首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The B–class of MADS box genes has been studied in a wide range of plant species, but has remained largely uncharacterized in legumes. Here we investigate the evolutionary fate of the duplicated AP3‐like genes of a legume species. To obtain insight into the extent to which B‐class MADS box gene functions are conserved or have diversified in legumes, we isolated and characterized the two members of the AP3 lineage in Medicago truncatula: MtNMH7 and MtTM6 (euAP3 and paleoAP3 genes, respectively). A non‐overlapping and complementary expression pattern of both genes was observed in petals and stamens. MtTM6 was expressed predominantly in the outer cell layers of both floral organs, and MtNMH7 in the inner cell layers of petals and stamens. Functional analyses by reverse genetics approaches (RNAi and Tnt1 mutagenesis) showed that the contribution of MtNMH7 to petal identity is more important than that of MtTM6, whereas MtTM6 plays a more important role in stamen identity than its paralog MtNMH7. Our results suggest that the M. truncatula AP3‐like genes have undergone a functional specialization process associated with complete partitioning of gene expression patterns of the ancestral gene lineage. We provide information regarding the similarities and differences in petal and stamen development among core eudicots.  相似文献   

3.
4.
Previous study shows that LjCYC2, a CYC-like TCP (TB1, CYC and PCFs) gene in the model legume, Lotus japonicus, is involved in dorsal petal development, which together with the other two homologous genes,LjCYC1 and LjCYC3, belongs to an LjCYC gene cluster. In this report, we modified the transformation system in L. japonicus, and constructed different RNAi transgenes to target different LjCYC genes. The expression of three endogenous LjCYC genes was specifically suppressed by different specific RNAi transgenes, and a chimerical RNAi transgene that contains the specific sequences from LjCYC1 and LjCYC2 was found to downregulate the expression of both endogenous genes simultaneously. Effects of silencing three LjCYC genes were mainly restricted on either dorsal or lateral petals, demonstrating their dorsalizing and lateralizing activities during the development of zygomorphic flower. Furthermore,abolishing the expression of three LjCYC genes could give rise to complete loss of dorsoventral (DV) differentiation in the flower whose petals all resembled the ventral one in the wild type and displayed intact organ internal (IN) asymmetry. Our data demonstrate that during zygomorphic flower development, the DV asymmetry is constituted by the LjCYC genes, while the floral organ IN asymmetry is independently determined by other genetic factors.  相似文献   

5.
To identify genes involved in Arabidopsis thaliana petal and stamen organogenesis, we used a gene trap approach to examine the patterns of reporter expression at each stage of flower development of 1765 gene trap lines. In 80 lines, the reporter gene showed petal- and/or stamen-specific expression or lack of expression, or expression in distinct patterns within the petals and/or the stamens, including distinct suborgan domains of expression, such as tissue-specific lines marking epidermis and vasculature, as well as lines demarcating the proximodistal or abaxial/adaxial axes of the organs. Interestingly, reporter gene expression was typically restricted along the proximodistal axis of petals and stamens, indicating the importance of this developmental axis in patterning of gene expression domains in these organs. We identified novel domains of gene expression along the axis marking the midregion of the petals and apical and basal parts of the anthers. Most of the genes tagged in these 80 lines were identified, and their possible functions in petal and/or stamen differentiation are discussed. We also scored the floral phenotypes of the 1765 gene trap lines and recovered two mutants affecting previously uncharacterized genes. In addition to revealing common domains of gene expression, the gene trap lines reported here provide both useful markers and valuable starting points for reverse genetic analyses of the differentiation pathways in petal and stamen development.  相似文献   

