首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe natural disturbances can lead to the recovery of the original vegetation or the shift to new vegetation types. While post-disturbance succession is well documented for regularly disturbed ecosystems, little is known about the pathways and rapidity of vegetation dynamics after rare events such as peat mass movements in bogs. We monitored the floristic changes in a mire subject to a bog burst in 1987 for two decades through the repeated sampling of permanent plots. The mean species number per plot increased continuously, while the evenness increased only in the first decade and then slightly decreased. Declining species were mostly mire species, while colonist species were mostly wet meadow species. Species turnover was higher in the first decade after the disturbance, and was also higher in the area of peat erosion than in the area of peat accumulation. Changes in plant species composition indicate a succession towards tall-forb vegetation (Filipendulion), acidic fen vegetation (Caricion fuscae) and swamp willow forest (Salicion). We conclude that the effects of the disturbance are still ongoing, and that the mire’s potential for recovery is therefore difficult to predict.  相似文献   

2.
3.
Question: How do we distinguish between concurrent allogenic and autogenic forcings behind changing patterns in plant community structures during mire development? Location: Lakkasuo raised bog, southern Finland. Methods: Two radiometrically dated peat profiles were studied using high resolution plant macrofossil analysis. A combination of partial direct and indirect gradient analyses (CCA and DCA) was applied to quantify the role of different drivers of vegetation changes. Results: Autogenic hydroseral succession explained 16% of the compositional variation in the vegetation. Disturbance successions initiated by fire explained 15% of the variation in the hummock, but only 9% in the wetter lawn. The early post‐disturbance successional stages were characterized by Eriophorum vaginatum. After partialling out the effects of peat depth and time since fire, a moisture gradient explained 29% of variation in the hummock core and 26% in the lawn. The analyses also indicated alternation between species with a similar niche. This interaction gradient explained 26% and 31% of the compositional variation in the hummock and lawn, respectively. The similar order of species replacement from both cores supported the existence of general directional succession in mire vegetation, both during the mire development and after fire events. The autogenic succession was slow and gradual while the disturbance successions were episodic and fast. Conclusion: Our results support the paradigm of the complex nature of mire vegetation dynamics where several interlinked agents have simultaneous effects. The approach of combining partial ordinations developed here appeared to be a useful tool to assess the role of different environmental factors in controlling the vegetation succession.  相似文献   

4.
Abstract. The Skattlösbergs Stormosse mire was reinvestigated in 1995 after 50 years of natural development since the previous investigation. The undrained mire is situated in an area with low anthropogenic deposition. The distribution of 106 plant species was mapped in detail and pH was measured at 251 locations, providing a unique opportunity to quantify long‐term mire dynamics. The results show decreased pH in the richer (high‐pH) parts of the mire, but little or no change in the poor fen and ombrotrophic parts. 14 species had disappeared while two new species were recorded. Most species had a more restricted distribution in the mire area in 1995 than in 1945. Species richness in 10m x 10m plots had decreased, especially in plots with higher pH. Most Sphagnum species had unchanged distributions over the mire, while 73% of other bryophyte species and 38% of vascular plant species had decreased by more than 20% in plot frequency. There was a strong relationship between number of species and pH‐value. The mean and standard deviation of pH in plots where the species occurred have both decreased since 1945. We interpret the changes in species richness in the richer fens to be mainly caused by acidification. This could partly be an autogenic succession, but may be enhanced by increased atmospheric deposition. The mire represents an almost untouched site which can act as a reference for mires in more polluted areas.  相似文献   

