首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu M  Sun Z  Luo G  Hu C  Zhang W  Han Z 《Genetica》2011,139(1):149-154
PiggyBac-like elements (PLE) are widespread in variety of organisms, however, few of them are active or have an intact transposon structure. To further define the distribution PLEs in Lepidoptera, where the original active piggyBac IFP2 was discovered, and potentially isolate new functional elements, a survey for PLEs by PCR amplification and Southern dot blots was performed. Two new PLEs, AyPLE and AaPLE, were successfully isolated from the noctuid species, Agrotis ypsilon and Argyrogramma agnate, respectively. These elements were found to be closely related to each other by sequence similarity, and by sharing the same 16 bp inverted terminal repeat sequences. The AyPLE1.1 and AaPLE1.1 elements are structurally intact having characteristic TTAA target site duplications, inverted terminal repeats and intact open reading frames encoding putative transposases with the presumed piggyBac DDD domains, which are features consistent with autonomous functional transposons. Phylogenetic analysis revealed that AyPLE1.1 and AaPLE1.1 cluster with another noctuid species element, HaPLE1.1, suggesting a common ancestor for the three types of PLEs. This contributes to our understanding of the distribution and evolution of piggyBac in Lepidoptera.  相似文献   

2.
piggyBac is a short inverted-repeat-type DNA transposable element originally isolated from the genome of the moth Trichoplusia ni. It is currently the gene vector of choice for the transformation of various insect species. A few sequences with similarity to piggyBac have previously been identified from organisms such as humans ( Looper), the pufferfish Takifugu rubripes (Pigibaku), Xenopus (Tx), Daphnia (Pokey), and the Oriental fruit fly Bactrocera dorsalis. We have now identified 50 piggyBac-like sequences from publicly available genome sequences and expressed sequence tags (ESTs). This survey allows the first comparative examination of the distinctive piggyBac transposase, suggesting that it might contain a highly divergent DDD domain, comparable to the widespread DDE domain found in many DNA transposases and retroviral integrases which consists of two absolutely conserved aspartic acids separated by about 70 amino acids with a highly conserved glutamic acid about 35 amino acids further away. Many piggyBac-like sequences were found in the genomes of a phylogenetically diverse range of organisms including fungi, plants, insects, crustaceans, urochordates, amphibians, fishes and mammals. Also, several instances of "domestication" of the piggyBac transposase sequence by the host genome for cellular functions were identified. Novel members of the piggyBac family may be useful in genetic engineering of many organisms.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

3.
4.
In this paper, a highly conserved piggyBac‐like sequence, designated as McrPLE was cloned from a lepidopteran insect, Macdunnoughia crassisigna. It is 2 472 bp long in full length with a single open reading frame and encodes a 595 amino acid transposase. It shares identical terminal and sub‐terminal repeats with T. ni IFP2 and is flanked by the typical TTAA target‐site duplications. Alignment and phylogenetic analysis revealed that McrPLE had greater than 99.5% identity and appeared to be the closest one in phylogeny to IFP2 among the PLEs so far found in various species. Plasmid‐based excision and transposition assay proved it was mobile in cell culture. Otherwise, McrPLE element and all other highly conserved IFP2 sequences reported previously were found to share three common nucleotide substitutions. This suggests that the original IFP2 may be a related variant of a predecessor element that became widespread. The existence of nearly identical piggyBac sequence in reproductively isolated species was thought also a strong indication of horizontal transmission, which raises important considerations for the stability and practical use of piggyBac transformation vectors.  相似文献   

5.
[目的]通过检测黑腹果蝇 DDrosophiila melanogaster中piggyBac(PB)转座子AgoPLE1.1的转化活性,明确AgoPLE1.1开发为昆虫转基因载体的潜力.[方法]构建AgoPLE1.1转座酶辅助质粒pAgoHsp和带有红色荧光标记的供体质粒pXLAgo-PUbDsRed,辅助质粒和供体...  相似文献   

6.
The piggyBac Lepidopteran transposable element moves from the cellular genome into infecting baculovirus genomes during passage of the virus in cultured TN-368 cells. We have constructed genetically tagged piggyBac elements that permit analysis of excision when transiently introduced on plasmids into the piggyBac-deficient Spodoptera frugiperda IPLB-SF21AE cell line. Precise excision of the element from these plasmids occurs at a higher frequency in the presence of a helper plasmid that presumably supplies the piggyBac transposase. The results suggest that the piggyBac transposon encodes a protein that functions to facilitate not only insertion, but precise excision as well. This is the first demonstration of piggyBac mobility from plasmid sources in uninfected Lepidopteran cells.  相似文献   

