首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boreal forests are highly susceptible to wildfire, and post-fire changes in soil temperature and moisture have the potential to transform large areas of the landscape from a net sink to a net source of carbon (C). Understanding the ecological controls that regulate these disturbance effects is critical to developing models of ecosystem response to changes in fire frequency and severity. This paper combines laboratory and field measurements along a chronosequence of burned black spruce stands into regression analyses and models that assess relationships between moss succession, soil microclimate, decomposition, and C source-sink dynamics. Results indicate that post-fire changes in temperature and substrate quality increased decomposition in humic materials by a factor of 3.0 to 4.0 in the first 7 years after fire. Bryophyte species exhibited a distinct successional pattern in the first five decades after fire that corresponded to decreased soil temperature and increased C accumulation in organic soils. Potential rates of C exchange in mosses were greatest in early successional species and declined as the stand matured. Residual sources of CO2 (those not attributed to moss respiration or humic decomposition) increased as a function of stand age, reflecting increased contributions from roots as the stand recovered from disturbance. Together, the field measurements, laboratory experiments, and models provide strong evidence that interactions between moss and plant succession, soil temperature, and soil moisture largely regulate C source-sink dynamics from black spruce systems in the first century following fire disturbance.  相似文献   

2.
3.
4.
Species are predicted to shift their distributions upslope or poleward in response to global warming. This prediction is supported by a growing number of studies documenting species migrations in temperate systems but remains poorly tested for tropical species, and especially for tropical plant species. We analyzed changes in tree species composition in a network of 10 annually censused 1‐ha plots spanning an altitudinal gradient of 70–2800 m elevation in Costa Rica. Specifically, we combined plot data with herbarium records (accessed through GBIF) to test if the plots' community temperature scores (CTS, average thermal mean of constituent species weighted by basal area) have increased over the past decade as is predicted by climate‐driven species migrations. In addition, we quantified the contributions of stem growth, recruitment, and mortality to the observed patterns. Supporting our a priori hypothesis of upward species migrations, we found that there have been consistent directional shifts in the composition of the plots, such that the relative abundance of lowland species, and hence CTS, increased in 90% of plots. The rate of the observed compositional shifts corresponds to a mean thermal migration rate (TMR) of 0.0065 °C yr?1 (95% CI = 0.0005–0.0132 °C yr?1). While the overall TMR is slower than predicted based on concurrent regional warming of 0.0167 °C yr?1, migrations were on pace with warming in 4 of the 10 plots. The observed shifts in composition were driven primarily by mortality events (i.e., the disproportionate death of highland vs. lowland species), suggesting that individuals of many tropical tree species will not be able to tolerate future warming and thus their persistence in the face of climate change will depend on successful migrations. Unfortunately, in Costa Rica and elsewhere, land area inevitably decreases at higher elevations; hence, even species that are able to migrate successfully will face heightened risks of extinction.  相似文献   

5.
6.
7.
Question: What are tree mortality rates and how and why do they vary in late‐successional Picea abies‐dominated forests? Do observed tree mortality patterns allow comparative assessment of models of long‐term stand development? Location: Northern boreal Fennoscandia. Methods: We measured stand structure in 10 stands in two different areas. We determined age distributions and constructed a chronology of tree deaths by cross‐dating the years of death of randomly sampled dead trees. Results: The stands in the two areas had contrasting tree age distributions, despite similar live tree structure. In one area, stands were relatively even‐aged and originated following a stand‐replacing fire 317 years earlier. The stands in the second area had an uneven age structure and virtually no signs of past fires, suggesting a very long period since the last major disturbance. The younger stands were characterized by a high mortality rate and inter‐annual variation, which we attributed to senescence of the relatively even‐aged stands approaching the maximum age of P. abies. In contrast, the tree mortality rates in the older stands were low and relatively stable. Conclusions: Patterns of tree mortality were, to a large extent, dependent on the time since the last stand‐replacing disturbance, suggesting that northern boreal P. abies stands eventually reach a shifting mosaic state maintained through small‐scale dynamics, but the time needed to reach this state appears to be lengthy; even 300 years after a forest fire stands showed changes in patterns of tree mortality that were related to the developmental stage of the stands.  相似文献   

8.
Abstract. In order to describe and compare the post‐fire succession patterns of the two ecological regions (mixed‐wood and coniferous ecoregions) of northwestern Quebec, 260 forest stands were sampled with the point‐centred plot method. The mixed‐wood ecological region belongs to the Abies balsamea‐Betula papyrifera bioclimatic domain whereas the coniferous ecological region belongs to the Picea mariana‐moss bioclimatic domain. In each plot, tree composition was described, surficial deposits and drainage were recorded, and fire history was reconstructed using standard dendro‐ecological methods. Ordination techniques (Correspondence Analysis and Canonical Correspondence Analysis) were used to describe the successional patterns of forest vegetation and to correlate them with the explanatory variables. The results showed the importance of surficial deposits, the time since fire and the ecoregion in explaining the variation of stand composition. Abies balsamea tends to increase in importance with an increase in time since fire, and this trend is more pronounced in the mixed‐wood region. Even when controlling both for surficial deposits and time since fire, differences in successional trends were observed between the two ecoregions. As all the species are present in both ecoregions and as they are all observed further north, our results suggest that both the landscape configuration and fire regime parameters such as fire size and fire intensity are important factors involved in these differences.  相似文献   

9.

