首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The migrant Vanessa atalanta (L.) occurs throughout Europe and North Africa. In autumn, populations emigrate from northern and central Europe to the Mediterranean region to overwinter. In the spring, the northern range is recolonised by migrants from the south. The dynamics of the species in the winter range is poorly known. 2. From 1994 to 1999, adults and immatures of V. atalanta were monitored all year round in Mediterranean habitats in north‐east Spain. 3. Data showed that the Catalonia lowlands is an area to which V. atalanta migrates to breed during the winter. Migrants arrive in October and early November and initiate a period of intensive breeding. Larval development occurs throughout the winter until a first annual generation of adults appears in early spring. 4. Most of the butterflies emerging in the spring emigrate and leave the area without breeding. The data suggest strongly that recolonisation of the northern range is by these butterflies not by wintering adults. Altitudinal migration also seems to be a common phenomenon, allowing a further summer generation of adults to occur at high elevations within the Mediterranean region. 5. The complex phenology of V. atalanta in its southern range has evolved as a strategy to track larval resources through space and time. Autumn migration coincides with the greatest availability of the main food plant, Urtica dioica L. Late spring migration occurs by the time food quality is decreasing.  相似文献   

2.
Theory predicts that within‐population differences in the pace‐of‐life can lead to cohort splitting and produce marked intraspecific variation in body size. Although many studies showed that body size is positively correlated with fitness, many argue that selection for the larger body is counterbalanced by opposing physiological and ecological selective mechanisms that favour smaller body. When a population split into cohorts with different paces of life (slow or fast cohort), one would expect to detect the fitness–size relationship among and within cohorts, that is, (a) slower‐developing cohort has larger body size and higher fitness than faster‐developing cohort, and (b) larger individuals within each cohort show higher fitness than smaller individuals. Here, we test these hypotheses in capture–mark–recapture field surveys that assess body size, lifespan, survival and lifetime mating success in two consecutive generations of a partially bivoltine aquatic insect, Coenagrion mercuriale, where the spring cohort is slower‐developing than the autumn cohort. As expected, body size was larger in the slow‐developing cohort, which is consistent with the temperature‐size rule and also with the duration of development. Body size seasonal variation was greater in slow‐developing cohort most likely because of the higher variation in age at maturity. Concordant with theory, survival probability, lifespan and lifetime mating success were higher in the slow‐developing cohort. Moreover, individual body size was positively correlated with survival and mating success in both cohorts. Our study confirms the fitness costs of fast pace‐of‐life and the benefits of larger body size to adult fitness.  相似文献   

3.
1. Temporal isolation by cohort splitting is a life‐history mechanism that has been reported in many temperate insects, including those inhabiting freshwater habitats. Although the cohorts seem to maintain separate temporal niches in a specific location, the temporal isolation may be disrupted across a geographic gradient due to constraints imposed by seasonality. 2. This prediction was tested on two temporally isolated populations of the obligatory univoltine Lestes virens (Odonata, Lestidae) in north‐east Algeria. Although the two cohorts emerge at the same time in spring, one cohort reproduces in summer, while the second cohort estivates in summer and reproduces in autumn. A survey assessing the phenology and abundance was conducted on eight ponds across an elevational gradient (5–1012 m asl) using capture–mark–recapture and adult density sampling. 3. In all sites from low to high elevation, the species showed cohort splitting. The phenology of reproduction of both cohorts showed a delay with elevation, but the cline was 2.2 days for the summer cohort and 0.7 days for the autumn cohort per 100 m of elevation. Moreover, the density of adults in the autumn cohort was higher than that of summer cohort across the entire elevational range, and the difference increased with elevation. 4. These findings regarding the differential elevational cline in the phenology show that the temporal isolation of the two cohorts becomes narrower at high elevation, suggesting potential inter‐cohort temporal overlap at higher elevations. 5. The claim that the two cohorts of L. virens are true temporally isolated species needs further investigation.  相似文献   

4.
In the vast majority of migratory bird species studied so far, spring migration has been found to proceed faster than autumn migration. In spring, selection pressures for rapid migration are purportedly higher, and migratory conditions such as food supply, daylength, and/or wind support may be better than in autumn. In swans, however, spring migration appears to be slower than autumn migration. Based on a comparison of tundra swan Cygnus columbianus tracking data with long‐term temperature data from wheather stations, it has previously been suggested that this was due to a capital breeding strategy (gathering resources for breeding during spring migration) and/or to ice cover constraining spring but not autumn migration. Here we directly test the hypothesis that Bewick's swans Cygnus columbianus bewickii follow the ice front in spring, but not in autumn, by comparing three years of GPS tracking data from individual swans with concurrent ice cover data at five important migratory stop‐over sites. In general, ice constrained the swans in the middle part of spring migration, but not in the first (no ice cover was present in the first part) nor in the last part. In autumn, the swans migrated far ahead of ice formation, possibly in order to prevent being trapped by an early onset of winter. We conclude that spring migration in swans is slower than autumn migration because spring migration speed is constrained by ice cover. This restriction to spring migration speed may be more common in northerly migrating birds that rely on freshwater resources.  相似文献   

