首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species diversity–environmental heterogeneity (D–EH) and species diversity–productivity (D–P) relationships have seldom been analyzed simultaneously even though such analyses could help to understand the processes underlying contrasts in species diversity among sites. Here we analyzed both relationships at a local scale for a highly diverse tropical dry forest of Mexico. We posed the following questions: (1) are environmental heterogeneity and productivity related?; (2) what are the shapes of D–EH and D–P relationships?; (3) what are individual, and interactive, contributions of these two variables to the observed variance in species diversity?; and (4) are patterns affected by sample size, or by partitioning into average local diversity and spatial species turnover? All trees (diameter at breast height ≥5 cm) within twenty‐six 0.2‐ha transects were censused; four environmental variables associated with water availability were combined into an environmental heterogeneity index; aboveground standing biomass was used as a productivity estimator. Simple and multiple linear and nonlinear regression models were run. Environmental heterogeneity and productivity were not correlated. We found consistently positive log‐linear D–EH and D–P relationships. Productivity explained a larger fraction of among‐transect variance in species diversity than did environmental heterogeneity. No effects of sample size were found. Different components of diversity varied in sensitivity to environmental heterogeneity and productivity. Our results suggest that species' differentiation along water availability gradients and species exclusion at the lowest productivity (driest) sites occur simultaneously, independently, and in a scale‐dependent fashion on the tree community of this forest.  相似文献   

2.
Aim Lianas differ physiologically from trees, and therefore their species‐richness patterns and potential climate‐change responses might also differ. However, multivariate assessments of spatial patterns in liana species richness and their controls are lacking. Our aim in this paper is to identify the environmental factors that best explain the variation in liana species richness within tropical forests. Location Lowland and montane Neotropical forests. Methods We quantified the contributions of environmental variables and liana and tree‐and‐shrub abundance to the species richness of lianas, trees and shrubs ≥ 2.5 cm in diameter using a subset of 65 standardized (0.1 ha) plots from 57 Neotropical sites from a global dataset collected by the late Alwyn Gentry. We used both regression and structural equation modelling to account for the effects of environmental variables (climate, soil and disturbance) and liana density on liana species richness, and we compared the species‐richness patterns of lianas with those of trees and shrubs. Results We found that, after accounting for liana density, dry‐season length was the dominant predictor of liana species richness. In addition, liana species richness was also related to stand‐level wood density (a proxy for disturbance) in lowland forests, a pattern that has not hitherto been shown across such a large study region. Liana species richness had a weak association with soil properties, but the effect of soil may be obscured by the strong correlation between soil properties and climate. The diversity patterns of lianas and of trees and shrubs were congruent: wetter forests had a greater species richness of all woody plants. Main conclusions The primary association of both liana and tree‐and‐shrub species richness with water availability suggests that, if parts of the Neotropics become drier as a result of climate change, substantial declines in the species richness of woody plants at the stand level may be anticipated.  相似文献   

3.
Climate and other global environmental changes are major threats to ecosystem functioning and biodiversity. However, the importance of plant diversity in mitigating the responses of functioning of natural ecosystems to long‐term environmental change remains unclear. Using inventory data of boreal forests of western Canada from 1958 to 2011, we found that aboveground biomass growth increased over time in species‐rich forests but decreased in species‐poor forests, and importantly, aboveground biomass loss from tree mortality was smaller in species‐rich than species‐poor forests. A further analysis indicated that growth of species‐rich (but not species‐poor) forests was statistically positively associated with rising CO2, and that mortality in species‐poor forests increased more as climate moisture availability decreased than it did in species‐rich forests. In contrast, growth decreased and mortality increased as the climate warmed regardless of species diversity. Our results suggest that promoting high tree diversity may help reduce the climate and environmental change vulnerability of boreal forests.  相似文献   