5.
Revegetation of peat excavations in a derelict raised bog   总被引:3,自引:0,他引:3  
  相似文献   

6.
Terrestrial isopods were studied in the Dubravica peat bog and surrounding forest in the northwestern Croatia. Sampling was conducted using pitfall traps over a two year period. Studied peat bog has a history of drastically decrease in area during the last five decades mainly due to the process of natural succession and changes in the water level. A total of 389 isopod individuals belonging to 8 species were captured. Species richness did not significantly differ between bog, edge and surrounding forest. High species richness at the bog is most likely the result of progressive vegetation succession, small size of the bog and interspecific relationships, such as predation. With spreading of Molinia grass on the peat bog, upper layers of Sphagnum mosses become less humid and probably more suitable for forest species that slowly colonise bog area. The highest diversity was found at the edge mainly due to the edge effect and seasonal immigration, but also possibly due to high abundance and predator pressure of the Myrmica ants and lycosid spiders at the bog site. The most abundant species were Trachelipus rathkii and Protracheoniscus politus, in the bog area and in the forest, respectively. Bog specific species were not recorded and the majority of the species collected belong to the group of tyrphoneutral species. However, Hyloniscus adonis could be considered as a tyrphoxenous species regarding its habitat preferences. Most of collected isopod species are widespread eurytopic species that usually inhabit various habitats and therefore indicate negative successive changes or degradation processes in the peat bog.  相似文献   

7.
Abstract. Exposed cliffs of the Swiss Jura mountains harbour a highly diverse flora with many rare and endangered plant species. Many cliffs are frequently visited by rock climbers. We examined the impact of rock climbing on vascular plants in the lower part of four cliffs of the Gerstelflue (NW Switzerland) by comparing the vegetation of climbed and unclimbed areas. In climbed areas plant cover and species density were reduced. Similarly, the density of forbs and shrubs decreased, whereas the density of ferns tended to increase. In addition, rock climbing caused a significant shift in plant species composition and altered the proportions of different plant life forms. Rock climbing can be a threat to sensitive plants of the limestone cliff community.  相似文献   

8.
Abstract. Over the last 20 years, several studies comparing recent survey data with historical data from the early 20th century documented an increase in species numbers on high mountain summits of the European Alps. This increase has more or less explicitly been attributed to an upward migration of plant species due to anthropogenic climate warming. However, a reconsideration of the historical and recent data has revealed that more than 90% of the recent species occurrences on mountain summits concern species that were already present at the same or even at higher altitudes within the study region at the time of the historical surveys. This finding suggests that suitable habitats already occurred on these summits under the mesoclimatic conditions prevailing at the beginning of the 20th century and that these habitats were, at least in part, occupied by these plant species. Consequently, the observed increase in species number during the last century does not require the additional temperature increase due to anthropogenic climate change. We therefore consider the phenomenon of increasing species number on high mountain summits to be primarily the result of a natural dispersal process that was triggered by the temperature increase at the end of the Little Ice Age and that is still in progress mostly due to the dispersal limitation of the species involved. Since both the natural dispersal process and a potential upward migration due to anthropogenic climate warming would take place at the same time, we suggest seeding and transplanting experiments in order to assess their respective roles in the increase in species number on mountain summits.  相似文献   

9.
Abstract. Patterns of plant succession were studied in areas of scorched and blown-down forest resulting from the 1980 eruption of Mount St. Helens, Washington. Changes in species abundance were observed for 7 years in permanent sample plots representing four post-disturbance habitats, or site types. Total plant cover and species richness increased with time on all site types. In blown-down forests supporting snowpack at the time of eruption, understory recovery was dominated by the vegetative regeneration of species persisting through disturbance. In forests without snowpacks, plant survival was poorer. Increases in cover and diversity were dominated first by introduced grasses, then by colonizing forbs characteristic of early successional sites. Epilo-bium angustifolium and Anaphalis margaritacea showed widespread recruitment and clonal expansion throughout the devastated area. As a result, species composition on previously forested sites converged toward that on formerly clearcut sites, where early serai forbs resprouted vigorously from beneath the tephra. Total plant cover and species diversity were poorly correlated with post-disturbance habitat and general site characteristics (e.g. distance from the crater, elevation, slope, and aspect). However, distributions of several life-forms (e.g. low sub-shrubs and tall shrubs) were strongly correlated with depth of burial by tephra and with cover of tree rootwads. Thus, early community recovery may reflect microsite variation or chance survival and recruitment rather than broad-scale gradients in environment or disturbance. Recovery of pre-disturbance composition and structure will undoubtedly be much slower than after other types of catastrophic disturbance. The rate and direction of community recovery will largely depend on the degree to which original understory species survived the eruption.  相似文献   

