首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim We examined relationships between climate–disturbance gradients and patterns of vegetation zonation and ecotones on a subtropical mountain range. Location The study was conducted on the windward slopes of the Cordillera Central, Dominican Republic, where cloud forest appears to shift in a narrow ecotone to monodominant forest of Pinus occidentalis. Methods Climate, disturbance and vegetation data were collected over the elevation range 1100–3100 m and in 50 paired plots along the ecotone. Aerial photographs were georeferenced to a high‐resolution digital elevation model in order to enable the analysis of landscape‐scale patterns of the ecotone. Results A Shipley–Keddy test detected discrete compositional ecotones at 2200 and 2500 m; the distributions of tree species at lower elevations were continuous. The elevation of the ecotone determined with aerial photographs was fairly consistent, namely ± 164 m (SD) over its 124‐km length, but it exhibited significant landscape variation, occurring at a lower elevation in a partially leeward, western zone. The ecotone also occurred significantly lower on ridges than it did in drainage gullies. Ecotone forest structure and composition differed markedly between paired plots. In pine paired plots, the canopy height was 1.7 times higher and the basal area of non‐pine species was 6 times lower than in the cloud forest directly below. Fire evidence was ubiquitous in the pine forest but rare in the abutting cloud forest. Mesoclimate changed discontinuously around the elevation of the ecotone: humidity and cloud formation decreased markedly, and frost frequency increased exponentially. Main conclusions The discreteness of the ecotone was produced primarily by fire. The elevational consistency of the ecotone, however, resulted from the overarching influence of mesoclimate on the elevational patterns of fire occurrence. Declining temperature and precipitation combine with the trade‐wind inversion to create a narrow zone where high‐elevation fires extinguish, enabling fire‐sensitive and fire‐tolerant taxa to abut. Once established, mesotopography and contrasting vegetation physiognomy probably reinforce this boundary through feedbacks on microenvironment and fire likelihood. The prominence of the pine in this study – and of temperate and fire‐tolerant taxa in subtropical montane forests in general – highlights the importance of climate‐disturbance–biogeography interactions in ecotone formation, particularly where fire mediates a dynamic between climate and vegetation.  相似文献   

2.
We surveyed postfire vegetation at five sites at high elevations (> 2000 m) in the Cordillera Central, Dominican Republic. Highlands of the Cordillera Central are dominated by a single pine species, Pinus occidentalis, but plant communities are rich with endemics and conservation and fire management efforts in these systems are ongoing. The burns were 2–7 yr in age and had consumed nearly all shrub crowns. Pines suffered high mortality (> 50%, all sites combined), but shrubs resprouted at high rates (88%, N = 957) after fire. All shrub taxa produced basal resprouts; eight of 11 shrub taxa measured had resprouting rates > 90 percent, while Baccharis myrsinites had the lowest (56%). Most taxa grew to prefire height quickly (within 5–7 yr), with regrowth of stem diameters lagging behind. Patterns and rates of shrub recovery resembled those documented in high elevation shrublands in Costa Rica and Brazil. Pinus occidentalis does not resprout, but larger individuals can survive fire. Survival increases dramatically when trees attain > 13-cm dbh, when bark becomes thick enough to protect cambial tissue. Overall, pines are regenerating much more slowly than shrubs, but seedling establishment varied considerably between sites. Frequent fires may cause a decline in pines and an increase in shrub- or grass-dominated communities. Succession in these high elevation fire-dependent pine forests favors taxa already present in the preburn vegetation, with woody composition changing little after fire, in contrast to lower-elevation cloud forest, where postfire vegetation has been shown to bear little resemblance to mature forest even after several years.  相似文献   

3.
To determine if there were consistent differences in growth, mortality, and recruitment on slopes and ridge crests in tropical montane forests, which could explain the (frequent but not universal) low stature of trees in the ridgetop forests, we analyzed data from long‐term plots in Jamaica (1990–1994; sixteen 200‐m2 plots, six on ridge crests and five each on north and south slopes). Mortality was higher on north slopes, while growth and recruitment rates were not significantly different among positions. Soil pH and effects of recent disturbance by Hurricane Gilbert were positively correlated with growth and recruitment, while slope angle and disturbance effects were the best predictors of mortality. The patterns we found in Jamaica, that growth and recruitment were not higher on ridge crests than slopes, are different than those found by Herwitz and Young in Australia where growth and turnover were greater on a ridge crest. Therefore, it is not possible at present to make simple generalizations about dynamics of ridge crest versus slope forests in the montane tropics.  相似文献   

