首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The Amazon Basin can be divided into two geomorphological regions based on the age of its soils: young (< 30 mya) and old (> 300 mya). We tested the effects of soil age on dung beetle communities by comparing biomass, abundance, and species between reserves in Ecuador on young soils and reserves in Brazil on old soils. Beetle biomass in the old Amazon was one-third that in the young Amazon, and beetle abundance in the old Amazon was one-fourth that in the young Amazon. Species richness, rarefied to equal sample sizes, was not significantly different between old and young soils. These data suggest young soils of the Amazon support a significantly greater biomass and abundance of dung beetles than old soils, but that species richness across the Basin is similar. As dung beetles are bio-indicators of mammals, our data support previous studies indicating a greater biomass of mammals on young versus old Amazon soils.  相似文献   

2.
Uncertainty in biomass estimates is one of the greatest limitations to models of carbon flux in tropical forests. Previous comparisons of field‐based estimates of the aboveground biomass (AGB) of trees greater than 10 cm diameter within Amazonia have been limited by the paucity of data for western Amazon forests, and the use of site‐specific methods to estimate biomass from inventory data. In addition, the role of regional variation in stand‐level wood specific gravity has not previously been considered. Using data from 56 mature forest plots across Amazonia, we consider the relative roles of species composition (wood specific gravity) and forest structure (basal area) in determining variation in AGB. Mean stand‐level wood specific gravity, on a per stem basis, is 15.8% higher in forests in central and eastern, compared with northwestern Amazonia. This pattern is due to the higher diversity and abundance of taxa with high specific gravity values in central and eastern Amazonia, and the greater diversity and abundance of taxa with low specific gravity values in western Amazonia. For two estimates of AGB derived using different allometric equations, basal area explains 51.7% and 63.4%, and stand‐level specific gravity 45.4% and 29.7%, of the total variation in AGB. The variation in specific gravity is important because it determines the regional scale, spatial pattern of AGB. When weighting by specific gravity is included, central and eastern Amazon forests have significantly higher AGB than stands in northwest or southwest Amazonia. The regional‐scale pattern of species composition therefore defines a broad gradient of AGB across Amazonia.  相似文献   

3.
Aim Attention has increasingly been focused on the floristic variation within forests of the Amazon Basin. Variations in species composition and diversity are poorly understood, especially in Amazonian floodplain forests. We investigated tree species composition, richness and α diversity in the Amazonian white‐water (várzea) forest, looking particularly at: (1) the flood‐level gradient, (2) the successional stage (stand age), and (3) the geographical location of the forests. Location Eastern Amazonia, central Amazonia, equatorial western Amazonia and the southern part of western Amazonia. Methods The data originate from 16 permanent várzea forest plots in the central and western Brazilian Amazon and in the northern Bolivian Amazon. In addition, revised species lists of 28 várzea forest inventories from across the Amazon Basin were used. Most important families and species were determined using importance values. Floristic similarity between plots was calculated to detect similarity variations between forest types and over geographical distances. To check for spatial diversity gradients, α diversity (Fisher) of the plots was correlated with stand age, longitudinal and latitudinal plot location, and flood‐level gradient. Results More than 900 flood‐tolerant tree species were recorded, which indicates that Amazonian várzea forests are the most species‐rich floodplain forests worldwide. The most important plant families recorded also dominate most Neotropical upland forests, and c. 31% of the tree species listed also occur in the uplands. Species distribution and diversity varied: (1) on the flood‐level gradient, with a distinct separation between low‐várzea forests and high‐várzea forests, (2) in relation to natural forest succession, with species‐poor forests in early stages of succession and species‐rich forests in later stages, and (3) as a function of geographical distance between sites, indicating an increasing α diversity from eastern to western Amazonia, and simultaneously from the southern part of western Amazonia to equatorial western Amazonia. Main conclusions The east‐to‐west gradient of increasing species diversity in várzea forests reflects the diversity patterns also described for Amazonian terra firme. Despite the fine‐scale geomorphological heterogeneity of the floodplains, and despite high disturbance of the different forest types by sedimentation and erosion, várzea forests are dominated by a high proportion of generalistic, widely distributed tree species. In contrast to high‐várzea forests, where floristic dissimilarity increases significantly with increasing distance between the sites, low‐várzea forests can exhibit high floristic similarity over large geographical distances. The high várzea may be an important transitional zone for lateral immigration of terra firme species to the floodplains, thus contributing to comparatively high species richness. However, long‐distance dispersal of many low‐várzea trees contributes to comparatively low species richness in highly flooded low várzea.  相似文献   

