首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Manganese is one of the ubiquitous environmental pollutants that can induce an indirect excitotoxicity caused by altered glutamate (Glu) metabolism. The present study has been carried out to investigate the effect of Mn on the expression of N‐methyl‐d ‐aspartate receptor (NR) subunit mRNAs and proteins in rat striatum when rats were in manganism. The rats were divided randomly into four groups of six males and six females each: control group (group 1) and 8, 40, and 200 μmol/kg Mn‐treated groups (groups 2–4). The control group rats were subcutaneously (s.c.) injected with normal saline. Manganese‐treated rats were s.c. injected with respectively 8, 40, and 200 μmol/kg of MnCl2 · 6H2O in normal saline. The administration of MnCl2 · 6H2O for 4 weeks significantly increased Mn concentration in the striatum. With the increase in administered MnCl2 dosage, Glu concentration and cell apoptosis rate increased significantly. The relative intensity of NR2A mRNA decreased significantly in 8 μmol/kg Mn‐treated rats. However, relative intensities of NR1 and NR2B mRNAs decreased significantly in 40 μmol/kg Mn‐treated rats. Similarly, the relative intensity of NR2A protein showed a significant decrease in 40 μmol/kg Mn‐treated rats whereas those of NR1 and NR2B decreased significantly in 200 μmol/kg Mn‐treated rats. Therefore, the expression of NR2A mRNA and protein were much more sensitive to Mn than that of NR1 and NR2B. In conclusion, the results suggested that Mn induced nerve cell damage by increasing extracellular Glu level and altered expression of NR subunit mRNAs and proteins in rat striatum. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:1–9, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20306  相似文献   

3.
4.
The effect of isethionic acid, a central metabolite of taurine, on ethanol-induced locomotor activity was investigated in rodents. Ten minutes following an (i.p.) simultaneous administration of ethanol (0.0, 1.5, 2.0, 2.5, 3.0, 3.5 g/kg) and isethionic acid (0.0, 22.5, 45.0, 90.0, 180.0 mg/kg), mice were placed in the open-field chambers and locomotor activity was measured during a ten-minute testing period. A significant interaction was found between isethionic acid and ethanol. Isethionic acid pre-treated mice (45.0, 90.0 and 180.0 mg/kg) showed a higher locomotor activity than the saline group at 2.5 and 3 g/kg of ethanol. In a second study, isethionic acid (45 mg/kg) and ethanol (1 g/kg) were simultaneously injected to rats. Ten minutes after the two treatments, rats were placed in the open-field chamber for a 30-minute period. The depressant effects that ethanol produced on rat locomotion were amplified by the same dose of isethionic acid as it affected ethanol-induced locomotion in mice (45 mg/kg). However, isethionic acid did not change the spontaneous locomotion at any of the doses tested in mice or rats. Since no differences in blood ethanol levels were detected in both mice and rats, the interaction between isethionic acid's action and ethanol-related locomotion does not seem to be due to different rates of absorption of ethanol or any other pharmacokinetic process related to ethanol levels. The current study displayed that isethionic acid, administered intraperitoneally, behaves in a similar way to its immediate precursor, taurine, by amplifying ethanol-induction of the locomotor activity.  相似文献   

5.
The depressant actions of ethanol on central nervous system activity appear to be mediated by its actions on a number of important membrane associated ion channels including the N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptor. Although no specific site of action for ethanol on the NMDA receptor has been found, previous studies suggest that the ethanol sensitivity of the receptor may be affected by intracellular C-terminal domains of the receptor that regulate the calcium-dependent inactivation of the receptor. In the present study, co-expression of the NR2A subunit and an NR1 subunit that lacks the alternatively spliced intracellular C1 cassette did not reduce the effects of ethanol on channel function as measured by patch-clamp electrophysiology. Full inhibition was also observed in cells expressing an NR1 subunit truncated at the end of the C0 domain (NR1(863stop)). However, the inhibitory effects of ethanol were reduced by expression of an NR1 C0 domain deletion mutant (NR1(Delta839-863)), truncation mutant (NR1(858stop)), or a triple-point mutant (Arg to Ala, Lys to Ala, and Asn to Ala at 859-861) previously shown to significantly reduce calcium-dependent inactivation. A similar reduction in the effects of ethanol on wild-type NR1/2A but not NR1/2B or NR1/2C receptors was observed after co-expression of full-length or truncated human skeletal muscle alpha-actinin-2 proteins that produce a functional knockout of the C0 domain. The effects of ethanol on hippocampal and cortical NMDA-induced currents were similarly attenuated in low calcium recording conditions, suggesting that a C0 domain-dependent process may confer additional ethanol sensitivity to NMDA receptors.  相似文献   