4.
Fuelwood extracted from natural forests serves as a principal energy source in rural regions of many tropical countries. Although fuelwood extraction (even low intensities) might strongly impact the structure and species composition of natural forests, long-term studies remain scarce. Here, we estimate the potential long-term impacts (over several hundred years) of such repeated harvesting of single trees on tropical montane cloud forest in central Veracruz, Mexico, by applying a process-based forest growth model. We simulate a wide range of possible harvesting scenarios differing in wood volume harvested and preferred tree species and sizes, and use a set of indicators to compare their impacts on forest size structure and community composition. Results showed that the overall impact on forest structure and community composition increased linearly with the amount of harvested wood volume. Even at low levels of harvesting, forest size structure became more homogeneous in the long term because large old trees disappeared from the forest, but these changes might take decades or even centuries. Although recruitment of harvested species benefited from harvesting, species composition shifted to tree species that are not used for fuelwood. Our results demonstrate that fuelwood extraction can have marked long-term impacts on tropical montane cloud forests. The results also offer the possibility to support the design of management strategies for the natural species-rich forests that achieve a balance between economic needs and ecological goals of the stakeholders. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
海南霸王岭热带山地雨林森林循环与树种多样性动态   总被引:19,自引:0,他引:19  
通过对海南岛霸王岭热带山地雨林的调查 ,研究了热带山地雨林树种多样性特征随森林循环的动态变化规律。结果表明 :( 1 )热带山地雨林森林循环不同阶段斑块在森林景观中所占的面积比例分别是 :林隙阶段 ( G)占 38.5 0 % ,建立阶段 ( B)占 2 8.5 0 % ,成熟阶段 ( M)占 2 7.0 0 % ,衰退阶段 ( D)占 6 .0 0 %。 ( 2 )热带山地雨林中乔木树种的密度随森林循环的变化趋势是由 G→B→M呈现出逐渐增加的趋势 ,以成熟阶段达到最大 ,而到衰退阶段又趋于下降。灌木树种则表现出 G阶段斑块的密度最大 ,B阶段的最小 ,从 B到 M有所增加 ,到 D又稍有下降。 ( 3)热带山地雨林中不同高度级和不同径级的树木的密度在森林循环的不同阶段表现出不同的增减趋势 ,其随森林循环过程呈现出的动态变化可能与不同阶段斑块内的空间、环境及物种生物学特性有关。 ( 4 )热带山地雨林中树木的平均胸径、平均高、平均胸高断面积、平均单株材积随森林循环过程呈现出不断增加的趋势 ,其中平均胸径和平均高随森林循环的变化较为平缓 ,而平均胸高断面积和平均单株材积之变化较为陡急。 ( 5 )热带山地雨林森林循环不同阶段的物种多样性指数不同 ,其中 G和 B阶段的物种丰富度和多样性指数值较接近 ,M阶段的物种丰富度达到最大 ,D阶段则最小。  相似文献   

6.
Fertilization experiments in tropical forests have shown that litterfall increases in response to the addition of one or more soil nutrients. However, the relationship between soil nutrient availability and litterfall is poorly defined along natural soil fertility gradients, especially in tropical montane forests. Here, we measured litterfall for two years in five lower montane 1‐ha plots spanning a soil fertility and precipitation gradient in lower montane forest at Fortuna, Panama. Litterfall was also measured in a concurrent nitrogen fertilization experiment at one site. Repeated‐measures ANOVA was used to test for site (or treatment), year, and season effects on vegetative, reproductive and total litterfall. We predicted that total litterfall, and the ratio of reproductive to leaf litterfall, would increase with nutrient availability along the fertility gradient, and in response to nitrogen addition. We found that total annual litterfall varied substantially among 1‐ha plots (4.78 Mg/ha/yr to 7.96 Mg/ha/yr), and all but the most aseasonal plot showed significant seasonality in litterfall. However, litterfall accumulation did not track soil nutrient availability; instead forest growing on relatively infertile soil, but dominated by an ectomycorrhizal tree species, had the highest total litterfall accumulation. In the fertilization plots, significantly more total litter fell in nitrogen addition relative to control plots, but this increase in response to nitrogen (13%) was small compared to variation observed among 1‐ha plots. These results suggest that while litterfall at Fortuna is nutrient‐limited, compositional and functional turnover along the fertility gradient obscure any direct relationship between soil resource availability and canopy productivity.  相似文献   