5.
6.
Seasonal variation in prey consumption and food resource overlap was evident in an inland water body for mature male, mature female and immature inland silverside (Menidia beryllina). During the first growth phase marked by intensive somatic growth by immature inland silverside, few adults were present in the population (28% of total catch), thus minimizing intraspecific competition for food resources between juvenile and adult inland silverside. During the second growth phase by adults, few juvenile inland silverside were present (0% of total catch) in the population, again minimizing intraspecific competition for food resources between juvenile and adult inland silverside. A divergence in food resource overlap was observed when mature male, mature female and immature inland silverside were present in the population. These population‐level demographic responses to energy acquisition are likely necessary to maximize individual growth of mature male, mature female and immature inland silverside.  相似文献   

7.
Aspects of the biology of Gammarus aequicauda were studied at extremely low salinities (0.3–5.7 psu) in Monolimni Lagoon, N. Aegean Sea. Samples were collected monthly from February 1998 to February 1999. Breeding occurred continuously but peaked in late spring, late summer and autumn and three cohorts were produced. The spring and summer cohorts showed fast growth (0.15 mm d–1), accelerated maturity and life span of about three and seven months respectively, while the overwintering cohort showed a life span of about nine months. The largest individual had a body length of 23.6 mm. Mean brood size was 54.5 early embryos, while the intramarsupial loss was 46%. Population density sharply increased in late spring, summer and autumn. Secondary production calculated by Hynes' method gave a mean annual density of 1077.4 ind. m–2, a mean annual crop (B) of 2.93 g DW m–2, an annual production (P) of 35.03 g DW m–2 and a P: B ratio of 11.96. Gammarus aequicauda showed a life‐history pattern similar to those previously reported for this species at higher salinity environments with comparatively large final body length and high growth rate during summer, brood size and P: B ratio, but with high embryo loss as well. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The larval head widths at each instar, life cycles, and food habits of late instars were determined for five species of Rhyacophila from two Appalachian mountain streams in South Carolina, U.S.A. Rhyacophila acutiloba Morse & Ross was univoltine with two cohorts, one emerging in the spring and another presumably emerging in early autumn. Rhyacophila fuscula (Walker), R. nigrita Banks, and R. carolina Banks were apparently multicohort, univoltine species with extended flight periods. Rhyacophila minor Banks was univoltine with a spring emergence. All species were predaceous and consumed mainly Plecoptera nymphs and Trichoptera larvae.  相似文献   

9.
Calliphora vicina Robineau‐Desvoidy (Diptera: Calliphoridae) causes yearly losses of 1–2 million Euros to the stockfish industry in Lofoten, Norway. To develop an efficient management program, knowledge of its life cycle and phenology in production areas is needed. Cohort studies in a simulated Lofoten climate showed that field abundance peaks of adults in early spring and midsummer can be explained by a cohort originating from stockfish and its subsequent generations. Laboratory simulations with normal, increased, and decreased Lofoten temperatures indicate that C. vicina overwinter as a mix of larvae, pupae, and adults, and a temperature change of ± 2 °C significantly influences reproductive timing, reproductive output, and female mortality. Flies originating from stockfish reproduced during the first summer when temperatures were increased 2 °C above normal. At lower temperatures, the reproductive investment was low or absent during the first summer and the adult flies entered the winter in a diapausing state. Most offspring produced during the first summer and autumn developed continuously without maternally induced diapause, pupated during the winter, and hatched in the early spring to co‐occur with their parent generation during stockfish production. Calliphora vicina showed flexibility in reproductive efforts and overwintering strategies. The high proportion of adults overwintering compared with the commonly used larval diapause strategy might be interpreted as an adaptation to exploit the stockfish resource. The majority of female C. vicina that cause damage to stockfish likely developed on fish dried the previous year, and a continuous year‐long trapping is recommended to decimate the population.  相似文献   