6.
Human genetic studies have suggested that polymorphisms of the GABRA2 gene encoding the GABAA α2-subunit are associated with ethanol dependence. Variations in this gene also convey sensitivity to the subjective effects of ethanol, indicating a role in mediating ethanol-related behaviours. We therefore investigated the consequences of deleting the α2-subunit on the ataxic and rewarding properties of ethanol in mice. Ataxic and sedative effects of ethanol were explored in GABAA α2-subunit wildtype (WT) and knockout (KO) mice using a Rotarod apparatus, wire hang and the duration of loss of righting reflex. Following training, KO mice showed shorter latencies to fall than WT littermates under ethanol (2 g/kg i.p.) in both Rotarod and wire hang tests. After administration of ethanol (3.5 g/kg i.p.), KO mice took longer to regain the righting reflex than WT mice. To ensure the acute effects are not due to the gabra2 deletion affecting pharmacokinetics, blood ethanol concentrations were measured at 20 minute intervals after acute administration (2 g/kg i.p.), and did not differ between genotypes. To investigate ethanol’s rewarding properties, WT and KO mice were trained to lever press to receive increasing concentrations of ethanol on an FR4 schedule of reinforcement. Both WT and KO mice self-administered ethanol at similar rates, with no differences in the numbers of reinforcers earned. These data indicate a protective role for α2-subunits, against the acute sedative and ataxic effects of ethanol. However, no change was observed in ethanol self administration, suggesting the rewarding effects of ethanol remain unchanged.  相似文献   

7.
Chemotherapic drugs may elicit acute or chronic peripheral neuropathies. Mirtazapine, as an antidepressant, is also used for the treatment of neuropathic pain. The current study aimed to investigate the effect of mirtazapine on the oxaliplatin-induced neuropathy in rats as well as the underlying mechanism. A neuropathy model was established in Sprague–Dawley rats by intraperitoneal (i.p.) injection of oxaliplatin 4 mg/kg twice a week for 4 weeks. The therapeutic potential of mirtazapine 10, 20, and 30 mg/kg/day per-orally for 28 consecutive days was evaluated. Subsequently, a dose of 1 mg/kg of WAY100635 i.p., a selective antagonist of 5-HT1A receptor, was preadministrated before mirtazapine 20 mg/kg/day per-orally in oxaliplatin-induced neuropathy. The behavioral tests and the expression of NMDA receptor subunit NR2B were determined. The results displayed that repeated administration of mirtazapine 20 or 30 mg/kg/day for 28 consecutive days significantly attenuated the mechanical allodynia and the up-regulation of spinal cord NR2B but not the cold hyperalgesia in rats with oxaliplatin-induced neuropathy, which was reversed by WAY100635 preadministration. Our findings suggest that oxaliplatin-induced mechanical allodynia is associated with spinal NR2B up-regulation, which may be attenuated by mirtazapine administration.  相似文献   

8.
Pleiotrophin (PTN) is a cytokine with important roles in dopaminergic neurons. We found that an acute ethanol (2.0 g/kg, i.p.) administration causes a significant up‐regulation of PTN mRNA and protein levels in the mouse prefrontal cortex, suggesting that endogenous PTN could modulate behavioural responses to ethanol. To test this hypothesis, we studied the behavioural effects of ethanol in PTN knockout (PTN?/?) mice and in mice with cortex‐ and hippocampus‐specific transgenic PTN over‐expression (PTN‐Tg). Ethanol (1.0 and 2.0 g/kg) induced an enhanced conditioned place preference in PTN?/? compared to wild type mice, suggesting that PTN prevents ethanol rewarding effects. Accordingly, the conditioning effects of ethanol were completely abolished in PTN‐Tg mice. The ataxic effects induced by ethanol (2.0 g/kg) were not affected by the genotype. However, the sedative effects of ethanol (3.6 g/kg) tested in a loss of righting reflex paradigm were significantly reduced in PTN‐Tg mice, suggesting that up‐regulation of PTN levels prevents the sedative effects of ethanol. These results indicate that PTN may be a novel genetic factor of importance in alcohol use disorders, and that potentiation of the PTN signalling pathway may be a promising therapeutic strategy in the treatment of these disorders.