7.
We determined rates of acetylene reduction and estimated total nitrogen fixation associated with bryophytes, lichens, and decaying wood in Hawaiian montane rain forest sites with underlying substrate ranging in age from 300 to 4.1 million years. Potential N fixation ranged from ca 0.2 kg/ha annually in the 300‐year‐old site to ca 1 kg/ha annually in the 150,000‐year‐old site. Rates of acetylene reduction were surprisingly uniform along the soil‐age gradient, except for high rates in symbiotic/associative fixers at the 150,000‐year‐old site and in heterotrophic fixers at the 2100‐year‐old site. Low fixation at the youngest site, where plant production is known to be N‐limited, suggests that demand for N alone does not govern N fixation. Total N fixation was highest in sites with low N:P ratios in leaves and stem wood, perhaps because epiphytic bryophytes and lichens depend on canopy leachate for mineral nutrients and because heterotrophic fixation is partly controlled by nutrient supply in the decomposing substrate; however, differences in substrate cover, rather than in fixation rates, had the largest effect on the total N input from fixation at these sites.  相似文献   

8.
Deforested tropical areas are often colonized by competitive ferns that inhibit forest succession. In thickets of such a fern (Dicranopteris pectinata), we investigated methods for initiating restoration of tropical montane forest in the Ébano Verde Scientific Reserve (Dominican Republic). In clearings in the thickets, growth and survivorship of 18 common early‐ and late‐successional woody species were tested, with and without fertilizer (poultry litter). Three years after sowing, life history did not affect survivorship, but early‐successional species grew faster than late‐successional species (height increase 153 ± 103 cm vs. 81 ± 67 cm [mean ± 1 SD]). Inga fagifolia, a late‐successional species, and Alchornea latifolia, an early‐successional species, had 160 ± 62 cm mean height increase, and low mortality rates (<4%). In contrast, four late‐successional species (Cyrilla racemiflora, Myrcia deflexa, Prestoea acuminata var. montana, and Mora abbottii), and one early‐successional species, Ocotea leucoxylon, had approximately 39% mortality and height increase of 43 ± 48 cm. Brunellia comocladifolia had high mortality (55%), but averaged 340 ± 201 cm height increase, and was the only species whose growth was improved by fertilization. Fertilization improved survivorship of only one species, Piper aduncum. After three years, soils in the clearings had low pH and available P and did not differ significantly from soils in thickets. However, based on the growth rates and survivorship of sown woody plants, these soils did not appear to be a barrier for restoration. Although a complementary study demonstrated substantial natural regeneration, active planting should be used to increase plant density and diversity, especially where natural regeneration is poor.  相似文献   

9.
We developed and evaluated a model of the canopy of a tropical montane forest at Monteverde, Costa Rica, to estimate inorganic nitrogen (N) retention by epiphytes from atmospheric deposition. We first estimated net retention of inorganic N by samples of epiphytic bryophytes, epiphyte assemblages, vascular epiphyte foliage, and host tree foliage that we exposed to cloud water and precipitation solutions. Results were then scaled up to the ecosystem level using a multilayered model of the canopy derived from measurements of forest structure and epiphyte mass. The model was driven with hourly meteorological and event‐based atmospheric deposition data, and model predictions were evaluated against measurements of throughfall collected at the site. Model predictions were similar to field measurements for both event‐based and annual hydrologic and inorganic N fluxes in throughfall. Simulation of individual events indicated that epiphytic bryophytes and epiphyte assemblages retained 33–67 percent of the inorganic N deposited in cloud water and precipitation. On an annual basis, the model predicted that epiphytic components retained 3.4 kg N ha/yr, equivalent to 50 percent of the inorganic N in atmospheric deposition (6.8 kg N ha/yr). Our results indicate that epiphytic bryophytes play a major role in N retention and cycling in this canopy by transforming highly mobile inorganic N (ca. 50% of atmospheric deposition is NO?3) to less mobile (exchangeable NH+4) and recalcitrant forms in biomass and remaining litter and humus.  相似文献   