4.
Ambatorongorongo Mountain lies at the historical intersection betweenhumid, spiny, and littoral forests in southeastern Madagascar. We report theresults of surveys of the herpetofauna and lemurs occurring in Malahelo Forest,a small (<25 ha) forest fragment lying on the western slope ofAmbatorongorongo Mountain. There are at least 41 reptile, 11 amphibian, and 7lemur species in this forest, including several that are endemic to southeasternMadagascar and are at severe risk of extinction. The species richness of theMalahelo fauna is comparable to that of even the largest forest reserves in theregion. We also evaluate the similarity of the Malahelo herpetofauna to that ofnearby humid, spiny, and littoral forests to assess the biogeographic affinitiesof its amphibians and reptile assemblages. Both groups contain speciescharacteristic of each of the three surrounding forest types, but thebiogeographic patterns appear to differ for amphibians and reptiles. Overall,the herpetofauna and lemurs of the Malahelo Forest indicate that it is a remnantof a biogeographic transition zone between the major forest types ofsoutheastern Madagascar. The combination of high species richness, regionalendemics, and unique herpetofaunal and lemur assemblages should make MalaheloForest a high conservation priority, and we give recommendations for protectingwhat remains of this important transitional forest.  相似文献   

5.
Agricultural intensification and the associated factors, including land transformation, are among the major global threats affecting biodiversity especially herpetofauna. However, little information is available about how different factors shape herpetofauna species assemblages in agricultural landscape at different spatial scales from patch (125 – 250m) to the landscape (500 – 1000m). We assessed the diversity of amphibians and reptiles in areas under low and high degrees of agricultural intensification and explored different factors regulating diversity at different spatial scales using four sampling methods. Diversity and abundance of amphibians varied significantly between the two zones, but not for reptiles. Agricultural intensification index (AII), calculated based on agrochemical use and area under agriculture at 250m scale, seemed to affect amphibians both at patch as well as at 500m and 1000m landscape scales. The AII influenced reptilian diversity only at patch and 500m scales. Vicinity of natural forest had a stronger influence on reptilian abundance. Seminatural vegetation impacted herpetofauna diversities at larger spatial scales. The extent of water bodies influenced the reptilian abundance at 250m patch scale and amphibian abundance both at 250m and 1000m scale. Fallow lands affected only reptilian diversity at all spatial scales. Plantation affected amphibian at all scales but reptiles only at the landscape scale. Habitat heterogeneity regulated only amphibian diversity. These results highlight the fact that different patch and landscape-scale factors regulate the diversity of reptiles and amphibians differentially. Such scale-specific information will crucially inform future conservation action for the herpetofauna in the agricultural landscape.  相似文献   

6.
In naturally fragmented, isolated, or patchily distributed habitats that contain non‐vagile organisms, we expect dispersal to be limited, and patterns of diversity to differ from similar, yet continuous habitats. We explored the alpha‐beta‐gamma relationship and community composition of oribatid mites (Acari: Oribatida) inhabiting spatially discrete canopy suspended soils, and compared the patterns of diversity with the continuous forest floor soils over two years. We explored dispersal limitation for oribatid mites in the canopy by using additive partitioning of species richness at multiple spatial scales. ANOSIM was used to demonstrate differences in oribatid mite community composition between the canopy and forest floor habitats over different sampling periods. Community composition of oribatid mites differed significantly between canopy and forest floor habitats, by season and yearly sampling period. Oribatid mite richness and abundance were positively correlated with substrate moisture content, particularly in the canopy. Richness and abundance of ground oribatid mites was greater in September than in June, a trend that is reversed in the canopy, suggesting canopy oribatid mite species may have altered life histories to take advantage of earlier moisture conditions. Alpha diversity of oribatid mites in the canopy was lower than the ground at all sampling levels, and not significantly different from a random distribution in either habitat. Beta diversity was greater than expected from a random distribution at the patch‐ and tree‐level in the canopy suggesting dispersal limitation associated with physical tree‐to‐tree dispersal barriers, and limited dispersal among patches within a tree. Beta diversity at the tree‐level was the largest contribution to overall species richness in both canopy and ground habitats, and was also greater than expected on the ground. These results suggest that factors other than physical dispersal barriers, such as aggregation, habitat availability, and environmental factors (moisture), may limit the distribution of species in both habitats.  相似文献   