6.
Previous study has shown that during zygomorphic development in garden pea (Pisum sativum L.), the organ internal (IN) asymmetry of lateral and ventral petals was regulated by a genetic locus, SYMMETRIC PETAL 1 (SYP1), while the dorsoventral (DV) asymmetry was determined by two CYC-like TCP genes or the PsCYC genes, KEELED WINGS (K) and LOBED STANDARD 1 (LST1). In this study, two novel loci, ELEPHANT EAR-LIKE LEAF 1 (ELE1) and ELE2 were characterized. These mutants exhibit a similar defect of IN asymmetry as syp1 in lateral and ventral petals, but also display pleiotropic effects of enlarged organ size. Genetic analysis showed that ELE1 and ELE2 were involved in same genetic pathway and the enlarged size of petals but not compound leaves in e/e2 was suppressed by introducing k and Ist1, indicating that the enlargement of dorsal petal in e/e2 requires the activities of K and LST1. An experimental framework of comparative genomic mapping approach was set up to map and clone LjELE1 locus in Lotus japonicus. Cloning the ELE1 gene will shed light on the underlying molecular mechanism during zygomorphic development and further provide the molecular basis for genetic improvement on legume crops.  相似文献   

7.
Previous study has shown that during zygomorphic development in garden pea(Pisum sativum L.),the organ internal(IN) asymmetry of lateral and ventral petals was regulated by a genetic locus,SYMMETRIC PETAL 1(SYP1),while the dorsoventral(DV) asymmetry was determined by two CYC-like TCP genes or the PsCYC genes,KEELED WINGS(K) and LOBED STANDARD 1(LST1).In this study,two novel loci,ELEPHANT EAR-LIKE LEAF 1(ELE1) and ELE2 were characterized.These mutants exhibit a similar defect of IN asymmetry as syp1 in lateral and ventral petals,but also display pleiotropic effects of enlarged organ size.Genetic analysis showed that ELE1 and ELE2 were involved in same genetic pathway and the enlarged size of petals but not compound leaves in ele2 was suppressed by introducing k and lst1,indicating that the enlargement of dorsal petal in ele2 requires the activities of K and LST1.An experimental framework of comparative genomic mapping approach was set up to map and clone LjELE1 locus in Lotus japonicus.Cloning the ELE1 gene will shed light on the underlying molecular mechanism during zygomorphic development and further provide the molecular basis for genetic improvement on legume crops.  相似文献   

8.

Background and Aims

The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes.

Methods

Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae.

Key Results

The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species.

Conclusions

Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established.Key words: Epidermis, Fabaceae, Papilionoideae, Caesalpinioideae, Mimosoideae, petal surface, scanning electron microscopy, papillose conical cells, tabular rugose cells, tabular flat cells, organ identity  相似文献   

9.
  • In the generally bee‐pollinated genus Lotus a group of four species have evolved bird‐pollinated flowers. The floral changes in these species include altered petal orientation, shape and texture. In Lotus these characters are associated with dorsiventral petal identity, suggesting that shifts in the expression of dorsal identity genes may be involved in the evolution of bird pollination. Of particular interest is Lotus japonicus CYCLOIDEA 2 (LjCYC2), known to determine the presence of papillate conical cells on the dorsal petal in L. japonicus. Bird‐pollinated species are unusual in not having papillate conical cells on the dorsal petal.
  • Using RT‐PCR at various stages of flower development, we determined the timing of expression in all petal types for the three putative petal identity genes (CYC‐like genes) in different species with contrasting floral morphology and pollination syndromes.
  • In bird‐pollinated species the dorsal identity gene, LjCYC2, is not expressed at the floral stage when papillate conical cells are normally differentiating in bee‐pollinated species. In contrast, in bee‐pollinated species, LjCYC2 is expressed during conical cell development.
  • Changes in the timing of expression of the above two genes are associated with modifications in petal growth and lateralisation of the dorsal and ventral petals in the bird‐pollinated species. This study indicates that changes in the timing, rather than spatial distribution, of expression likely contribute to the modifications of petal micromorphology and petal size during the transition from bee to bird pollination in Macaronesian Lotus species.
  相似文献   