10.
11.
Abstract: The diversity of a hummingbird plant community in the eastern Andes of southern Ecuador was studied on the equivalent of a hectare (two 500 ' 10 m transects) at 1920 - 2100 m a.s.l. over the course of a year. A total of 3186 flowering individuals, representing 12 plant families, 29 genera and 72 species, were found to be visited by hummingbirds. Bromeliaceae had the most species visited, followed by Orchidaceae and Ericaceae. The majority of visited plant species were represented by a very few individuals, and only a few species of the Bromeliaceae and Orchidaceae appeared in large numbers of visited individuals. With regard to life forms visited by hummingbirds, epiphytes predominated (59 %), followed by trees and shrubs (29 %), vines (8 %) and herbs (4 %). Visited flowers usually had short- to medium-long floral tubes which were either functionally or morphologically tubiform or campanulate. Fifty percent of the species had red-coloured flowers, and a considerable number of the blossoms (43 %) displayed contrasting colours. The 72 plant species received visits from 26 species of Trochilidae (hummingbirds) and two species of Coerebidae (honeycreepers). A mere eight species of hummingbirds were seen frequently at the study area; the remaining species were only occasionally sighted. The eight frequently sighted species of hummingbirds made use of a total of 74 % of all hummingbird-visited plant species growing in the study area.  相似文献   

12.
We studied the spatial heterogeneity of tree diversity, and of forest structure and productivity in a highly diverse tropical mountain area in southern Ecuador with the aim of understanding the causes of the large variation in these parameters. Two major environmental gradients, elevation and topography, representing a broad range of climatic and edaphic site conditions, were analyzed. We found the highest species richness of trees in valleys <2100 m. Valleys showed highest values of basal area, leaf area index and tree basal area increment as well. Tree diversity also increased from ridges to valleys, while canopy openness decreased. Significant relationships existed between tree diversity and soil parameters (pH, total contents of Mg, K, Ca, N and P), and between diversity and the spatial variability of pH and Ca and Mg contents suggesting a dependence of tree diversity on both absolute levels and on the small-scale heterogeneity of soil nutrient availability. Tree diversity and basal area increment were positively correlated, partly because both are similarly affected by soil conditions. We conclude that the extraordinarily high tree species richness in the area is primarily caused by three factors: (1) the existence of steep altitudinal and topographic gradients in a rather limited area creating a small-scale mosaic of edaphically different habitats; (2) the intermingling of Amazonian lowland plant species, that reach their upper distribution limits, and of montane forest species; and (3) the geographical position of the study area between the humid eastern Andean slope and the dry interandean forests of South Ecuador.  相似文献   

13.
Precipitation throughfall (TF) plays an important role in the water balance of tropical forests. This study used 164 gauges to quantify precipitation and TF variability in a tropical pre‐montane transitional cloud forest on the Caribbean slope of the Cordillera Tilarán, Costa Rica, to identify the ecological and meteorological drivers of this variability. Daily TF measurements were taken from 28 June to 17 July 2012 and 12 June to 16 July 2013, for a total of 39 precipitation events. The total mean TF was 87.9 percent and TF at individual gauges ranged from 22.7 percent to 245.7 percent. Leaf area index (LAI) was calculated above each gauge using hemispheric photography for a mean study‐site LAI of 7.7. There was no statistically significant relationship between LAI and TF. However, the amount of TF was positively correlated with precipitation intensity, while the variability of TF was negatively correlated with precipitation intensity. Our calculations indicate that at least 61 gauges are required to obtain mean TF estimates with less than 5 percent error. This study demonstrates that TF is highly spatially heterogeneous due to multiple compounding effects.  相似文献   

14.
15.
For 6 tropical bryophytes, measurements of the diel courses in water status and net CO2 exchange were made in a submontane tropical rain forest in Panama. In addition, the response of gas exchange to changes in photon flux density (PPFD) and thallus water content (WC) was studied under controlled conditions. Diel variation of WC was pronounced, and both low and high WC limited carbon gain considerably. Low PPFD, e.g. during rain storms, was less important in limiting CO2 exchange. More than half of the mean diurnal carbon gain of 2.9 mg C per g thallus carbon was lost during the night as respiration. Assuming that the average 24-h carbon gain was representative for the entire year, we estimated the net annual primary productivity of the mosses and liverworts to be 45% of the initial plant carbon content.  相似文献   