4.
Temperate and boreal forests are forecast to change in composition and shift spatially in response to climate change. Local‐scale expansions and contractions are most likely observable near species range limits, and as trees are long‐lived, initial shifts are likely to be detected in the understory regeneration layers. We examined understory relative abundance patterns of naturally regenerated temperate and boreal tree species in two size classes, seedlings and saplings, and across two spatial scales, local stand‐scale ecotones (tens of meters) and the regional temperate–boreal transition zone (?250 km) in central North America, to explore indications of climate‐mediated shifts in regeneration performance. We also tested for the presence of strong environmental gradients across local ecotones that might inhibit species expansion. Results showed that tree regeneration patterns across ecotones varied by species and size class, and varied across the regional summer temperature gradient. Temperate tree species regeneration has established across local ecotones into boreal forest patches and this process was facilitated by warmer temperatures. Conversely, boreal conifer regeneration exhibited negative responses to the regional temperature gradient and only displayed high abundance at the boreal end of local ecotones at cool northern sites. The filtering effects of temperature also increased with individual size for both boreal and temperate understory stems. Observed regeneration patterns and the minor environmental gradients measured across local ecotones failed to support the idea that there were strong barriers to potential temperate tree expansion into boreal forest patches. Detectable responses, consistently in the directions predicted for both temperate and boreal species, indicate that summer temperature is likely an important driver of natural tree regeneration in forests across the temperate–boreal transition zone. Regeneration patterns point toward temperate expansion and reduced but continued boreal presence in the near‐future, resulting in local and regional expansions of mixed temperate‐boreal forests.  相似文献   

5.
Productivity, habitat heterogeneity and environmental similarity are of the most widely accepted hypotheses to explain spatial patterns of species richness and species composition similarity. Environmental factors may exhibit seasonal changes affecting species distributions. We explored possible changes in spatial patterns of bird species richness and species composition similarity. Feeding habits are likely to have a major influence in bird–environment associations and, given that food availability shows seasonal changes in temperate climates, we expect those associations to differ by trophic group (insectivores or granivores). We surveyed birds and estimated environmental variables along line‐transects covering an E‐W gradient of annual precipitation in the Pampas of Argentina during the autumn and the spring. We examined responses of bird species richness to spatial changes in habitat productivity and heterogeneity using regression analyses, and explored potential differences between seasons of those responses. Furthermore, we used Mantel tests to examine the relationship between species composition similarity and both the environmental similarity between sites and the geographic distance between sites, also assessing differences between seasons in those relationships. Richness of insectivorous birds was directly related to primary productivity in both seasons, whereas richness of seed‐eaters showed a positive association with habitat heterogeneity during the spring. Species composition similarity between assemblages was correlated with both productivity similarity and geographic proximity during the autumn and the spring, except for insectivore assemblages. Diversity within main trophic groups seemed to reflect differences in their spatial patterns as a response to changes between seasons in the spatial patterns of food resources. Our findings suggest that considering different seasons and functional groups in the analyses of diversity spatial pattern could contribute to better understand the determinants of biological diversity in temperate climates.  相似文献   

6.
This paper reports a study on species richness and composition of Tumbesian dry forest communities. We tested two alternative hypotheses about species assemblage processes in tropical dry forests: (1) species assemblage is determined by the filtering effect of environmental conditions and (2) species assemblage is determined by facilitative processes along the gradient of water availability, and thus, species richness and evenness increase as water becomes limited. In addition, we also explored the effect of climate and soil conditions on species composition in tropical dry forests. Species composition was sampled in 109 plots in terms of cover and tree diameter at breast height. Climatic, edaphic, topographic and anthropogenic degradation variables were obtained for each plot. We used generalized linear models and canonical correspondence analyses to evaluate the effect of environmental variables on species composition, richness and evenness. Water availability negatively affected richness and significantly determined the species assemblage. Species richness increased from ridges to valleys and evenness increased at higher altitudes. Soil characteristics showed no effect on richness and evenness but soil moisture, nitrogen concentration and soil temperature explained significant fractions of species composition. Although timber extraction and livestock in our study area were of low intensity, it negatively affected richness but had only a minor effect on species composition. Our results suggest that species composition in these endangered tropical dry forests may be at least partially explained by the stress‐gradient hypothesis, with higher species richness at drier conditions probably induced by facilitation processes.  相似文献   