10.
Questions: Primary succession, measured by changes in species composition, is slow, usually forcing a chronose‐quence approach. A unique data set is used to explore spatial and temporal changes in vegetation structure after a 1980 volcanic eruption. On the basis of data from a transect of 20 permanent plots with an altitudinal range of 250 m sampled through 2005, two questions are asked: Do changes along the transect recapitulate succession? Do plots converge to similar composition over time? Location: A ridge between 1218 and 1468 m on Mount St. Helens, Washington, USA. Methods: Repeat sampling of plots for species cover along a 1‐km transect. Floristic changes were characterized by techniques including DCA, clustering and similarity. Results: Species richness and cover increased with time at rates that decreased with increasing elevation. The establishment of Lupinus lepidus accelerated the rate of succession and may control its trajectory. Diversity (H) at first increased with richness, then declined as dominance hierarchies developed. Primary succession was characterized by overlapping phases of species assembly (richness), vegetation maturation (diversity peaks, cover expands) and inhibition (diversity declines). Each plot passed through several community classes, but by 2005, only four classes persisted. Succession trajectories (measured by DCA) became shorter with elevation. Similarity between groups of plots defined by their classification in 2005 did not increase with time. Similarity within plot groups converged slightly at the lower elevations. Despite similarities between temporal and spatial trends in composition, trajectories of higher plots do not recapitulate those of lower plots, apparently because Lupinus was not an early colonist. Any vegetation convergence has been limited to plots that are in close proximity.  相似文献   

11.
Trends in the upward shift of alpine plants   总被引:2,自引:0,他引:2  
  相似文献   

12.
Abstract. Closed canopy vegetation often prevents the colonization of plant species. Therefore the majority of plant species are expected to appear at the initial phase of post‐agricultural succession in mesic forest environment with moderate levels of resources. This hypothesis was tested with data from the Buell‐Small Successional Study, NJ, USA, one of the longest continuous fine‐scale studies of old‐field succession. The study started in 1958, including old fields with different agricultural histories, landscape contexts, and times of abandonment. In each year of the study, the cover values of plant species were recorded in 48 permanent plots of 1 m2 in each field. We analysed the temporal patterns of colonization at plot scale and related these to precipitation data and other community characteristics. The number of colonizing species decreased significantly after ca. 5 yr, coinciding with the development of a continuous canopy of perennial species. However, species turnover remained high throughout the whole successional sequence. The most remarkable phenomenon is the high inter‐annual variation of all studied characteristics. We found considerable temporal collapses of vegetation cover that were synchronized among fields despite their different developmental stages and distinctive species compositions. Declines of total cover were correlated with drought events. These events were associated with peaks of local species extinctions and were followed by increased colonization rates. The transitions of major successional stages were often connected to these events. We suggest that plant colonization windows opened by extreme weather events during succession offer optimum periods for intervention in restoration practice.  相似文献   

13.
Question: Which restoration measures (introduction of donor diaspore material, application of straw mulch, alteration of residual peat depths) contribute to the establishment of a fen plant community on minerotrophic surfaces after peat mining? Location: Rivière‐du‐Loup peatland, southern Québec, Canada at 100 m a.s.1. Methods: The effectiveness of introducing fen plants with the application of donor diaspore material was tested. The donor diaspore material, containing seeds, rhizomes, moss fragments, and other plant propagules, was collected from two different types of natural fens. We tested whether the application of straw mulch would increase fen species cover and biodiversity compared to control plots without straw mulch. Terrace levels of different peat depths (15 cm, 40 cm, and 56 cm) were created to test the effects of different environmental site conditions on the success of re‐vegetation. Results: Applying donor seed bank from natural fens was found to significantly increase fen plant cover and richness after the two growing seasons. Straw mulch proved to significantly increase fen plant richness. The intermediate terrace level (40 cm) had the highest fen plant establishment. Compared to reference sites, the low terrace level (15 cm) was richer in base cations, whereas the high terrace level (56 cm) was much drier. Conclusions: The application of donor diaspore material was demonstrated as an effective technique for establishing vascular fen plants. Further re wetting measures are considered necessary at the restoration site to create a fen ecosystem rather than simply restoring some fen species.  相似文献   