10.
11.
12.
13.
The floral organs of Sinofranchetia chinensis Hemsl. (Lardizabalaceae) are all spiral in initiation. Stamen and petal (nectar‐leaf) primordia initiate independently and are different in shape. The petals and three stamens in the first whorl are retarded in the early developmental stages. The carpel primordia are conduplicate; the stigma is formed around the upper part of the ventral slit and the style is not differentiated. The functionally unisexual flowers are bisexual in organization in the early developmental stages. The development of the flowers on the inflorescence is spiral and centripetal. Some floral characteristics of Sinofranchetia appear to be plesiomorphic in Lardizabalaceae. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 82–92.  相似文献   

14.
Production of novel transgenic floricultural crops with altered petal properties requires transgenes that confer a useful trait and petal‐specific promoters. Several promoters have been shown to control transgenes in petals. However, all suffer from inherent drawbacks such as low petal specificity and restricted activity during the flowering stage. In addition, the promoters were not examined for their ability to confer petal‐specific expression in a wide range of plant species. Here, we report the promoter of InMYB1 from Japanese morning glory as a novel petal‐specific promoter for molecular breeding of floricultural crops. First, we produced stable InMYB1_1kb::GUS transgenic Arabidopsis and Eustoma plants and characterized spatial and temporal expression patterns under the control of the InMYB1 promoter by histochemical β‐glucuronidase (GUS) staining. GUS staining patterns were observed only in petals. This result showed that the InMYB1 promoter functions as a petal‐specific promoter. Second, we transiently introduced the InMYB1_1 kb::GUS construct into Eustoma, chrysanthemum, carnation, Japanese gentian, stock, rose, dendrobium and lily petals by particle bombardment. GUS staining spots were observed in Eustoma, chrysanthemum, carnation, Japanese gentian and stock. These results showed that the InMYB1 promoter functions in most dicots. Third, to show the InMYB1 promoter utility in molecular breeding, a MIXTA‐like gene function was suppressed or enhanced under the control of InMYB1 promoter in Arabidopsis. The transgenic plant showed a conspicuous morphological change only in the form of wrinkled petals. Based on these results, the InMYB1 promoter can be used as a petal‐specific promoter in molecular breeding of floricultural crops.  相似文献   

15.
The well‐known ABC model describes the combinatorial interaction of homeotic genes in specifying floral organ identities. While the B‐ and C‐functions are highly conserved throughout flowering plants and even in gymnosperms, the A‐function, which specifies the identity of perianth organs (sepals and petals in eudicots), remains controversial. One reason for this is that in most plants that have been investigated thus far, with Arabidopsis being a remarkable exception, one does not find recessive mutants in which the identity of both types of perianth organs is affected. Here we report a comprehensive mutational analysis of all four members of the AP1/FUL‐like subfamily of MADS‐box genes in rice (Oryza sativa). We demonstrate that OsMADS14 and OsMADS15, in addition to their function of specifying meristem identity, are also required to specify palea and lodicule identities. Because these two grass‐specific organs are very likely homologous to sepals and petals of eudicots, respectively, we conclude that there is a floral homeotic (A)‐function in rice as defined previously. Together with other recent findings, our data suggest that AP1/FUL‐like genes were independently recruited to fulfil the (A)‐function in grasses and some eudicots, even though other scenarios cannot be excluded and are discussed.  相似文献   

16.
For alpine plant species, patterns of resource allocation to functional floral traits for pollinator attraction can be highly significant in adaptation to low pollinator abundance and consequent pollen limitation. Increased pollination can be achieved either through a larger floral display or production of more pollen rewards. In this study, variation in resource allocation to different components for pollinator attraction was studied along an altitudinal gradient in Trollius ranunculoides, an obligate self‐incompatible out‐crosser of the Qinghai–Tibet Plateau. We compared resource allocation to conspicuous yellow sepals (which mainly provide visual attraction) and degenerate petals (which provide the major nectar reward) between populations at four altitudes. Furthermore, we investigated the contribution of sepals and petals to pollinator attraction and female reproductive success in an experiment with sepal or petal removal at sites at different altitudes. At the level of single flowers, resource allocation increased to sepals but decreased to petals with increasing altitude. Consistent with these results, sepals contributed much more to visitation rate and seed set than petals, as confirmed in the sepal or petal removal experiment. Sepals and petals contributed to female reproductive success by ensuring visitation rate rather than visitation duration. To alleviate increasing pollen limitation with increasing altitude, resource allocation patterns of T. ranunculoides altered to favour development of sepals rather than petals. This strategy may improve pollination and reproductive success through visual attraction (sepal) rather than nectar reward (petal) over a gradient of decreasing pollinator abundance.  相似文献   