7.
Rates of tree growth in tropical forests reflect variation in life history strategies, contribute to the determination of species' distributional limits, set limits to timber harvesting and control the carbon balance of the stands. Here, we review the resources that limit tree growth at different temporal and spatial scales, and the different growth rates and responses of functional groups defined on the basis of regeneration strategy, maximum size, and species' associations with particular edaphic and climatic conditions.Variation in soil water availability determines intra- and inter-annual patterns of growth within seasonal forests, whereas irradiance may have a more important role in aseasonal forests. Nutrient supply limits growth rates in montane forests and may determine spatial variation in growth of individual species in lowland forests. However, its role in determining spatial variation in stand-level growth rates is unclear. In terms of growth rate, we propose a functional classification of tropical tree species which contrasts inherently fast-growing, responsive species (pioneer, large-statured species), from slow-growing species that are less responsive to increasing resource availability (shade-bearers, small-statured species). In a semi-deciduous forest in Ghana, pioneers associated with high-rainfall forests with less fertile soils, had significantly lower growth rates than pioneers that are more abundant in low-rainfall forests with more fertile soils. These results match patterns found in seedling trials and suggest for pioneers that species' associations with particular environmental conditions are useful indicators of maximum growth rate.The effects of variation in resource availability and of inherent differences between species on stand-level patterns of growth will not be independent if the functional group composition of tropical forests varies along resource gradients. We find that there is increasing evidence of such spatial shifts at both small and large scales in tropical forests. Quantifying these gradients is important for understanding spatial patterns in forest growth rates.  相似文献   

8.
Red panda Ailurus fulgens, an endangered habitat specialist, inhabits a narrow distribution range in bamboo abundance forests along mountain slopes in the Himalaya and Hengduan Mountains. However, their habitat use may be different in places with different longitudinal environmental gradients, climatic regimes, and microclimate. This study aimed to determine the habitat variables affecting red panda distribution across different longitudinal gradients through a multivariate analysis. We studied habitat selection patterns along the longitudinal gradient in Nepal's Himalaya which is grouped into the eastern, central, and western complexes. We collected data on red panda presence and habitat variables (e.g., tree richness, canopy cover, bamboo abundance, water availability, tree diameter, tree height) by surveys along transects throughout the species’ potential range. We used a multimodal inference approach with a generalized linear model to test the relative importance of environmental variables. Although the study showed that bamboo abundance had a major influence, habitat selection was different across longitudinal zones. Both canopy cover and species richness were unimportant in eastern Nepal, but their influence increased progressively toward the west. Conversely, tree height showed a decreasing influence on habitat selection from Eastern to Western Nepal. Red panda's habitat selection revealed in this study corresponds to the uneven distribution of vegetation assemblages and the dry climatic gradient along the eastern‐western Himalayas which could be related to a need to conserve energy and thermoregulate. This study has further highlighted the need of importance of bamboo conservation and site‐specific conservation planning to ensure long‐term red panda conservation.  相似文献   

9.
Understory plants are an important component of the high plant species diversity characteristic of neotropical rain forests. Herbs, shrubs, understory trees, and saplings of canopy trees occupy a broadly uniform environment of abundant rainfall, low light levels, and high humidity. We asked whether this community at the La Selva Biological Station in the Caribbean lowlands of Costa Rica was structured by environmental filters such as soil origin, topographic position, and understory light availability. We used nested quadrats to assess effects of soil origin (recent alluvium, weathered alluvium, residual volcanic soil) and topographic position (ridges, mid‐slopes and flats) on species composition, density, and diversity and measured six edaphic and understory light parameters. Non‐metric multidimensional scaling ordinations were based on frequency of occurrence in 20 quadrats for 272 species in the shrub size class and 136 species in the small‐tree size class for 17 sites. Three axes were correlated with composite environmental variables produced by principal component analysis representing slope, extractable phosphorus, and light. NMS site positions also reflected soil origin, topographic position, and geographic location. The analyses illustrated a complex community structured by species responses to environmental filters at multiple, interdigitated spatial scales. We suggest that light availability affected by canopy dynamics and dispersal limitation provides additional sources of variation in species distributions, which interact with edaphic patterns in complex ways. Abstract in Spanish is available with online material.  相似文献   