  相似文献   


9.
Alcohol and nicotine are coabused, and preclinical and clinical data suggest that common genes may influence responses to both drugs. A gene in a region of mouse chromosome 9 that includes a cluster of three nicotinic acetylcholine receptor (nAChR) subunit genes influences the locomotor stimulant response to ethanol. The current studies first used congenic mice to confirm the influential gene on chromosome 9. Congenic F2 mice were then used to more finely map the location. Gene expression of the three subunit genes was quantified in strains of mice that differ in response to ethanol. Finally, the locomotor response to ethanol was examined in mice heterozygous for a null mutation of the α3 nAChR subunit gene ( Chrna3 ). Congenic data indicate that a gene on chromosome 9, within a 46 cM region that contains the cluster of nAChR subunit genes, accounts for 41% of the genetic variation in the stimulant response to ethanol. Greater expression of Chrna3 was found in whole brain and dissected brain regions relevant to locomotor behavior in mice that were less sensitive to ethanol-induced stimulation compared to mice that were robustly stimulated; the other two nAChR subunit genes in the gene cluster (α5 and β4) were not differentially expressed. Locomotor stimulation was not expressed on the genetic background of Chrna3 heterozygous (+/−) and wild-type (+/+) mice; +/− mice were more sensitive than +/+ mice to the locomotor depressant effects of ethanol. Chrna3 is a candidate gene for the acute locomotor stimulant response to ethanol that deserves further examination.  相似文献   

10.
Prophylactic and therapeutic effects of acetylcarnitine against acetaminophen‐induced hepatotoxicity were studied in mice. To evaluate the prophylactic effects of acetylcarnitine, mice were supplemented with acetylcarnitine (2 mmol/kg/day per oral (p.o.) for 5 days) before a single dose of acetaminophen (350 mg/kg intraperitoneal (i.p.)). Animals were sacrificed 6 h after acetaminophen injection. Acetaminophen significantly increased the markers of liver injury, hepatic reactive oxygen species, and nitrate/nitrite, and decreased hepatic glutathione (GSH) and the antioxidant enzymes. Acetylcarnitine supplementation resulted in reversal of all biochemical parameters toward the control values. To explore the therapeutic effects of acetylcarnitine, mice were given a single dose of acetylcarnitine (0.5, 1, and 2 mmol/kg p.o.) 1.5 h after acetaminophen. Animals were sacrificed 6 h after acetaminophen. Acetylcarnitine administration resulted in partial reversal of liver injury only at 2 mmol/kg p.o. At equimolar doses, N‐acetylcystiene was superior as therapeutic agent to acetylcarnitine. However, acetylcarnitine potentiated the effect of N‐acetylcystiene in the treatment of acetaminophen toxicity.  相似文献   

11.
H C Jackson  I J Griffin  D J Nutt 《Life sciences》1992,50(19):PL155-PL159
In the present study we have investigated the effects of the alpha 2-adrenoceptor antagonist idazoxan and its 2-ethoxy derivative RX811059 on the locomotor activity induced by cocaine in mice. The stimulant effects of cocaine (15 mg/kg i.p.) were significantly antagonised by idazoxan (3 mg/kg i.p.) and RX811059 (1 mg/kg i.p.) and also initially suppressed by idazoxan (1 mg/kg i.p.) and RX811059 (0.3 mg/kg i.p.). The alpha 2-adrenoceptor antagonists had no effect on locomotion when given alone. These results suggest that noradrenergic mechanisms may play a role in the stimulant effects of cocaine and that alpha 2-adrenoceptor antagonists like idazoxan may be of some benefit in the clinical management of cocaine abuse.  相似文献   