7.
Matched sets of gillnets of different mesh-sizes were used to evaluate the degree to which contiguous and connected flooded forest and floating meadow habitats are characterized by distinct fish faunas during the flooding season in the Peruvian Amazon. For fishes between 38–740 mm standard length ( L S) (the size range captured by the gear), an overriding pattern of faunal similarity emerged between these two habitats. The mean species richness, diversity, abundance, fish mass, mean and maximum L S, and maximum mass did not differ significantly between flooded forest and floating meadows. Species abundances followed a log-normal distribution in which three species accounted for 60–70% of the total abundance in each habitat. Despite these similarities, multivariate analyses demonstrated subtle differences in species composition between flooded forest and adjacent floating macrophytes. In addition, the absolute number of species was higher in flooded forest, reflecting a higher percentage of rare species. The day–night species turnover was found to be greater in flooded forests than floating meadows. Further, nocturnal samples had higher abundances and greater species richness than diurnal samples in both habitats. Differences in habitat structural complexity between flooded forest and floating meadows may result in a higher abundance and species richness of day-active species in floating meadows.  相似文献   

8.
Two groups of wildlife species that are critical for the maintenance of biological diversity in a variety of habitats and who fill a number of functional roles in these habitats are reptiles (Gibbons et al. 2000, Ernst and Lovich 2009) and amphibians (Semlitsch 2003). Globally, reptiles and amphibians (i.e., herpetofauna) make up 46% of species richness of terrestrial vertebrates, but the prevalence of herpetofauna investigations in wildlife research and management journals has not been explored. Our objective was to review representation of herpetofauna in 6 wildlife research journals from 1980 to 2009 to examine whether their representation parallels their contribution to global terrestrial vertebrate species richness, whether their representation has changed over time and how, and whether subsets of herpetofauna garner disproportionate coverage relative to one another. We ran a keyword search in Web of Science database (formerly ISI Web of Science) within the Web of Knowledge search engine published by Thomson Reuters (2010) on 6 wildlife research journals (European Journal of Wildlife Research [formerly Zeitschrift für Jagdwissenschaft], Journal of Wildlife Management, South African Journal of Wildlife Research, Wildlife Biology, Wildlife Research, and Wildlife Society Bulletin) from 1980 to 2009. We searched for 17 terms relevant to herpetofauna (e.g., toad, tortoise). Our search yielded 315 articles that focused on herpetofauna. Over the 30-year period, we found the number of articles and pages and percentage of journal space devoted to herpetofauna increased. However, at best, <6% of journal space was devoted to herpetofauna, indicating that these species are greatly under-represented in wildlife literature given their contributions to species richness and diversity and ecosystem function. Although absolute number of articles and pages has increased, little progress has been made in terms of relative representation of herpetofauna as compared to birds and mammals. Although percentage of pages in wildlife journals dedicated to herpetofauna has increased in the past 30 years, they must garner greater representation to enable us to adequately manage for biological diversity and ecosystem function and integrity. © 2011 The Wildlife Society.  相似文献   

9.
We analyze forest structure, diversity, and dominance in three large-scale Amazonian forest dynamics plots located in Northwestern (Yasuni and Amacayacu) and central (Manaus) Amazonia, to evaluate their consistency with prevailing wisdom regarding geographic variation and the shape of species abundance distributions, and to assess the robustness of among-site patterns to plot area, minimum tree size, and treatment of morphospecies. We utilized data for 441,088 trees (DBH ≥1 cm) in three 25-ha forest dynamics plots. Manaus had significantly higher biomass and mean wood density than Yasuni and Amacayacu. At the 1-ha scale, species richness averaged 649 for trees ≥1 cm DBH, and was lower in Amacayacu than in Manaus or Yasuni; however, at the 25-ha scale the rankings shifted, with Yasuni < Amacayacu < Manaus. Within each site, Fisher’s alpha initially increased with plot area to 1–10 ha, and then showed divergent patterns at larger areas depending on the site and minimum size. Abundance distributions were better fit by lognormal than by logseries distributions. Results were robust to the treatment of morphospecies. Overall, regional patterns in Amazonian tree species diversity vary with the spatial scale of analysis and the minimum tree size. The minimum area to capture local diversity is 2 ha for trees ≥1 cm DBH, or 10 ha for trees ≥10 cm DBH. The underlying species abundance distribution for Amazonian tree communities is lognormal, consistent with the idea that the rarest species have not yet been sampled. Enhanced sampling intensity is needed to fill the still large voids we have in plant diversity in Amazon forests.  相似文献   