10.
Widely documented for temperate and cold forests in both hemispheres, variations in tree growth responses to climate along environmental gradients have rarely been investigated in the tropics. Seven tree‐ring chronologies of Centrolobium microchaete (Fabaceae) in the Cerrado tropical forests of Bolivia are used to determine the growth responses to climate along a precipitation gradient. Chronologies are distributed from the humid Guarayos forests (annual precipitation > 1600 mm) in the transition to the Amazonia to the dry‐mesic Chiquitos forests (annual precipitation < 1200 mm) in the proximity to the dry Chaco. On a large spatial scale, radial growth is positively influenced by rainfall and negatively by temperature at the end of the dry season. However, this regional pattern in climate‐tree growth relationship shows differences along the precipitation gradient. Relationships with climate are highly significant and extend over longer periods of the year in sites with low rainfall and extremely severe dry seasons. At wet sites, larger water soil capacity and endogenous forest dynamics partially mask the direct influence of climate on tree growth. Stronger similarities in tree‐growth responses to climate occur between sites in the dry Central Chiquitos and in the transition to the Guarayos forests. In contrast, the relationships show fewer similarities between sites in the humid Guarayos. We conclude that growth responses to climate in the tropics are more similar between sites with limited rainfall and severe and prolonged dry seasons. Our study points to a convergence in the patterns of growth responses of tropical trees to climate, modulated by scarce rainfall and marked seasonality. The negative impact of water deficits on tree physiological processes induces not only the documented reduction in forest species richness, but also a convergence in tree‐growth responses to climate in dry tropical forests.  相似文献   

11.
Aim To evaluate the strength of evidence for hypotheses explaining the relationship between climate and species richness in forest plots. We focused on the effect of energy availability which has been hypothesized to influence species richness: (1) via the effect of productivity on the total number of individuals (the more individuals hypothesis, MIH); (2) through the effect of temperature on metabolic rate (metabolic theory of biodiversity, MTB); or (3) by imposing climatic limits on species distributions. Location Global. Methods We utilized a unique ‘Gentry‐style’ 370 forest plots data set comprising tree counts and individual stem measurements, covering tropical and temperate forests across all six forested continents. We analysed variation in plot species richness and species richness controlled for the number of individuals by using rarefaction. Ordinary least squares (OLS) regression and spatial regressions were used to explore the relative performance of different sets of environmental variables. Results Species richness patterns do not differ whether we use raw number of species or number of species controlled for number of individuals, indicating that number of individuals is not the proximate driver of species richness. Productivity‐related variables (actual evapotranspiration, net primary productivity, normalized difference vegetation index) perform relatively poorly as correlates of tree species richness. The best predictors of species richness consistently include the minimum temperature and precipitation values together with the annual means of these variables. Main conclusion Across the world's forests there is no evidence to support the MIH, and a very limited evidence for a prominent role of productivity as a driver of species richness patterns. The role of temperature is much more important, although this effect is more complex than originally assumed by the MTB. Variation in forest plot diversity appears to be mostly affected by variation in the minimum climatic values. This is consistent with the ‘climatic tolerance hypothesis’ that climatic extremes have acted as a strong constraint on species distribution and diversity.  相似文献   

12.
We test for evidence of the Tropical Niche Conservatism or the Out of The Tropics hypotheses in structuring patterns of tree community composition along a 2000 + meter elevational gradient in the northern tropical Andes. By collecting and integrating data on the presence–absence of tree species within plots with phylogenetic information, we analyzed the following: (a) patterns of phylogenetic dispersion and species diversity along the elevational gradient based on indexes of net relatedness, nearest taxon relatedness, and species richness (α‐diversity); and (b) the replacement of lineages along the gradient using the PhyloSorensen metric (β‐diversity). More specifically, we established 20 0.25‐ha permanent tree inventory plots between 750 and 2,802 m asl where all individuals with diameter at breast height (DBH) ≥ 10 cm were measured and identified. We then used a series of linear models to test for changes in α and β diversity between plots in relation to elevation. Neither the net relatedness index nor the nearest taxon index showed a significant relationship with elevation. However, there was greater phylogenetic overdispersion at intermediate elevations; this likely reflects the mixing of species with contrasting origins from tropical and temperate lineages. β‐diversity between plots was negatively related to the corresponding difference in elevation, indicating that closely related lineages occupy similar ranges of elevation and temperature. We conclude that the immigration of lineages from extra‐tropical regions has significant effects in determining the phylogenetic structure of tree communities in tropical Andean forests. Abstract in Spanish is available with online material.  相似文献   