12.
We have shown previously that mice lacking the adenosine A2A receptor (A2AR) generated on a CD1 background self‐administer more ethanol and exhibit hyposensitivity to acute ethanol. We aimed to investigate if the increased propensity of A2A?/? mice to consume ethanol is associated with an altered sensitivity in the motivational properties of ethanol in the conditioned place preference (CPP) and conditioned taste aversion (CTA) paradigms and with an altered development of sensitization to the locomotor effects of ethanol. We also tested their sensitivity to the anxiolytic effects of ethanol. Our results show that A2A?/? mice produced on a CD1 background displayed a reduced ethanol‐induced CPP and an increased sensitivity to the anxiolytic and locomotor‐stimulant effects of ethanol, but they did not show alteration in ethanol‐induced CTA and locomotor sensitization. Ethanol‐induced CPP, ethanol consumption and the locomotor effects of ethanol were also tested in A2A?/? mice produced on a C57BL/6J background. Our results emphasized the importance of the genetic background because alteration in ethanol consumption and preference, ethanol‐induced CPP and locomotor‐stimulant effects were not found in knockout mice produced on the alcohol‐preferring C57BL/6J genetic background. Finally, the A2AR agonist, 2‐p‐(2‐carboxyethyl)‐phenylethylamino‐5′‐N‐ethylcarboxamidoadenosine hydrochloride (CGS 21680), reduced ethanol consumption and preference in C57BL/6J mice. In conclusion, A2AR deficiency in mice generated on a CD1 background leads to high ethanol consumption that is associated with an increased sensitivity to the locomotor‐stimulant/anxiolytic effects of ethanol and a decrease in ethanol‐induced CPP.  相似文献   

13.
The effect of acute ethanol administration on histamine (HA) dynamics was examined in the mouse hypothalamus. The steady-state level of HA did not change after intraperitoneal administration of ethanol (0.5-5 g/kg), whereas the level of tele-methylhistamine (t-MH), a predominant metabolite of brain HA, increased when 3 and 5 g/kg of ethanol was given. Pargyline hydrochloride (80 mg/kg, i.p.) increased the level of t-MH by 72.2% 90 min after the treatment. Ethanol at any dose given did not significantly affect the t-MH level in the pargyline-pretreated mice. Decrease in the t-MH level induced by metoprine (10 mg/kg, i.p.), an inhibitor of HA-N-methyltransferase, was suppressed by ethanol (5 g/kg), thereby suggesting inhibition of the elimination of brain t-MH. Ethanol (5 g/kg) significantly delayed the depletion of HA induced by (S)-alpha-fluoromethylhistidine (50 mg/kg, i.v.), a specific inhibitor of histidine decarboxylase. Therefore, a large dose of ethanol apparently decreases HA turnover in the mouse hypothalamus.  相似文献   

14.
Objective: Chromium has gained popularity as a nutritional supplement for diabetic patients. This study evaluated the effect of chronic administration of a chromium complex of d ‐phenylalanine (Cr(d ‐phe)3) on glucose and insulin tolerance in obese mice. The study tested the hypothesis that Cr(d ‐phe)3 suppresses endoplasmic reticulum (ER) stress and insulin resistance in these animals. Methods and Procedures: C57BL lean and ob/ob obese mice were randomly divided to orally receive vehicle or Cr(d ‐phe)3 (3.8 μg of elemental chromium/kg/day) for 6 months. Insulin sensitivity was evaluated by glucose and insulin tolerance tests. Protein levels of phosphorylated pancreatic ER kinase (PERK), α subunit of translation initiation factor 2 (eIF2α) and inositol‐requiring enzyme‐1 (IRE‐1), p‐c‐Jun, and insulin receptor substrate‐1 (IRS‐1) phosphoserine‐307 were assessed by western blotting. In vitro ER stress was induced by treating cultured muscle cells with thapsigargin in the presence or absence of Cr(d ‐phe)3. Results: ob/ob mice showed poor glucose and insulin tolerance compared to the lean controls, which was attenuated by Cr(d ‐phe)3. Markers of insulin resistance (phospho‐c‐Jun and IRS‐1 phosphoserine) and ER stress (p‐PERK, p‐IRE‐1, p‐eIF2α), which were elevated in ob/ob mice, were attenuated following Cr(d ‐phe)3 treatment. Chromium treatment was also associated with a reduction in liver triglyceride levels and lipid accumulation. In cultured myotubes, Cr(d ‐phe)3 attenuated ER stress induced by thapsigargin. Discussion: Oral Cr(d ‐phe)3 treatment reduces glucose intolerance, insulin resistance, and hepatic ER stress in obese, insulin‐resistant mice.  相似文献   