10.
Peter Dalin 《Insect Science》2011,18(4):443-450
Abstract The leaf beetle Phratora vulgatissima (Linnaeus 1758) is commonly univoltine in south‐central Sweden but may sometimes initiate a partial second generation. The current study was set out to investigate under what abiotic conditions the beetles initiate a second generation. Using climate chamber experiments, the beetles were shown to have a facultative reproductive diapause induced by declining day‐length. The critical day‐length (CDL) for diapause induction was estimated to be 18 h and 10 min. In the field, first‐generation beetles developing to adulthood before August in 2009 became reproductively active and produced a second generation, but most individuals emerged later and were in reproductive diapause. P. vulgatissima overwinter as adults and diapause was shown to be maintained until mid‐winter in 2008/2009. The cumulative temperature requirement for oviposition after diapause termination was estimated to be 222 day‐degrees with a 5.5°C temperature threshold. Three different day‐degree models that were developed to predict the phenology of female oviposition in the spring were validated by comparing model results with field data on the timing of oviposition in previous years. The study suggests that P. vulgatissima may initiate a second generation in Sweden if development of the first generation is completed before August. Warmer spring and summer temperatures due to ongoing climate change may cause advanced insect phenology and faster completion of insect life‐cycles at northern latitudes, which will affect the proportion of insects that initiate a second generation.  相似文献   

11.
Migratory birds are often faithful to wintering (nonbreeding) sites, and also migration timing is usually remarkably consistent, that is, highly repeatable. Spatiotemporal repeatability can be of advantage for multiple reasons, including familiarity with local resources and predators as well as avoiding the costs of finding a new place, for example, nesting grounds. However, when the environment is variable in space and time, variable site selection and timing might be more rewarding. To date, studies on spatial and temporal repeatability in short‐lived long‐distance migrants are scarce, most notably of first‐time and subsequent migrations. Here, we investigated repeatability in autumn migration directions, wintering sites, and annual migration timing in Hoopoes (Upupa epops), a long‐distance migrant, using repeated tracks of adult and first‐time migrants. Even though autumn migration directions were mostly the same, individual wintering sites often changed from year to year with distances between wintering sites exceeding 1,000 km. The timing of migration was repeatable within an individual during autumn, but not during spring migration. We suggest that Hoopoes respond to variable environmental conditions such as north–south shifts in rainfall during winter and differing onset of the food availability during spring migration.  相似文献   

12.
内蒙古贺兰山国家级自然保护区荒漠沙蜥春秋季生境选择   总被引:2,自引:1,他引:1  
为更好的了解及保护荒漠沙蜥(Phrynocephalus przewalskii)资源,于2017年5—6月和9—10月,在内蒙古贺兰山国家级自然保护区采用样线调查法对其春、秋2季的生境选择进行研究。春季测定了92个荒漠沙蜥生境利用样方和64个对照样方、秋季测定了71个荒漠沙蜥生境利用样方和76个对照样方的共13种生态因子。利用拟合优度卡方检验、VanderploegScavia′s选择指数、 Mann-White U检验和逐步判别分析确定影响其春秋季生境选择的关键因子。结果表明,荒漠沙蜥的生境选择存在季节性差异。春季一般选择食物丰富度高,隐蔽性好,光照强,地表温度高、湿度低的生境,既保证安全因素又利于达到最适体温,满足繁殖需求;秋季偏好选择土壤质地疏松,食物丰富度高和中的草甸地区,便于隐蔽及累积食物,以满足其躲避天敌、储存越冬能量的需要。  相似文献   

13.
A 150‐year‐long record of intrinsic water‐use efficiency (Wi) was derived from community‐level carbon isotope discrimination (13Δ) in the herbage of the unfertilized, unlimed control treatment (plot 3) of the Park Grass Experiment at Rothamsted (England) between 1857 and 2007. 13Δ during spring growth (first cut harvested in June) averaged 21.0‰ (±0.5‰ SD) and has not shown a long‐term trend (P=0.5) since 1857. 13Δ of summer/autumn growth (second cut harvested between September and November) increased from 21.3‰ to 22.0‰ (P < 0.001) between 1875 and 2007. Wi during spring growth has therefore increased by 33% since the beginning of the experiment, and Wi of summer/autumn growth has increased by 18%. The variation in 13Δ was mainly related to weather conditions. Plant available soil water explained 51% and 40% of the variation in spring growth 13Δ and summer/autumn growth 13Δ, respectively. In the 1857–2007 period yields have not increased, suggesting that community‐level photosynthesis has not increased either. Therefore, the increased Wi probably resulted from a decreased stomatal conductance. Vapour pressure deficit (VPD) during spring growth (March–June) has not changed since 1915, meaning that instantaneous water‐use efficiency (Wt) in spring time has increased and transpiration has probably decreased, provided that leaf temperature followed air temperature. Conversely, VPD in the months between the first and second cut has increased by 0.07 kPa since 1915, offsetting the effect of increased Wi on Wt during summer and early autumn. Our results suggest that vegetation has adjusted physiologically to elevated CO2 by decreasing stomatal conductance in this nutrient‐limited grassland.  相似文献   