13.
Question: Knowledge of the interaction between understorey herb and overstorey tree layer diversity is mostly restricted to temperate forests. How do tree layer diversity and environmental variables affect herb layer attributes in subtropical forests and do these relationships change in the course of succession? Do abundance and diversity of woody saplings within the herb layer shift during succession? Location: Subtropical broad‐leaved forests in southeast China (29°8′18″‐29°17′29″N, 118°2′14″118°11′12″E). Methods: A full inventory of the herb layer including all plants below 1‐m height was done in 27 plots (10 × 10 m) from five successional stages (<20, <40, <60, <80 and ≥80 yr). We quantified the contribution of different life forms (herbaceous, woody and climber species) to herb layer diversity and productivity and analysed effects of environmental variables and tree layer diversity on these attributes. Results: Herb layer composition followed a successional gradient, as revealed by non‐metric multidimensional scaling (NMDS), but diversity was not correlated to the successional gradient. There was no correlation of diversity across layers. Herb layer productivity was neither affected by tree layer diversity nor by herb layer diversity. Although abundance of woody species in the herb layer decreased significantly during succession, woody species contributed extraordinarily to herb layer species diversity in all successional stages. All environmental factors considered had little impact on herb layer attributes. Conclusions: The subtropical forest investigated displays an immense richness of woody species in the herb layer while herbaceous species are less prominent. Species composition of the herb layer shows a clear successional pattern, however, the presence or absence of certain species appears to be random.  相似文献   

14.
Western Amazonia is known to harbour some of Earth's most diverse forests, but previous floristic analyses have excluded peatland forests which are extensive in northern Peru and are among the most environmentally extreme ecosystems in the lowland tropics. Understanding patterns of tree species diversity in these ecosystems is important both for quantifying beta‐diversity in this region, and for understanding determinants of diversity more generally in tropical forests. Here we explore patterns of tree diversity and composition in two peatland forest types – palm swamps and peatland pole forests – using 26 forest plots distributed over a large area of northern Peru. We place our results in a regional context by making comparisons with three other major forest types: terra firme forests (29 plots), white‐sand forests (23 plots) and seasonally‐flooded forests (11 plots). Peatland forests had extremely low (within‐plot) alpha‐diversity compared with the other forest types that were sampled. In particular, peatland pole forests had the lowest levels of tree diversity yet recorded in Amazonia (20 species per 500 stems, Fisher's alpha 4.57). However, peatland pole forests and palm swamps were compositionally different from each other as well as from other forest types in the region. Few species appeared to be peatland endemics. Instead, peatland forests were largely characterised by a distinctive combination of generalist species and species previously thought to be specialists of other habitats, especially white‐sand forests. We suggest that the transient nature and extreme environmental conditions of Amazonian peatland ecosystems have shaped their current patterns of tree composition and diversity. Despite their low alpha‐diversity, the unique combination of species found in tree communities in Amazonian peatlands augment regional beta‐diversity. This contribution, alongside their extremely high carbon storage capacity and lack of protection at national level, strengthens their status as a conservation priority.  相似文献   

15.
Aim In contrast to non‐forest vegetation, the species richness–productivity (SR‐P) relationship in forests still remains insufficiently explored. Several studies have focused on the diversity of the tree layer, but the species richness of temperate deciduous forests is mainly determined by their species‐rich herb layer. The factors controlling herb‐layer productivity may differ from those affecting tree layers or open herbaceous vegetation, and thus the SR‐P relationship and its underlying processes may differ. However, the few relevant studies have reported controversial results. Here we explore the SR‐P relationship in the forest herb layer across different areas from oceanic to continental Europe, and put the effect of habitat productivity on species richness into context with other key factors, namely soil pH and light availability. Location North‐western Germany, Czech Republic, Slovakia and southern Urals (Russia). Methods We measured herb‐layer species richness and biomass, soil pH and tree‐layer cover in 156 vegetation plots of 100 m2 in deciduous forests. We analysed the SR‐P relationship and the relative importance of environmental variables using regression models for particular areas and separate forest types. Results We found a consistent monotonic increase in the herb‐layer species richness with productivity across all study areas and all forest types. Soil pH and light availability also affected species richness, but their relative importance differed among areas. Main conclusions We suggest that the monotonically increasing SR‐P relationship in the forest herb layer results from the fact that herb‐layer productivity is limited by canopy shading; competition within the herb layer is therefore not strong enough to exclude many species. This differs fundamentally from open herbaceous vegetation, which is not subject to such productivity limits and consequently exhibits a unimodal SR‐P relationship. We present a conceptual model that might explain the differences in the SR‐P relationship between the forest herb layer and open herbaceous vegetation.  相似文献   