15.
Ammonia is considered to be the main agent responsible for hepatic encephalopathy which progressively leads to altered mental status. N‐methyl‐D‐aspartate (NMDA) is an ionotropic glutamate receptor, which is involved in synaptogenesis, memory and neurotoxicity. The aim of this study was to investigate the effects of ammonia intoxication and allopurinol, a xanthine oxidase (XO) inhibitor, on NMDA receptor subunits, NR2A and NR2B, in the hippocampus of rats. Thirty‐six male rats were divided into three groups (n = 12/group) as follows: (1)control group (phosphate buffered saline (PBS) solution); (2)ammonia group (ammonium acetate, 2.5 mmol/kg), (3)ammonia + allopurinol group (ammonium acetate, 2.5 mmol/kg, allopurinol, 50 mg/kg). Each rat received intraperitoneal injection for 28 days. Western Blotting technique was used for detecting NR2A and NR2B expressions. Both NR2A and NR2B subunit expressions decreased 27 and 11%, respectively, in ammonia group with respect to the control group. Ammonium acetate decreased significantly in NR2A subunit expressions in the hippocampus (p < 0.01). Administration of ammonia + allopurinol caused statistically significant increases in NR2A subunit expressions compared to the ammonia group (p < 0.001). The down‐regulation of NMDA receptors caused by ammonium acetate suggest that these receptors may play role in the process of hepatic encephalopathy and using allopurinol may have some protective effects in ammonia toxicity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
l ‐DOPA‐induced dyskinesia is characterised by debilitating involuntary movement, which limits quality of life in patients suffering from Parkinson’s disease. Here, we investigate effects of the α2 adrenoceptor antagonist idazoxan on l ‐DOPA‐induced dyskinesia as well as on alterations of extracellular l ‐DOPA and dopamine (DA) levels in the striatum in dyskinetic rats. Male Wistar rats were unilaterally lesioned with 6‐hydroxydopamine and subsequently treated with l ‐DOPA/benserazide to induce stable dyskinetic movements. Administration of idazoxan [(9 mg/kg, intraperitoneal (i.p.)] significantly alleviated l ‐DOPA‐induced dyskinesia, whereas idazoxan (3 mg/kg, i.p.) did not affect dyskinetic behaviour. Bilateral in vivo microdialysis revealed that idazoxan 9 mg/kg reduces extracellular peak l ‐DOPA levels in the lesioned and intact striatum as well as DA levels in the lesioned striatum. In parallel, the exposure to idazoxan in the striatum was monitored. Furthermore, no idazoxan and l ‐DOPA drug–drug interaction was found in plasma, brain tissue and CSF. In conclusion, the decrease of l ‐DOPA‐derived extracellular DA levels in the lesioned striatum significantly contributes to the anti‐dyskinetic effect of idazoxan.  相似文献   

17.
Mice of two strains selected for small and large brain weight (SB and LB, respectively) had free access to 10% alcohol and water within three months. At the end of this period, they consumed alcohol in daily dose of 6.9 +/- 0.9 and 7.5 +/- 0.8 g/kg, respectively. After a period of imposed three-day abstinence, the alcohol consumption by the mice of these strains increased by 68.6 and 49.3%, respectively. Exploratory behavior of independent groups of mice from these strains was studied in the closed cross-maze. The animals were injected with ethanol (2.4 g/kg, i.p.) or vehicle twice with a weekly interval. In SB mice, the first ethanol administration increased the total time of maze exploration and the number of stereotyped visits. The second ethanol administration did not increase the time of exploration but increased the number of stereotyped visits even to the greater extent. The latter indicates the development of rapid tolerance and sensitization of these behaviors to the drug, respectively. The ethanol administration inhibited exploratory patrolling behavior and defecations. In LB mice, both the first and second ethanol administrations increased the number of stereotyped visits and decreased the exploration time and the number of defecations. The results do not support the psychomotor stimulant hypothesis of alcohol addiction. It is proposed that SB and LB mice may serve as models for Cloninger's types 1 and 2 alcoholics and may be useful for investigation of neuropharmacological mechanisms of stimulatory and inhibitory effects of ethanol.  相似文献   