17.
18.
In Asterids, specific expression of CYC-like genes in the corresponding regions promotes or reduces dorsal petal growth and aborts stamen development. In Rosids, however, the reduced or enlarged dorsal petals are not accompanied by the abortion of stamens, which implies that the function of CYC-like genes in regulating petal growth and stamen development might be independently recruited. To address this, we investigated the function of the PhCYC1C gene in Primulina heterotricha Y. Dong & Y. Z. Wang on petal growth and stamen development by overexpressing it in two different transformation systems, that is, Arabidopsisbelonging to Rosids and tobacco located in Asterids. The results showed that overexpression of PhCYC1C reduced petal sizes in both tobacco and Arabidopsistransgenic plants mainly by repressing cell expansion, indicating its conserved function in determining petal growth between Asterids and Rosids. However, the fertility of both tobacco and Arabidopsis stamens was not affected at all. Given that strong expression signals of PhCYC1C are detected in both tobacco andArabidopsis stamens and CYC-like genes actually function to repress stamen development in Lamiales, we suggest that the CYC-like gene-associated regulatory network for controlling stamen development might have not established in Rosids as well as in early evolution of Asterids, but evolved as Asterids proceeded further. Our results provide valuable information on the conservation of CYC-like genes' function in controlling corolla asymmetry and the divergence of their function in determining stamen abortion in angiosperms.  相似文献   

19.
Plastid Ontogeny during Petal Development in Arabidopsis   总被引:4,自引:0,他引:4       下载免费PDF全文
Imaging of chlorophyll autofluorescence by confocal microscopy in intact whole petals of Arabidopsis thaliana has been used to analyze chloroplast development and redifferentiation during petal development. Young petals dissected from unopened buds contained green chloroplasts throughout their structure, but as the upper part of the petal lamina developed and expanded, plastids lost their chlorophyll and redifferentiated into leukoplasts, resulting in a white petal blade. Normal green chloroplasts remained in the stalk of the mature petal. In epidermal cells the chloroplasts were normal and green, in stark contrast with leaf epidermal cell plastids. In addition, the majority of these chloroplasts had dumbbell shapes, typical of dividing chloroplasts, and we suggest that the rapid expansion of petal epidermal cells may be a trigger for the initiation of chloroplast division. In petals of the Arabidopsis plastid division mutant arc6, the conversion of chloroplasts into leukoplasts was unaffected in spite of the greatly enlarged size and reduced number of arc6 chloroplasts in cells in the petal base, resulting in few enlarged leukoplasts in cells from the white lamina of arc6 petals.  相似文献   

20.
Although the physiological and molecular mechanisms of flower development and senescence have been extensively investigated, a whole-flower partitioning study of mineral concentrations has not been carried out. In this work, the distribution of sucrose, total reducing sugars, dry and fresh weight and macro and micronutrients were analysed in Hibiscus rosa-sinensis L. petals, stylestigma including stamens and ovary at different developmental stages (bud, open and senescent flowers). Total reducing sugars showed the highest value in petals of bud flowers, then fell during the later stages of flower development whereas sucrose showed the highest value in petals of senescent flowers. In petals, nitrogen and phosphorus content increased during flower opening, then nitrogen level decreased in senescent flowers. The calcium, phosphorus and boron concentrations were highest in ovary tissues whatever the developmental stage. Overall, the data presented suggests that the high level of total reducing sugars prior the onset of flower opening contributes to support petal cells expansion, while the high amount of sucrose at the time of petal wilting may be viewed as a result of senescence. Furthermore, this study discusses how the accumulation of particular mineral nutrients can be considered in a tissue specific manner for the activation of processes directly connected with reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号