7.
Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle- repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.   相似文献   

8.
The piggyBac transposable element, originally discovered in the cabbage looper, Trichoplusia ni, has been used widely in genetic engineering of insects including the pink bollworm, Pectinophora gossypiella, a major lepidopteran pest of cotton. Previously, we identified an intact copy of a piggyBac-like element (PLE) in pink bollworm, designated as PgPLE1.1. Here we report global variation in the occurrence and sequence of PgPLE1.1 and its flanking sequences. Low to high frequency of the PgPLE1.1 insertion was observed in populations from USA, Mexico, China, India, and Israel, while there is no PgPLE1.1 insertion in the populations from Australia. Investigation of the five haplotypes of PgPLE1.1, their frequency, and the flanking sequences of PgPLE1.1 revealed significant differences of the populations from Australia and China compared to other global populations, although recent occurrences of extensive gene flows among global populations were evident.  相似文献   

9.
Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and ∼95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.  相似文献   

10.
Penelope, originally found as a key element responsible for the hybrid dysgenesis in Drosophila virilis, has been widely conserved throughout eukaryotic genomes. In other organisms, they are often referred to as Penelope-like elements or PLEs. In this study, we found two types of PLEs, designated MjPLE01 and MjPLE02, from kuruma shrimp, Marsupenaeus japonicus. There was no observed nucleotide similarity between MjPLE01 and 02, and both elements differed from each other in terms of their structure; MjPLE02 has a distinctive endonuclease (EN) domain at the C-terminus while MjPLE01 do not. A phylogenetic tree that includes publicly available PLEs and TERTs showed that MjPLE01 and 02 were closely related to Coprina elements, which have been reported as an EN-deficient PLE, and to PenelopePoseidon group, which possess an EN domain, respectively. Genomic Southern blot analysis using MjPLE01 as a probe showed several multiple bands that differ among individual shrimps. On the other hand, two major identical bands were observed when MjPLE02 was used. Colony hybridization showed co-localization of MjPLE01 and GGTTA repeats, suggesting that MjPLE01 might be prevalent in subtelomeric regions of kuruma shrimp genome. These results suggest that the kuruma shrimp genome has at least two types of PLEs with different domain compositions, phylogenetic positions, and probably chromosomeal localization. Such distinctive types of PLEs in an organism have never been described and hence could be a potential source to understand how multiple PLE types evolved.  相似文献   

11.
Accurate and effective positive marker excision is indispensable for the introduction of desired mutations into the plant genome via gene targeting (GT) using a positive/negative counter selection system. In mammals, the moth‐derived piggyBac transposon system has been exploited successfully to eliminate a selectable marker from a GT locus without leaving a footprint. Here, we present evidence that the piggyBac transposon also functions in plant cells. To demonstrate the use of the piggyBac transposon for effective marker excision in plants, we designed a transposition assay system that allows the piggyBac transposition to be visualized as emerald luciferase (Eluc) luminescence in rice cells. The Eluc signal derived from piggyBac excision was observed in hyperactive piggyBac transposase‐expressing rice calli. Polymerase chain reaction, Southern blot analyses and sequencing revealed the efficient and precise transposition of piggyBac in these calli. Furthermore, we have demonstrated the excision of a selection marker from a reporter locus in T0 plants without concomitant re‐integration of the transposon and at a high frequency (44.0% of excision events), even in the absence of negative selection.  相似文献   

12.
The piggyBac transposon, originating in the genome of the Lepidoptera Trichoplusia ni, has a broad host range, making it useful for the development of a number of transposon-based functional genomic technologies including gene vectors, enhancer-, gene- and protein-traps. While capable of being used as a vector for the creation of transgenic insects and insect cell lines, piggyBac has very limited mobility once integrated into the genome of the yellow fever mosquito, Aedes aegypti. A transgenic Aedes aegypti cell line (AagPB8) was created containing three integrated piggyBac elements and the remobilization potential of the elements was tested. The integrated piggyBac elements in AagPB8 were transpositionally silent in the presence of functional transposase, which was shown to be capable of catalyzing the movement of plasmid-borne piggyBac elements in the same cells. The structural integrity of one of the integrated elements along with the quality of element-flanking DNA, which is known to influence transposition rates, were tested in D. melanogaster. The element was found to be structurally intact, capable of transposition and excision in the soma and germ-line of Drosophila melanogaster, and in a DNA sequence context highly conducive to element movement in Drosophila melanogaster. These data show that transpositional silencing of integrated piggyBac elements in the genome of Aedes aegypti appears to be a function of higher scale genome organization or perhaps epigenetic factors, and not due to structural defects or suboptimal integration sites.  相似文献   