10.
We evaluated the effects of different land-use systems on the ability of dung beetles to control the population of detritus-feeding flies. We tested the hypotheses that intensification of land use will reduce dung beetles richness, abundance and biomass and, consequently, their dung burial ability, affecting the interaction between dung beetles and flies and reducing its effectiveness as a natural biological control. In the Brazilian Amazon we sampled dung beetles, fly larvae and adults; and recorded the rate of dung removal by dung beetles across a gradient of land-use intensity from primary forest, secondary forest, agroforestry, agriculture to pasture. Our results provide evidence that land-use intensification results in a reduction of the richness, abundance and biomass of dung beetles, and this in turn results in lower rates of dung removal in the most simplified systems. We found no significant differences in the abundance of fly larvae between the different systems of land use. However, the number of adult flies differed significantly between land-use systems, presenting higher abundance in those sites with greater intensity of use (pasture and agriculture) and a lower abundance of adult flies in forested systems (primary and secondary forests, and agroforestry). Information-theoretic model selection based on AICc revealed strong support for the influence of land-use systems, dung removal rates and dung beetle abundance, biomass and richness on adult dung-fly abundance. Our results also reveal that dung beetles are not solely responsible for fly control and that other factors linked to land use are influencing the populations of these detritus-feeding insects.  相似文献   

11.
Insect herbivores were collected from five species of dipterocarp tree seedling within a large‐scale reciprocal transplant experiment in Sabah, Malaysia, on alluvial and sandstone soils in both gap and understory plots. The aim was to determine whether the location and ecological specialization of seedlings influenced the herbivore communities found on and around them. Three major groups of folivores were collected: Coleoptera, Orthoptera, and larval Lepidoptera. Herbivory of all species was confirmed through laboratory trials. Herbivore abundance in the understory plots was extremely low relative to the gaps. Rank‐abundance curves were similar on both soil types, differing only within the Lepidoptera. Coleoptera and Orthoptera communities were numerically dominated by a small suite of species capable of feeding on all dipterocarp species tested, whereas lepidopteran communities had both greater species richness and diversity. When corrected for leaf area surveyed, the abundance of Coleoptera was similar on both soil types, while larval Lepidoptera were more abundant in sandstone plots and Orthoptera were more abundant in alluvial plots. Estimated species richness of all three taxa was greater in alluvial forest, but there were contrasting patterns in Simpson diversity and evenness between groups. Species richness of Lepidoptera was greatest on seedlings when grown in their native soil type, providing partial evidence for possible escape effects, although this was not matched by differences in folivore abundance. The link between herbivore communities and herbivory rates on rain forest tree seedlings is complex and is unlikely to be detected through simplistic measures of abundance, species richness, or diversity.  相似文献   

12.
Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.  相似文献   

13.
There is considerable variation in primate species richness across neotropical forest sites, and the richest assemblages are found in western Amazonia. Forest type is an important determinant of the patterns of platyrrhine primate diversity, abundance, and biomass. Here we present data on the assemblage structure of primates in adjacent unflooded (terra firme) and seasonally inundated (várzea and igapó) forests in the lower Purús region of central-western Brazilian Amazonia. A line-transect census of 2,026 km in terra firme, 2,309 km in várzea, and 277 km in igapó was conducted. Twelve primate species were recorded from 2,059 primate group sightings. Although terra firme was found to be consistently more species-rich than várzea, the aggregate primate density in terra firme forest was considerably lower than that in the species-poor várzea. Consequently, the total biomass estimate was much higher in várzea compared to either terra firme or igapó forest. Brown capuchin monkeys (Cebus apella) were the most abundant species in terra firme, but were outnumbered by squirrel monkeys (Saimiri cf. ustus) in the várzea. The results suggest that floodplain forest is a crucial complement to terra firme in terms of primate conservation in Amazonian forests.  相似文献   