Questions

Observations in permanent forest vegetation plots in Norway and elsewhere indicate that complex changes have taken place over the period 1988–2020. These observations are summarised in the “climate-induced understorey change (CIUC)” hypothesis, i.e. that the understorey vegetation of old-growth boreal forests in Norway undergoes significant long-term changes and that these changes are consistent with the ongoing climate change as an important driver. Seven testable predictions were derived from the CIUC hypothesis.

Location

Norway.

Methods

Vegetation has been monitored in a total of 458 permanently marked plots, each 1 m2, in nine old-growth forest sites dominated by Picea abies at intervals of 5–8 years over the 32-year study period. For each of the 52 combinations of site and year, we obtained response variables for the abundance of single species, abundance and species density of taxonomic–ecological species groups and two size classes of cryptogams, and site species richness. All of these variables were subjected to linear regression modelling with site and year as predictors.

Results

Mean annual temperature, growing-season length and the number of days with precipitation were higher in the study period than in the preceding ca. 30-year period, resulting in increasingly favourable conditions for bryophyte growth. Site species richness decreased by 13% over the 32-year study period. On average, group abundance of vascular plants decreased by 24% (decrease in forbs: 38%). Patterns of group abundance change differed among cryptogam groups: although peat-moss abundance increased by 39%, the abundance of mosses, hepatics and lichens decreased by 13%, 49% and 67%, respectively. Group abundance of small cryptogams decreased by 61%, whereas a 13% increase was found for large cryptogams. Of 61 single species tested for abundance change, a significant decrease was found for 43 species, whereas a significant increase was found only for 6 species.

Conclusions

The major patterns of change in species richness, group species density and group abundance observed over the 32-year study period accord with most predictions from the CIUC hypothesis and are interpreted as direct and indirect responses to climate change, partly mediated through changes in the population dynamics of microtine rodents. The more favourable climate for bryophyte growth explains the observed increase for a few large bryophyte species, whereas the decrease observed for small mosses and hepatics is interpreted as an indirect amensalistic effect, brought about by shading and burial in mats of larger species and accelerated by reduced fine-scale disturbance by microtine rodents. Indirect effects of a thicker moss mat most likely drive the vascular plant decline although long-term effects of tree-stand dynamics and former logging cannot be completely ruled out. Our results suggest that the ongoing climate change has extensive, cascading effects on boreal forest ecosystems. The importance of long time-series of permanent vegetation plots for detecting and understanding the effects of climate change on boreal forests is emphasised.  相似文献   

10.
Aim We investigate the timing and factors responsible for the transformation of closed‐crown forests into lichen–spruce woodlands. Location The study area extends between 70° and 72° W in the closed‐crown forest zone from its southern limit near 47°30′ N to its northern limit at the contact with the lichen–spruce woodland zone around 52°10′ N. A total of 24 lichen–spruce woodlands were selected. Methods Radiocarbon dating of charcoals at mineral soil contact and within the organic horizons allowed the principal factors causing the degradation of the closed‐crown forest to be identified, i.e. light fires, successive fires and the occurrence of a spruce budworm epidemic followed by a fire. Results Charcoals dated in the organic horizon were less than 200 years old, suggesting a recent transformation of the closed‐crown forest following surface fires. Before their transformation into lichen–spruce woodlands, stands were occupied by old, dense forests that originated from fires dating back to 1000 yr bp . The radiocarbon dating of charcoals in the organic horizon indicated that several stands burned twice in less than 50 years, while others burned shortly after a spruce budworm epidemic. Light fires are frequent within the lichen–spruce woodlands according to multiple charcoal layers found within the organic matter horizon. Main conclusions While closed‐crown forests are predicted to expand under climate warming, compound disturbances diminish the natural regeneration of the closed‐crown forests in the south and favour the expansion of lichen–spruce woodlands. As black spruce germinates on mineral soils, surface fires accentuate the expansion of the lichen–spruce woodlands southward. Under global warming, warmer springs will lead to earlier low‐intensity fires that do not remove as much organic matter, and hence prevent conditions suitable for black spruce regeneration. Also, spruce budworm reduces seed production for a certain time. The occurrence of fire during this period is critical for regeneration of black spruce.  相似文献   