13.
A member of the Tc1 family of transposable elements has been identified in the Central and South American mosquito Anopheles albimanus. The full-length Quetzal element is 1680 base pairs (bp) in length, possesses 236 bp inverted terminal repeats (ITRs), and has a single open reading frame (ORF) with the potential of encoding a 341-amino-acid (aa) protein that is similar to the transposases of other members of the Tc1 family, particularly elements described from three different Drosophila species. The approximately 10–12 copies per genome of Quetzal are found in the euchromatin of all three chromosomes of A. albimanus. One full-length clone, Que27, appears capable of encoding a complete transposase and may represent a functional copy of this element.  相似文献   

14.
Integrating and expressing stably a transgene into the cellular genome remain major challenges for gene-based therapies and for bioproduction purposes. While transposon vectors mediate efficient transgene integration, expression may be limited by epigenetic silencing, and persistent transposase expression may mediate multiple transposition cycles. Here, we evaluated the delivery of the piggyBac transposase messenger RNA combined with genetically insulated transposons to isolate the transgene from neighboring regulatory elements and stabilize expression. A comparison of piggyBac transposase expression from messenger RNA and DNA vectors was carried out in terms of expression levels, transposition efficiency, transgene expression and genotoxic effects, in order to calibrate and secure the transposition-based delivery system. Messenger RNA reduced the persistence of the transposase to a narrow window, thus decreasing side effects such as superfluous genomic DNA cleavage. Both the CTF/NF1 and the D4Z4 insulators were found to mediate more efficient expression from a few transposition events. We conclude that the use of engineered piggyBac transposase mRNA and insulated transposons offer promising ways of improving the quality of the integration process and sustaining the expression of transposon vectors.  相似文献   

15.
The Class II transposable element, piggyBac, was used to transform the yellow fever mosquito, Aedes aegypti. In two transformed lines only 15–30 of progeny inherited the transgene, with these individuals displaying mosaic expression of the EGFP marker gene. Southern analyses, gene amplification of genomic DNA, and plasmid rescue experiments provided evidence that these lines contained a high copy number of piggyBac transformation constructs and that much of this DNA consisted of both donor and helper plasmids. A detailed analysis of one line showed that the majority of piggyBac sequences were unit-length donor or helper plasmids arranged in a large tandem array that could be lost en masse in a single generation. Despite the presence of a transposase source and many intact donor elements, no conservative (cut and paste) transposition of piggyBac was observed in these lines. These results reveal one possible outcome of uncontrolled and/or unexpected recombination in this mosquito, and support the conclusion that further investigation is necessary before transposable elements such as piggyBac can be used as genetic drive mechanisms to move pathogen-resistance genes into mosquito populations.  相似文献   

16.
The piggyBac transposable element, originally isolated from a virus in an insect cell line, is a valuable molecular tool for transgenesis and mutagenesis of invertebrates. For heterologous transgenesis in a variety of mammals, transfer of the piggyBac transposable element from an ectopic plasmid only requires expression of piggyBac transposase. To determine if piggyBac could function in dicotyledonous plants, a two-element system was developed in tobacco (Nicotiana tabacum) to test for transposable element excision and insertion. The first transgenic line constitutively expressed piggyBac transposase, while the second transgenic line contained at least two non-autonomous piggyBac transposable elements. Progeny from crosses of the two transgenic lines was analyzed for piggyBac excision and transposition. Several progeny displayed excision events, and all the sequenced excision sites exhibited evidence of the precise excision mechanism characteristic of piggyBac transposase. Two unique transposition insertion events were identified that each included diagnostic duplication of the target site. These data indicate that piggyBac transposase is active in a dicotyledonous plant, although at a low frequency.  相似文献   