14.
We analysed the influence of contemporary geography on butterfly diversity for islands in the Mediterranean Basin. We found that island size and distance from the mainland has a significant effect on the number of species. We also used butterflies as an indicator group to identify the importance of forest habitats for biodiversity conservation in the island of Cyprus. To understand the relative importance of local vegetation characteristics of butterflies in the Pentadaktylos mountains transect counts were used to assess the abundance and butterfly diversity in two different forest types. A total of 1,602 butterflies and 23 species were recorded during this research. We observed highly significant effects of forest type on abundance and species richness of butterflies. For example, number of butterflies was significantly higher in old forest than young pine forest. Also, the abundance of endemic butterflies was highest in old forest habitats. Therefore, the survival of the majority of endemic butterflies in Cyprus may depend on conservation of old forests and their understorey plants.  相似文献   

15.
Little attention has been paid to plant mutualistic interactions in the Amazon rainforest, and the general pattern of occurrence and diversity of arbuscular mycorrhizal fungi (AMF) in these ecosystems is largely unknown. This study investigated AMF communities through their spores in soil in a ‘terra firme forest’ in Central Amazonia. The contribution played by abiotic factors and plant host species identity in regulating the composition, abundance and diversity of such communities along a topographic gradient with different soils and hydrology was also evaluated. Forty-one spore morphotypes were observed with species belonging to the genera Glomus and Acaulospora, representing 44 % of the total taxa. Soil texture and moisture, together with host identity, were predominant factors responsible for shaping AMF communities along the pedo-hydrological gradient. However, the variability within AMF communities was largely associated with shifts in the relative abundance of spores rather than changes in species composition, confirming that common AMF species are widely distributed in plant communities and all plants recruited into the forest are likely to be exposed to the dominant sporulating AMF species.  相似文献   

16.
Land-use systems (LUS), placed in originally forested areas, represent different degrees of opportunity for species conservation. In this study, we examined the dung beetle communities in order to identify the conservation value of different LUS: primary forest, old secondary forest, young secondary forest, agroforestry, agriculture and pasture in Western Amazon. The LUS were sampled in two campaigns during the highest precipitation period and dryest period. The primary forest has a high number of total and exclusive species. Large beetles show a continuous decreasing in richness and abundance from primary forest to pastures, while small ones are not sensible to intermediate systems (secondary forest to agriculture) in terms of species richness and exhibit a increase in abundance at agroforest and agriculture when contrasted to secondary forest and pasture The beetle community composition was not sensible to secondary forest recovering time. Secondary forests and agroforestry stood out as harboring many species shared with primary forests. Cloud-point dispersion (average dissimilarity) increased from primary forest towards LUS’s submitted to more intense use. The higher sampling points similarity observed in primary forest might be the result of the relative stability of this system, given that environmental impacts might increase variability in community structure and beta diversity. Increase in beta diversity as expressed by greater dispersion of sites in multivariate space suggests that these areas are dependent on nearby species pools, possibly primary forests, and harbor a higher spatial heterogeneity in species composition. This high variability can overestimate the importance of occasional species, thus biasing the actual value of alternative LUS for biodiversity conservation.  相似文献   

17.
Given current deforestation and land-use change in species-rich tropical forests, a pressing need in conservation biology is to understand how converted, human-modified landscapes support biodiversity. Here, we measured the species richness, abundance, and community composition of amphibians and reptiles in reference primary forest and mono-dominant plantations of three native tree species (Pentaclethra macroloba, Virola koschnyi, Vochysia guatemalensis) at La Selva Biological Station in the Caribbean lowlands of northern Costa Rica. Because these plantation species generate markedly different forest-floor habitats, we hypothesized that tree species would support different assemblages of leaf-litter herpetofauna. Primary forest, Virola, and Vochysia supported greater richness of frogs than Pentaclethra. Frog densities were significantly lower in Pentaclethra and Vochysia than in nearby primary forest. Using non-metric multidimensional scaling and permutational multivariate analysis of variance, we found Pentaclethra to support significantly different assemblages of frogs and lizards than primary forest reference sites, while Vochysia supported a unique assemblage of frogs. Our results suggest that some tree species plantations can support herpetofaunal assemblages comparable to primary forest in richness, community assembly, and abundance. While herpetofaunal community ecology varies among plantation species, our study provides a compelling example of how plantation landscapes can facilitate the restoration of native fauna on degraded landscapes.  相似文献   