11.
Abstract. We sampled vegetation and soils of, and classified mid‐seral, even‐aged, fire‐origin, upland Picea mariana ecosystems in the Boreal White & Black Spruce and Sub‐boreal Spruce zones of British Columbia, Canada. We applied multi‐variate and tabular methods to analyse and synthesize the data from 121 plots according to the methods of biogeoclimatic ecosystem classification. We delineated seven basic vegetation units and described their vegetation and environmental features. However, the delineated units could not be related to neither of the taxonomies proposed for the North American boreal forest communities. Although species‐poor, the under‐storey vegetation in the sampled ecosystems provided for a sufficient floristic differentiation, which matched well the major edaphic differences between the units. The classification of mid‐seral boreal ecosystems may be more useful that based on old‐growth stands that are infrequent or lacking in the landscape due to wildfires.  相似文献   

12.
High‐latitude regions store large amounts of organic carbon (OC) in active‐layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near‐surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long‐term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near‐surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire‐induced thawing of near‐surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance.  相似文献   

13.
14.
Nine years (2003–2011) of carbon dioxide (CO2) flux were measured at a black spruce forest in interior Alaska using the eddy covariance method. Seasonal and interannual variations in the gross primary productivity (GPP) and ecosystem respiration (RE) were associated primarily with air temperature: warmer conditions enhanced GPP and RE. Meanwhile, interannual variation in annual CO2 balance was controlled predominantly by RE, and not GPP. During these 9 years of measurement, the annual CO2 balance shifted from a CO2 sink to a CO2 source, with a 9‐year average near zero. The increase in autumn RE was associated with autumn warming and was mostly attributed to a shift in the annual CO2 balance. The increase in autumn air temperature (0.22 °C yr?1) during the 9 years of study was 15 times greater than the long‐term warming trend between 1905 and 2011 (0.015 °C yr?1) due to decadal climate oscillation. This result indicates that most of the shifts in observed CO2 fluxes were associated with decadal climate variability. Because the natural climate varies in a cycle of 10–30 years, a long‐term study covering at least one full cycle of decadal climate oscillation is important to quantify the CO2 balance and its interaction with the climate.  相似文献   

15.
16.
Questions: How does the time interval between subsequent stand‐replacing fire events affect post‐fire understorey cover and composition following the recent event? How important is fire interval relative to broad‐ or local‐scale environmental variability in structuring post‐fire understorey communities? Location: Subalpine plateaus of Yellowstone National Park (USA) that burned in 1988. Methods: In 2000, we sampled understorey cover and Pinus contorta density in pairs of 12–yr old stands at 25 locations. In each pair, the previous fire interval was either short (7–100 yr) or long (100–395 yr). We analysed variation in understorey species richness, total cover, and cover of functional groups both between site pairs (using paired t‐tests) and across sites that experienced the short fire intervals (using regression and ordination). We regressed three principal components to assess the relative importance of disturbance and broad or local environmental variability on post‐fire understorey cover and richness. Results: Between paired plots, annuals were less abundant and fire‐intolerant species (mostly slow‐growing shrubs) were more abundant following long intervals between prior fires. However, mean total cover and richness did not vary between paired interval classes. Across a gradient of fire intervals ranging from 7–100 yr, total cover, species richness, and the cover of annuals and nitrogen‐fixing species all declined while the abundance of shrubs and fire‐intolerant species increased. The few exotics showed no response to fire interval. Across all sites, broad‐scale variability related to elevation influenced total cover and richness more than fire interval. Conclusions: Significant variation in fire intervals had only minor effects on post‐fire understorey communities following the 1988 fires in Yellowstone National Park.  相似文献   

17.
Over the past century, major shifts in the geographic distribution of tree species have occurred in response to changes in land use and climate. We analyse species distribution and abundance from about 33 000 forest inventory plots in Spain sampled twice over a period of 10–12 years. We show a dominance of range contraction (extinction), and demographic decline over range expansion (colonization), with seven of 11 species exhibiting extinction downhill of their distribution. Contrary to expectations, these dynamics are not always consistent with climate warming over the study period, but result from legacies in forest structure due to past land use change and fire occurrence. We find that these changes have led to the expansion of broadleaf species (i.e. family Fagaceae) over areas formerly dominated by conifer species (i.e. family Pinaceae), due to the greater capacity of the former to respond to most disturbances and their higher competitive ability. This recent and rapid transition from conifers to broadleaves has important implications in forest dynamics and ecosystem services they provide. The finding raises the question as to whether the increasing dominance of relatively drought‐sensitive broadleaf species will diminish resilience of Mediterranean forests to very likely drier conditions in the future.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号