16.
17.
18.
Epiphytes generally occupy arboreal perches, which are inherently unstable environments due to periodic windstorms, branch falls, and treefalls. During high wind events, arboreal bromeliads are often knocked from the canopy and deposited on the forest floor. In this study, we used a common epiphytic tank bromeliad, Guzmania berteroniana (R. & S.) Mez, to determine if fallen bromeliads can survive, grow, and reproduce on the forest floor and evaluate the potential impact of adult dispersal on plant and soil nutrient pools. Bromeliads were transplanted to and from tree stems and the forest floor and monitored intensively for six months; survival, growth, and impacts on ecosystem nutrient pools were followed on a subset of plants for 16 months. Six months after transplanting, bromeliad mortality was low (3%), and 19 percent of study individuals had flowered and produced new juvenile shoots. Mortality on the subset of plants followed for 16 months was 14–30 percent. Although survival rates were relatively high in all habitats, bromeliads transplanted to trees grew significantly more root length (x?± SE: 189 ± 43 cm) than those moved to the forest floor (53 ±15 cm) and experienced lower rates of leaf area loss. All transplanted bromeliads rapidly altered the substrate they occupied. Individuals transplanted to and among trees rapidly decreased base cation concentrations but significantly increased P concentrations of their underlying substrate. On the ground, bromeliads increased C, N, and P concentrations within nine months of placement. Our results suggest that in this montane tropical forest, bromeliads respond rapidly to displacement, locally modify their substrates, and can access the resources needed for survival regardless of habitat.  相似文献   

19.
Distress calls are loud, harsh calls given by some species of birds when they are captured by a predator or handled by humans. We recorded the frequency of distress calls and struggling behavior in 40 species of birds captured in mist nets during the dry season in a Costa Rica cloud forest. We tested the following hypotheses proposed to explain the function of distress calls: (1) calling for help from kin or reciprocal altruists; (2) warning kin; (3) eliciting mobbing behavior; (4) startling the predator; and (5) distracting the predator through attraction of additional predators. Our results did not support the calling‐for‐help, warning kin, or mobbing hypotheses. Indeed, genera that regularly occurred with kin or in flocks were not more likely to call than non‐flocking genera. There was no relationship between calling frequency and struggling behavior as predicted by the predator startle hypothesis. Genera of larger birds tended to call more than smaller birds, providing some support for both the predator distraction hypothesis and predator startle hypotheses. Calls of higher amplitude may be more effective in startling the predator. Distress calls of larger birds may also travel greater distances than those of smaller birds, supporting the predator manipulation hypothesis, but this requires further testing.  相似文献   

20.
The N, P, and S cycles in pristine forests are assumed to differ from those of anthropogenically impacted areas, but there are only a few studies to support this. Our objective was therefore to assess the controls of N, P, and S release, immobilization, and transport in a remote tropical montane forest. The study forest is located on steep slopes of the northern Andes in Ecuador. We determined the concentrations of NO3-N, NH4-N, dissolved organic N (DON), PO4-P, dissolved organic P (DOP), SO4-S, dissolved organic S (DOS), and dissolved organic C (DOC) in rainfall, throughfall, stemflow, lateral flow (in the organic layer), litter leachate, mineral soil solution, and stream water of three 8–13 ha catchments (1900–2200 m a.s.l.). The organic forms of N, P, and S contributed, on average, 55, 66, and 63% to the total N, P, and S concentrations in all ecosystem fluxes, respectively. The organic layer was the largest source of all N, P, and S species except for inorganic P and S. Most PO4 was released in the canopy by leaching and most SO4 in the mineral soil by weathering. The mineral soil was a sink for all studied compounds except for SO4. Consequently, concentrations of dissolved inorganic and organic N and P were as low in stream water (TDN: 0.34–0.39 mg N l−1, P not detectable) as in rainfall (TDN: 0.39–0.48 mg N l−1, P not detectable), whereas total S concentrations were elevated (stream water: 0.04–0.15, rainfall: 0.01–0.07 mg S l−1). Dissolved N, P, and S forms were positively correlated with pH at the scale of soil peda except inorganic S. Soil drying and rewetting promoted the release of dissolved inorganic N. High discharge levels following heavy rainstorms were associated with increased DOC, DON, NO3-N and partly also NH4-N concentrations in stream water. Nitrate-N concentrations in the stream water were positively correlated with stream discharge during the wetter period of the year. Our results demonstrate that the sources and sinks of N, P, and S were element-specific. More than half of the cycling N, P, and S was organic. Soil pH and moisture were important controls of N, P, and S solubility at the scale of individual soil peda whereas the flow regime influenced the export with stream water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号