17.
Active integration: new strategies for transgenesis   总被引:2,自引:0,他引:2  
This paper presents novel methods for producing transgenic animals, with a further emphasis on how these techniques may someday be applied in gene therapy. There are several passive methods for transgenesis, such as pronuclear microinjection (PNI) and Intracytoplasmic Sperm Injection-Mediated Transgenesis (ICSI-Tr), which rely on the repair mechanisms of the host for transgene (tg) insertion. ICSI-Tr has been shown to be an effective means of creating transgenic animals with a transfection efficiency of approximately 45% of animals born. Furthermore, because this involves the injection of the transgene into the cytoplasm of oocytes during fertilization, limited mosaicism has traditionally occurred using this technique. Current active transgenesis techniques involve the use of viruses, such as disarmed retroviruses which can insert genes into the host genome. However, these methods are limited by the size of the sequence that can be inserted, high embryo mortality, and randomness of insertion. A novel active method has been developed which combines ICSI-Tr with recombinases or transposases to increase transfection efficiency. This technique has been termed “Active Transgenesis” to imply that the tg is inserted into the host genome by enzymes supplied into the oocyte during tg introduction. DNA based methods alleviate many of the costs and time associated with purifying enzyme. Further studies have shown that RNA can be used for the transposase source. Using RNA may prevent problems with continued transposase activity that can occur if a DNA transposase is integrated into the host genome. At present piggyBac is the most effective transposon for stable integration in mammalian systems and as further studies are done to elucidate modifications which improve piggyBac’s specificity and efficacy, efficiency in creating transgenic animals should improve further. Subsequently, these methods may someday be used for gene therapy in humans.  相似文献   

18.
Generation of an inducible and optimized piggyBac transposon system   总被引:1,自引:1,他引:0  
Genomic studies in the mouse have been slowed by the lack of transposon-mediated mutagenesis. However, since the resurrection of Sleeping Beauty (SB), the possibility of performing forward genetics in mice has been reinforced. Recently, piggyBac (PB), a functional transposon from insects, was also described to work in mammals. As the activity of PB is higher than that of SB11 and SB12, two hyperactive SB transposases, we have characterized and improved the PB system in mouse ES cells. We have generated a mouse codon-optimized version of the PB transposase coding sequence (CDS) which provides transposition levels greater than the original. We have also found that the promoter sequence predicted in the 5′-terminal repeat of the PB transposon is active in the mammalian context. Finally, we have engineered inducible versions of the optimized piggyBac transposase fused with ERT2. One of them, when induced, provides higher levels of transposition than the native piggyBac CDS, whereas in the absence of induction its activity is indistinguishable from background. We expect that these tools, adaptable to perform mouse-germline mutagenesis, will facilitate the identification of genes involved in pathological and physiological processes, such as cancer or ES cell differentiation.  相似文献   

19.
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.  相似文献   

20.
Transposons are used in insect science as genetic tools that enable the transformation of insects and the identification and isolation of genes though their ability to insert in or near to them. Four transposons, piggyBac, Mos1, Hermes and Minos are commonly used in insects beyond Drosophila melanogaster with piggyBac, due to its wide host range and frequency of transposition, being the most commonly chosen. The utility of these transposons as genetic tools is directly proportional to their activity since higher transposition rates would be expected to lead to higher transformation frequencies and higher frequencies of insertion throughout the genome. As a consequence there is an ongoing need for hyperactive transposases for use in insect genetics, however these have proven difficult to obtain. IPB7 is a hyperactive mutant of the piggyBac transposase that was identified by a genetic screen performed in yeast, a mammalian codon optimized version of which was then found to be highly active in rodent embryonic stem cells with no apparent deleterious effects. Here we report the activity of IPB7 in D. melanogaster and the mosquito, Aedes aegypti. Somatic transposition assays revealed an increase in IPB7's transposition rate from wild-type piggyBac transposase in D. melanogaster but not Ae. aegypti. However the use of IPB7 in D. melanogaster genetic transformations produced a high rate of sterility and a low transformation rate compared to wild-type transposase. This high rate of sterility was accompanied by significant gonadal atrophy that was also observed in the absence of the piggyBac vector transposon. We conclude that IPB7 has increased activity in the D. melanogaster germ-line but that a component of the sterility associated with its activity is independent of the presence of the piggyBac transposon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号