16.
Microbial biogeography is gaining increasing attention due to recent molecular methodological advance. However, the diversity patterns and their environmental determinants across taxonomic scales are still poorly studied. By sampling along an extensive elevational gradient in subarctic ponds of Finland and Norway, we examined the diversity patterns of aquatic bacteria and fungi from whole community to individual taxa across taxonomic coverage and taxonomic resolutions. We further quantified cross‐phylum congruence in multiple biodiversity metrics and evaluated the relative importance of climate, catchment and local pond variables as the hierarchical drivers of biodiversity across taxonomic scales. Bacterial community showed significantly decreasing elevational patterns in species richness and evenness, and U‐shaped patterns in local contribution to beta diversity (LCBD). Conversely, no significant species richness and evenness patterns were found for fungal community. Elevational patterns in species richness and LCBD, but not in evenness, were congruent across bacterial phyla. When narrowing down the taxonomic scope towards higher resolutions, bacterial diversity showed weaker and more complex elevational patterns. Taxonomic downscaling also indicated a notable change in the relative importance of biodiversity determinants with stronger local environmental filtering, but decreased importance of climatic variables. This suggested that niche conservatism of temperature preference was phylogenetically deeper than that of water chemistry variables. Our results provide novel perspectives for microbial biogeography and highlight the importance of taxonomic scale dependency and hierarchical drivers when modelling biodiversity and species distribution responses to future climatic scenarios.  相似文献   

17.
As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree‐ring records. Yet typical tree‐ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.  相似文献   

18.
Following catastrophic disturbances, succession and vegetation development occur, but in the prolonged absence of these disturbances a decline (retrogressive) phase follows in which nutrient availability and tree biomass declines considerably. We measured plant diversity across six long-term chronosequences that each included retrogressive stages in Australia, New Zealand, Alaska, Hawaii and Sweden. In contrast to theories predicting negative or hump-shaped responses of tree diversity to biomass or soil fertility, tree species richness often peaked coincidentally with tree basal area (a surrogate of tree biomass), and declined during retrogression. Similar patterns were found regardless of whether or not species richness estimates were rarefraction-adjusted to correct for variation in stem densities across plots. The Shannon-Weiner diversity index sometimes showed the same pattern, but in two chronosequences was least when tree basal area peaked; this was driven by the domination of total basal area by single tree species in both cases. The decline in tree diversity during retrogression was often associated with reduced relative amounts of total phosphorus in soil. In contrast, total vascular plant species richness often increased during retrogression. These results demonstrate that forests with high tree diversity and biomass do not persist indefinitely in the long-term absence of catastrophic disturbance, and that similar patterns occur across the boreal, temperate and subtropical zones.  相似文献   

19.
Understanding the processes that shape biodiversity patterns is essential for ecosystem management and conservation. Local environmental conditions are often good predictors of species distribution and variations in habitat quality usually positively correlate to species richness. However, beside habitat limitation, species presence-absence may be constrained by dispersal limitation. We tested the relative importance of both limitations on saproxylic beetle diversity, using forest continuity as a surrogate for dispersal limitation and stand maturity as a surrogate for habitat limitation. Forest continuity relies on the maintenance of a forest cover over time, while stand maturity results in the presence of old-growth habitat features. Forty montane beech-fir forests in the French pre-Alps were sampled, under a balanced sampling design in which forest continuity and stand maturity were crossed. A total of 307 saproxylic beetle species were captured using flight-interception traps and Winkler–Berlese extractors. We explored the response of low- versus high-dispersal species groups to forest continuity and stand maturity. Saproxylic beetle diversity increased significantly with stand maturity and was mostly influenced by variables related to deadwood diversity at the stand scale and suitable habitat availability at the landscape scale. Surprisingly, no evidence of dispersal limitation was found, as diversity patterns were not influenced by forest continuity and associated variables, even for low-dispersal species. Our study demonstrates that in an unfragmented forest landscape, saproxylic beetles are able to colonize recent forests, as long as local deadwood resources are sufficiently diversified (e.g. tree species, position, diameter and/or decay stage).  相似文献   

20.
Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread in western North America and, similar to all shrub steppe ecosystems worldwide, are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the fine and broad-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis, non-metric multidimensional scaling, and redundancy analysis to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, which our results indicate has important consequences for forb species richness and composition, and suggests that climate change-induced modification of soil water availability may have important implications for plant species diversity in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号