18.
There is no standardization of ideal trap installation height for an accurate sampling of flower and leaf chafer scarab beetles in the rainforest canopy. This limits the comparison among different studies on the ecology as well as systematic collecting of this beetle group. Here, we sampled flower and leaf chafer beetles using fruit‐baited traps installed at different heights (1.5, 4.5, 7.5 and 10.5 m) in the Brazilian Amazon rainforest with the following proposals: (i) we tested whether there are effects of trap installation height on the abundance, species richness and biomass of these beetles; and (ii) we tested whether there is a difference in the species composition between each trap height. From January to April 2017, we sampled flower and leaf chafer beetles by using traps baited with a banana and sugarcane juice mixture in Amazon rainforest fragments in Porto Velho, Rondônia, Brazil. The abundance, species richness and biomass of flower chafer beetles (Cetoniinae) were higher in traps installed at 10.5 m. For leaf chafer beetles (Rutelinae), we found the higher species richness and abundance at 4.5, 7.5 and 10.5 m, but the biomass of these insects did not differ among the different heights. Only the community composition of flower chafer beetles differed among the different trap installation heights. Our results showed that flower chafer beetles demonstrate a preference for foraging for resources at greater heights in the Amazon rainforest. Thus, to collect cetoniines from tropical forests, the recommended manner is to install the traps in the forest canopy.  相似文献   

19.
江西武功山两栖爬行动物资源调查及评价   总被引:3,自引:4,他引:3  
2001年7月中旬~8月上旬,对江西武功山国家森林公园进行了20多天的野生动植物资源野外考察.公园内现已记录两栖类2目7科25种和爬行类3目9科37种,本次调查增加安福县爬行动物新记录7种:多疣壁虎、中国石龙子、黑背白环蛇、铅色水蛇、灰鼠蛇、乌梢蛇、银环蛇;增加武功山爬行动物新记录23种.动物地理区划属东洋界华中区东部丘陵平原亚区,动物区系组成以东洋界华中区与华南区共有种为主.两栖类东洋界种类占92.00%;生态类型以流水型9种和陆栖-静水型7种占优势.数量优势种为黑斑蛙、中华蟾蜍、黑斑肥螈、泽蛙、棘胸蛙、花臭蛙、华南湍蛙、三港树蟾、镇海林蛙和饰纹姬蛙.爬行类东洋界种类占75.68%,广布种占24.32%.数量优势种有石龙子、蓝尾石龙子、铜蜓蜥、赤链华游蛇、王锦蛇、虎斑颈槽蛇、赤链蛇、红点锦蛇、乌梢蛇、灰鼠蛇、尖吻蝮、竹叶青蛇等.公园内野生动物及其生境受人类干扰破坏大,当地群众保护意识有待增强,就此提出了保护对策.  相似文献   

20.
Arbuscular mycorrhizal fungi (AMF) were surveyed for species richness and abundance in sporulation in six distinct land uses in the western Amazon region of Brazil. Areas included mature pristine forest and sites converted to pasture, crops, agroforestry, young and old secondary forest. A total of 61 AMF morphotypes were recovered and 30% of them could not be identified to known species. Fungal communities were dominated by Glomus species but Acaulospora species produced the most abundant sporulation. Acaulospora gedanensis cf., Acaulospora foveata, Acaulospora spinosa, Acaulospora tuberculata, Glomus corymbiforme, Glomus sp15, Scutellospora pellucida, and Archaeospora trappei sporulated in all land use areas. Total spore numbers were highly variable among land uses. Mean species richness in crop, agroforestry, young and old secondary forest sites was twice that in pristine forest and pasture. fungal communities were dominated in all land use areas except young secondary forest by two or three species which accounted for 48% to 63% of all sporulation. Land uses influenced AMF community in (1) frequency of occurrence of sporulating AMF species, (2) mean species diversity, and (3) relative spore abundance. Conversion of pristine forest into distinct land uses does not appear to reduce AMF diversity. Cultural practices adopted in this region maintain a high diversity of arbuscular mycorrhizal fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号