14.
Craneflies (Diptera Tipuloidea) are a typical but poorly known insect group in various moist environments, such as mires. The area of natural mires has strongly decreased in Finland, and there is an urgent need to study and describe the fauna of mires and to determine whether different mire categories support different assemblages of craneflies that might have indicator value. Craneflies were studied using Malaise traps in the Kauhaneva mire system in minerotrophic and ombrotrophic sites, the former subdivided into meso- and oligotrophic sites. A total of 29 cranefly species were recorded. Species richness was highest in mesotrophic sites while the number of species was equally low in oligo- and ombrotrophic sites. Phylidorea squalens, Erioptera flavata, Pedicia rivosa and Tricyphona immaculata were identified as indicators for mesotrophic sites, but no indicators were found for oligo- or ombrotrophic sites. No differences between the species composition of minerotrophic (meso- and oligotrophic combined) and ombrotrophic sites were detected, but when three classes of trophic status were compared, a statistical difference was found. Cranefly species richness in Kauhaneva was low compared to pristine spring habitats. Our results imply, that a focus towards conservation and restoration of mire types with high trophic status would benefit also the conservation of cranefly diversity in the boreal ecoregion. Bioassesments and ecological surveys of craneflies should be designed to cover adequately all trophic status classes within a mire, and especially the mire types with highest trophic status. We also review the distribution and ecology of some potentially regionally threatened cranefly species.  相似文献   

15.
Summary We examined the impact of pocket gopher disturbances on the dynamics of a shortgrass prairie community. Through their burrowing activity, pocket gophers (Thomomys bottae) cast up mounds of soil which both kill existing vegetation and create sites for colonization by competitively-inferior plant species. Three major patterns emerge from these disturbances: First, we show that 10 of the most common herbaceous perennial dicots benefit from pocket gopher disturbance; that is, a greater proportion of seedlings are found in the open space created by pocket gopher disturbance than would be expected based on the availability of disturbed habitat. Additionally, these seedlings exhibited higher growth rates than adjacent seedlings of the same species growing in undisturbed habitat. Second, we tested two predictions of the Intermediate Disturbance Hypothesis and found that species diversity was greatest for plots characterized by disturbances of intermediate age. However, we did not detect significant differences in diversity between plots characterized by intermediate and high levels of disturbance, indicating that many species are adapted to or at least tolerant of high levels of disturbance. Third, we noted that the abundance of grasses decreased with increasing disturbance, while the abundance of dicots increased with increasing disturbance.  相似文献   

16.
Abstract. The vegetation of the SkoHzanka Reserve, situated on a limestone hill near Krakow, was examined over a 30 year period, using the Braun-Blanquet method. With the help of a numerical classification eight types of grassland communities were distinguished, belonging to the classes Sedo-Scleranthetea, Nardo-Callunetea and Festuco-Brometea, and 11 types of woodland communities, both remnants of ancient woodlands from the classes Querco-Fagetea and Vaccinio-Piceetea and more recent woods. In the case of grasslands the results of detrended correspondence analysis (DCA) indicated that the largest variation was associated with the soil type. Woods on sandy soils are very different from those on calcareous soils, and the younger recent woods are very different from the ancient woodlands. An analysis of historical cartographic material and aerial photographs shows that in the last few decades the area of recent woods has increased considerably at the expense of grasslands. Changes in species diversity in the woods during secondary succession and their successional convergence were examined and discussed. It was found that young and mature woods on sandy soils are more similar to each other than young and mature woods on calcareous soils. These differences are mainly related to the fact that many woodland herb species growing in rich, broadleaved ancient woods are unable to colonize recent woods since they have a limited colonization capacity.  相似文献   