18.
Neuroanatomical research suggests that interactions between dopamine and glutamate within the mesolimbic dopamine system are involved in both drug‐induced locomotor stimulation and addiction. Therefore, genetically determined differences in the locomotor responses to ethanol and cocaine may be related to differences in the effects of these drugs on this system. To test this, we measured drug‐induced changes in dopamine and glutamate within the nucleus accumbens (NAcc), a major target of mesolimbic dopamine neurons, using in vivo microdialysis in selectively bred FAST and SLOW mouse lines, which were bred for extreme sensitivity (FAST) and insensitivity (SLOW) to the locomotor stimulant effects of ethanol. These mice also show a genetically correlated difference in stimulant response to cocaine (FAST > SLOW). Single injections of ethanol (2 g/kg) or cocaine (40 mg/kg) resulted in larger increases in dopamine within the NAcc in FAST compared with SLOW mice. There was no effect of either drug on NAcc glutamate levels. These experiments indicate that response of the mesolimbic dopamine system is genetically correlated with sensitivity to ethanol‐ and cocaine‐induced locomotion. Because increased sensitivity to the stimulating effects of ethanol appears to be associated with greater risk for alcohol abuse, genetically determined differences in the mesolimbic dopamine response to ethanol may represent a critical underlying mechanism for increased genetic risk for alcoholism.  相似文献   

19.
Ethanol exerts biphasic effects on behavior, stimulant at low doses and depressant at higher doses. In the present study we used two mouse genetic models to investigate the relationships among activating and depressant responses to alcohol. The first model was a panel of nine isogenic genotypes. FAST and SLOW mice, selectively bred for high and low ethanol-induced motor activation, respectively, were used as a second model. We used loss of righting reflex to assess initial sensitivity and acute functional tolerance to a hypnotic dose of ethanol (3 g/kg, 20% v/v). Blood ethanol concentration at the onset of loss of righting reflex was used as an estimate of initial sensitivity, while the difference between concentration values at the recovery and loss of righting represented an acute functional tolerance score. Mean initial sensitivity and acute functional tolerance values of the nine strains were correlated with a previously obtained measure of ethanol-induced locomotor activation. Activation correlated significantly with both initial sensitivity ( r g = 0.80; P < 0.05) and acute functional tolerance ( r g = 0.77; P < 0.05). Thus, inbred genotypes that were activated more by a low dose of ethanol were also more sensitive to and developed more acute tolerance to a high dose. FAST mice had initial sensitivity values similar to those of SLOW mice, but developed more pronounced tolerance, indicating that ethanol-induced activation and acute functional tolerance may be regulated by some common genetic mechanisms. In summary, these results supported a genetic association between ethanol-induced activation and rapid development of tolerance.  相似文献   

20.
Abstract: Ion flux through native N-methyl-d -aspartate (NMDA) receptors is inhibited by behaviorally relevant concentrations of ethanol (10–100 mM) in a variety of neuronal preparations. However, in animal tissues, it is often difficult to determine accurately which NMDA receptor subunits are responsible for the observed effect. In this study, human embryonic kidney 293 (HEK 293) cells normally devoid of NMDA receptors were transiently transfected with cDNA expression plasmids coding for specific rat NMDA receptor subunits. Brief application of an NMDA/glycine solution to cells markedly increased intracellular calcium in cells transfected with NR1/NR2A, NR1/NR2B, or NR1/NR2A/NR2B as measured by fura-2 calcium imaging. This increase was both NMDA- and glycine-dependent and was inhibited by competitive and noncompetitive NMDA antagonists, including 2-amino-5-phosphopentanoic acid and MK-801. The NR2B-selective antagonist ifenprodil inhibited responses in cells transfected with NR1/NR2B or NR1/NR2A/NR2B, but not NR1/NR2A subunits. Increasing the transfection ratio of NR2B versus NR2A subunit in NR1/NR2A/NR2B-transfected cells greatly increased their ifenprodil sensitivity. Acute exposure to ethanol (25–100 mM) inhibited the NMDA-mediated increase in intracellular calcium in a dose-dependent manner without affecting basal calcium concentrations. There were no statistically significant differences in ethanol's potency or maximal inhibition between any of the subunit combinations tested. HEK 293 cells transfected with NR1/NR2A/NR2B subunits showed an enhanced sensitivity to ifenprodil following a 24-h exposure to concentrations of ethanol of 50 mM and greater. The enhanced ifenprodil sensitivity following ethanol exposure was not associated with changes in NR1, NR2A, or NR2B immunoreactivity. In contrast to results obtained in transfected HEK 293 cells, no effect of chronic ethanol was observed in oocytes expressing NR1/NR2A/NR2B subunits. These results demonstrate that recombinant NMDA receptors expressed in HEK 293 cells form functional receptors that, like native receptors, are sensitive to modulation by both acute and chronic ethanol treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号