14.
Abstract

The phenology of native brachycerine weevil species at seven pasture sites in Otago, Canterbury and Waikato was studied by regular quantitative sampling of adults. Weevils were identified to species, and dissected to record reproductive status and parasitism by introduced braconid parasitoids in the genus Microctonus. Climatic data assisted in the interpretation of some population density patterns. Weevil population density was estimated for periods of two to five years at the selected sites. Species in the Entimini (species of Irenimus and Nicaeana) were generally univoltine, with adults emerging in winter‐spring. The main period of reproductive activity was spring, and parasitism by Microctonus aethiopoides reached its highest incidence in January. Low level parasitism of native weevil species by M. aethiopoides was detected at all sites, and by M. hyperodae at two sites. At one site in Otago, parasitism by M. aethiopoides was higher and could have affected the population density of Irenimus aemulator (Broun) and Nicaeana sp. Most parasitism occurred after the main reproductive period of weevils in spring, but a putative second generation in some species might be more affected by parasitoid attack. A native rhytirhinine species, Steriphus variabilis, differed from the entimines because adults emerged in autumn and spring, and may be bivoltine. Mechanisms of M. aethiopoides parasitism of non‐target species in the field are discussed.  相似文献   

15.
Nezara viridula (L.) (Heteroptera: Pentatomidae) recently expanded its distribution range in Japan and reached Osaka. In the southern temperate zone, the species overwinters in the adult stage and reproductive diapause is associated with a body colour change from green to russet. In Osaka, the reproductive diapause is only induced in September–October and nymphs from late egg masses are destined to die during winter. However, the fate of adults emerging late in the season remained unknown. Survival, body colour change, and post‐diapause reproduction were studied under quasi‐natural conditions in Osaka in 1999–2000 in those adults that attained adulthood as late as in November. Two experimental cohorts were used: in the Outdoor cohort, insects were reared outdoors starting in their second instar (28 September); in the Laboratory cohort, nymphs and subsequently adults were reared from the same day under diapause‐inducing conditions (L10:D14 at 25 °C), then acclimatized (5 days at 20 °C and 5 days at 15 °C; L10:D14) and transferred outdoors on 1 December. Adults in both cohorts did not reproduce in autumn and survived the winter with a low mortality. More than 20% of adults in the Outdoor cohort failed to change body colour from green to russet during winter, apparently because of the low ambient temperature, suggesting that the environmental conditions required for colour change do not completely coincide with those required for diapause induction, and that the colour of the adults is not always a reliable indicator of diapause in this species. After overwintering, females from the Outdoor cohort produced significantly fewer egg masses and eggs and had a significantly shorter period of oviposition than females that entered diapause under short‐day conditions in the Laboratory cohort. Thus, if progeny from the late egg masses attain adulthood late in the autumn, these adults have high chances of successful overwintering, but their reproductive output after the winter diapause is significantly reduced.  相似文献   

16.
The ash leaf cone roller Caloptilia fraxinella Ely (Lepidoptera: Gracillariidae) is an invasive leaf‐mining moth pest of horticultural ash Fraxinus spp. in the Canadian Prairie Provinces. Caloptilia fraxinella overwinter as adults in reproductive diapause and mating occurs after overwintering in the spring. The effect of a carbohydrate food source on fat and glycerol reserves throughout the long adult life stage of this moth is investigated. Insects collected as pupae are given access to either water or sugar water upon adult eclosion. Moths held under the different feeding regimes are sampled before (summer and autumn) and after overwintering in the spring. Analysis of either glycerol or lipid content is conducted for male and female moths from each collection period. Both moth weight and glycerol concentration are affected by moth sex, food regime and season of collection. Although female moths are heavier than males, a higher glycerol concentration occurs in males. Moths fed sugar are heavier and have a higher glycerol concentration than water‐fed moths late in reproductive diapause and after overwintering. Moths collected in the spring after overwintering are lighter and have a lower glycerol content than moths collected before winter. There is a significant influence of feeding regime and season on moth body lipid content, with sugar‐fed moths having more fat than water‐fed moths; however, this difference is smaller in the summer than the autumn or spring. An initial understanding of the overwintering biology and diapause of this pest is provided in the present study.  相似文献   