17.
Question: Does the upward shift of species and accompanied increase in species richness, induced by climate change, lead to homogenization of Alpine summit vegetation? Location: Bernina region of the Swiss Alps. Methods: Based on a data set from previous literature we expand the analysis from species richness to beta‐diversity and spatial heterogeneity. Species compositions of mountain summits are compared using a two‐component heterogeneity concept including the mean and the variance of Sørensen similarities calculated between the summits. Non‐metric multidimensional scaling is applied to explore developments of single summits in detail. Results: Both heterogeneity components (mean dissimilarity and variance) decrease over time, indicating a trend towards more homogeneous vegetation among Alpine summits. However, the development on single summits is not strictly unidirectional. Conclusions: The upward shift of plant species leads to homogenization of alpine summit regions. Thus, increasing alpha‐diversity is accompanied by decreasing beta‐diversity. Beta‐diversity demands higher recognition by scientists as well as nature conservationists as it detects changes which cannot be described using species richness alone.  相似文献   

18.
Questions: 1. Does random colonization predominate in early stages of primary succession? 2. Do pioneer species facilitate the establishment of later arriving species? 3. Does an initially random distribution change to an aggregated pattern with ongoing succession? Location: Lignite mining region of Lower Lusatia, eastern Germany. Methods: Individual plants were mapped along a 2 m × 28 m transect during three successive years and classified into two groups (1) the pioneer Corynephorus canescens and (2)‘all other species’. Using the pair‐correlation function, univariate point pattern analysis was carried out by applying a heterogeneous Poisson process as null model. Bivariate analysis and a toroidal shift null model were applied to test for independence between the spatial patterns of the two groups separately for each year, as well by exploring spatiotemporal patterns from different years. Results: In the first year Corynephorus and ‘all other species’ showed an aggregated pattern on a spatial scale > 40 cm and in the second and third years a significant attraction for distances between 4 and 12 cm, with an increasing radius in the third year. The analyses of interspecific spatiotemporal dynamics revealed a change from independence to attraction between distances of 4 cm and 16 cm when using Corynephorus as focal species. However, applying ‘all other species’ as focal points results in a significant attraction at distances up to 60 cm in the first year and a diminishing attraction in the second and third years with distances ≤ 6 cm. Conclusions: Facilitative species‐species interactions are present in early stages of primary succession, resulting mainly from pioneer species acting as physical barriers and their ability to capture diaspores being drifted by secondary dispersal along the substrate surface. However, due to gradual establishment of perennial species and their ability of lateral extension by vegetative dispersal, facilitation may influence spatial pattern formation predominantly on short temporal and fine spatial scales.  相似文献   

19.
Because of their isolation and geographical position, and in contrast to the multi‐species tree canopies of tropical rain forests on the continents, the Hawaiian Islands have only two native dominant canopy species in their rain forests, Acacia koa and Metrosideros polymorpha. The wetter forest ecosystems are dominated by only the latter. In 1905, a dieback of lowland tropical Metrosideros rain forest was observed over a 35 km stretch on the lower east slope of Haleakala Mountain on Maui Island. This was dubbed ‘The Maui Forest Trouble.’ Although the synchronous decline of so many trees was initially believed to be caused by an epidemic disease, a decade of research yielded no pathogen. The conclusion was that the Hawaiian flora consisted primarily of colonizer species that were unable to continue growing on aging soils. Although this made ecological sense at that time, it was a rather limited and thereby unfortunate conclusion. Further research has shown that the Maui Forest Trouble was a ‘bog‐formation dieback’, a process of vegetation dynamics not only related to soil aging but more broadly to geomorphic aging and fundamental landscape change. This process is clearly a marginal‐site syndrome, but a natural process of profound consequence for biological conservation. This will be further explained as a paradigm for vegetation ecology.  相似文献   

20.
Summary A soil nitrogen (N) availability gradient was induced on a disturbed sagebrush site in northwestern Colorado by fertilizing with nitrogen (high available N), applying sucrose (low available N), and applying neither nitrogen nor sucrose (control). Species composition was studied for 3 years. At the end of the study, N concentration of aboveground tissue of 3 major species was determined. The rate of species replacement was most rapid on plots receiving the sucrose treatment and was slowest on plots receiving the N treatment. Early-seral dominats had greater tissue N concentrations when availability of the resource was high but lower tissue N concentrations when available soil N became limited. Midseral dominants displayed the opposite pattern. These results suggest that the supply of available soil N, and therefore the dynamics of N incorporation in perennial plant tissue, is a primary mechanism in controlling the rate of secondary succession within this semiarid ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号