophage‐infected cells to digest the bacterial cell wall for phage progeny release at the end of the lytic cycle. These highly efficient enzymes show a considerable degree of specificity for the target bacterium of the phage. Furthermore, the emergence of resistance against endolysins appears to be rare as the enzymes have evolved to target molecules in the cell wall that are essential for bacterial viability. Taken together, these factors make recombinant endolysins promising novel antibacterial agents. The chloroplast of the green unicellular alga Chlamydomonas reinhardtii represents an attractive platform for production of therapeutic proteins in general, not least due to the availability of established techniques for foreign gene expression, a lack of endotoxins or potentially infectious agents in the algal host, and low cost of cultivation. The chloroplast is particularly well suited to the production of endolysins as it mimics the native bacterial expression environment of these proteins while being devoid of their cell wall target. In this study, the endolysins Cpl‐1 and Pal, specific to the major human pathogen Streptococcus pneumoniae, were produced in the C. reinhardtii chloroplast. The antibacterial activity of cell lysates and the isolated endolysins was demonstrated against different serotypes of S. pneumoniae, including clinical isolates and total recombinant protein yield was quantified at ~1.3 mg/g algal dry weight.  相似文献   

13.
14.
15.
P1 bacteriophage carries at least two replicons: a plasmid replicon and a viral lytic replicon. Since the isolated plasmid replicon can maintain itself stably at the low copy number characteristic of intact P1 prophage, it has been assumed that this replicon is responsible for driving prophage replication. We provide evidence that when replication from the plasmid replicon is prevented, prophage replication continues, albeit at a reduced rate. The residual plasmid replication is due to incomplete repression of the lytic replicon by the c1 immunity repressor. Incomplete repression was particularly evident in lysogens of the thermoinducible P1 c1.100 prophage, whose replication at 32 degrees C remained almost unaffected when use of the plasmid replicon was prevented. Moreover, the average plasmid copy number of P1 in a P1 c1.100 lysogen was elevated with respect to the copy number of P1 c1+. The capacity of the lytic replicon to act as an auxiliary in plasmid maintenance may contribute to the extraordinary stability of P1 plasmid prophage.  相似文献   

16.
Kim S  Rahman M  Kim J 《Journal of virology》2012,86(6):3400-3401
A novel Pseudomonas aeruginosa lytic bacteriophage (phage), PA1Ø, was isolated, and its genome was sequenced completely. This phage is able to lyse not only P. aeruginosa but also Staphylococcus aureus. Genome analysis of PA1Ø showed that it is similar to a P. aeruginosa temperate phage, D3112, with the exception of the absence of a c repressor-encoding gene, which is known to play a critical role in the maintenance of the lysogenic state of D3112 in P. aeruginosa.  相似文献   

17.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle‐feeding ciliates, surface‐feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long‐term negative effect on bacterial biomass both in the open‐water phase and biofilm. Bacteriophages had only a minor long‐term effect on bacterial biomass in open‐water and biofilm phases. However, separate short‐term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open‐water phase within the first 24 h. Thereafter, the bacteria evolve phage‐resistance that largely prevents top‐down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open‐water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top‐down regulation of bacteria.  相似文献   

19.
20.
The aim of this study was to evaluate antimicrobial activity of selected alcoholic antiseptics against clinical strains, which possessed in majority a high level of drug resistance: MRSA (7), MSSA (3), E. coli: (9): strains producing ESBL (4), P. aeruginosa: (4), E. cloacae: (3), K. pneumoniae: (3). These strains were defined by MIC value, using antibiotic agar dilution method according to NCCLS. Fourteen alcoholic antiseptics were used in this study. Beside alcohol, they contained other active substances like iodine, hydrogen peroxide, chlorhexidine. Some additional agents were included for easier application, such as: gelling, moisturizing, aromatic or coloring substances. The objective of this study was also to determine the dependence of bactericidal activity on preparations (concentration). Product undiluted and diluted two and four times in water was analyzed according to prEN 12054 standard; 30 seconds and 1 minute contact time was used. The obtained data indicate that all tested undiluted antiseptics possessed bactericidal activity described by producers. However antiseptics (dilution leads to decrease and even loss of bactericidal activity. Two-times dilution of gel almost completely inactivated the product. Antimicrobial activity after 30 seconds of contact time was not affected by presence of additional agents in the tested antiseptics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号