17.
  • 1 Adult pine weevils Hylobius abietis emerge from conifer root‐stumps, on which larvae develop, over an extended period during summer and autumn. Newly‐emerged weevils were tested for their ability to fly and assessed for wing muscle and reproductive development. In addition, the effect of summer–autumn maturation feeding on reproductive development was assessed in field bioassays.
  • 2 There was considerable variation in development between newly‐emerged weevils that was related to the timing of emergence. The first weevils, emerging in early July, weighed less than later‐emerging ones, had undeveloped flight muscles and did not fly. Over the emergence period, wing muscle size and flight ability increased markedly, with 50–60% flying by mid‐September. Differences between emerging adults are likely to have been affected by temporal changes in the quality of the bark on which the larvae feed.
  • 3 Reproductive development lagged behind that of wing muscles but, in early August, there was a rapid increase in the proportion of weevils with immature eggs and a corresponding increase in oocyte size. However, although wing muscles were fully formed in later‐emerging weevils, immature eggs were only approximately 10% of the volume of mature eggs.
  • 4 In field bioassays of summer–autumn maturation feeding, eggs continued to develop and some weevils laid mature eggs. Feeding and development during the pre‐overwinter period is likely to influence winter survival and also dispersal and reproduction in the following spring.
  • 5 The potential effects of climate change on the weevil life cycle are briefly discussed. Weevils are likely to benefit from the higher temperatures and later autumns predicted under climate change, resulting in an increase in damage to transplants.
  相似文献   

18.
Hui Ye 《Insect Science》1998,5(1):55-62
Abstract Observations on the life cycle and bionomics of Thanasimus formicarius (L.) were made under natural conditions and in the laboratory. The studies provide information on mass flight, development periods of eggs, larvae, pupae and prepupae, and adult maturation stage based on monthly field investigations. The results of the research suggest that the overall life cycle of T. formicarius covers approximately two years and four months in southern Norway. During the first year of the life cycle, the clerid larvae overwinter in the pupal chambers at the bases of attacked spruce trees; adults emerge and mature sexually in the second year; and the mature adults overwinter inside the bark crevices of trunk and oviposit in the spring of the third year. The studies also expose that the clerid occurence coincides well with the bark beetle attacks occurring in spring and autumn in northern Norway.  相似文献   

19.
The population dynamics of Rhipicephalus microplus (Ixodida: Ixodidae) in northwest Argentina was analysed to support the design of strategic methods for its control. Both parasitic and non‐parasitic phases were studied. The seasonal activity of R. microplus in its parasitic phase was characterized by three peaks in abundance: the first in mid–late spring; the second in summer, and the third in autumn. The non‐parasitic phase of R. microplus was characterized by a long total non‐parasitic period observed after exposures of females from mid‐summer to early autumn, a short total non‐parasitic period observed after exposures of females from late winter to late spring, a short period of larval longevity in early and mid‐summer, and no hatch of the eggs produced by females exposed in mid‐ and late autumn and winter. Treatments of cattle administered during the period from late winter to late spring will act on small cohorts of R. microplus, preventing the emergence of larger generations in summer and autumn. A 17‐week spelling period starting in late spring and early summer will be necessary to achieve optimal control of R. microplus free‐living larvae. If spelling begins in mid‐ or late summer or in autumn, the required period will be 26–27 weeks.  相似文献   

20.
1. The painted lady Vanessa cardui is a long‐range migratory butterfly that performs an annual multi‐generational round‐trip between Europe and Africa. Each autumn it returns to northwest (NW) Africa, presumably to track changes in resources that follow a predictable climate‐related spatio‐temporal pattern. 2. Data on the abundance of adult and immature stages in the Maghreb in 2014–2016 are used to test several hypotheses regarding the autumn migration of this species. 3. A strong seasonal migratory strategy was confirmed by the all but total absence of the species in NW Africa at the end of summer and the arrival of huge numbers migrants in October and November. Migration was timed to coincide with an increase in host plant availability but not with any increase in nectar sources. 4. Flower abundance was the main predictor of adult abundance in autumn, with Ditrichia viscosa, Verbesina encelioides, and Medicago sativa being key resources that attracted enormous numbers of butterflies to oases, ruderal habitats, and oueds. The distribution of immature stages was strongly predicted by host plant abundance (with traditional agriculture representing the most important breeding habitat) and latitude (most breeding occurred in the south of the region). Also, both adults and immature stages were more common inland than in coastal areas. 5. Changes in age structure of the adult population were also noted. The number of fresh adults slowly increased, indicating that butterflies did not return in a single wave and that the first offspring of the first returners were already emerging when some butterflies were still arriving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号