首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of temporal variation of rainfall on secondary succession of tropical dry ecosystems are poorly understood. We studied effects of inter-seasonal and inter-year rainfall variation on the dynamics of regenerative successional communities of a tropical dry forest in Mexico. We emphasized the effects caused by the severe El Niño Southern Oscillation (ENSO) occurred in 2005. We established permanent plots in sites representing a chronosequence of Pasture (abandoned pastures, 0–1 years fallow age), Early (3–5), Intermediate (8–12), and Old-Growth Forest categories (n = 3 per category). In total, 8210 shrubs and trees 10 to 100-cm height were identified, measured, and monitored over four years. Rates of plant recruitment, growth and mortality, and gain and loss of species were quantified per season (dry vs. rainy), year, and successional category, considering whole communities and separating seedlings from sprouts and shrubs from trees. Community rates changed with rainfall variation without almost any effect of successional stage. Mortality and species loss rates peaked during the ENSO year and the following year; however, after two rainy years mortality peaked in the rainy season. Such changes could result from the severe drought in the ENSO year, and of the outbreak of biotic agents during the following rainy years. Growth, recruitment and species gain rates were higher in the rainy season but they were significantly reduced after the ENSO year. Seedlings exhibited higher recruitment and mortality rate than sprouts, and shrubs showed higher recruitment than trees. ENSO strongly impacted both the dynamics and trajectory of succession, creating transient fluctuations in the abundance and species richness of the communities. Overall, there was a net decline in plant and species density in most successional stages along the years. Therefore, strong drought events have critical consequences for regeneration dynamics, delaying the successional process and modifying the resilience of these systems.  相似文献   

2.
It is well known that the recovery of abandoned tropical pastures to secondary rainforest benefits from the arrival of seeds from adjacent rainforest patches. Less is known, however, about how the structural attributes of adjacent rainforest (e.g. tree density, canopy cover and tree height) impact seed rain patterns into abandoned pastures. Between 2011 and 2013, we used seed traps and ground seed surveys to track the richness and abundance of rainforest seeds entering abandoned pastures in Australia's wet tropics. We also tested how seed rain diversity is related to the distance from forest, the proportion of forest cover in the landscape and several structural attributes of adjacent forest patches, specifically average tree height, canopy cover, tree species richness and density. Almost no seeds were captured in elevated pasture seed traps, even near forest remnants. Abundant forest seeds were found in ground surveys but only within 10 m of forest edges. In ground surveys, seeds from wind‐dispersed species were more abundant, but less species rich, than animal‐dispersed species. A survey of pasture seedling recruits suggested that some forest seeds must be dispersing more than 10 m into pasture at very low frequencies, but only a few species are establishing there. Recruits were predominantly animal‐dispersed not wind‐dispersed species. In addition to distance from forest and the proportion of forest within a 100‐ to 200‐m radius of sampling sites, the richness and density of adjacent forest trees were the most important factors for explaining the probability of seed occurrence in abandoned pastures. Results suggest that without some restoration assistance, the recovery of abandoned pastures into secondary rainforest in Australia's tropical rainforests will likely be limited, at least in part, by a very low rate of seed dispersal away from forest edges and by the diversity and density of trees in adjacent remnant forests.  相似文献   

3.
Natural restoration of historical wetland plant communities in fallow fields with a degraded seed bank has been assumed to be possible only if source populations of the target species are present adjacent to the abandoned fields and a high density of suitable microsites is available. However, few studies have monitored both factors simultaneously and verified this assumption. We hypothesized that plant communities that are similar to historical wetlands, including back marshes, back swamps, and bogs, will reestablish in abandoned pasturelands in cases when (1) gaps for new recruitment emerge, followed by the decline of pastures; and (2) seeds with longevity are supplied from the surrounding remnant plant communities of wetlands. We conducted a survey of vegetation and microsites in pastures, abandoned pastures, and reference wetlands followed by structural equation modeling to verify our hypothesis for the natural restoration of Phragmites australis–Phalaris arundinacea and Alnus japonica–Spiraea salicifolia communities. These communities represent historical back marshes and back swamps along a river. However, our hypothesis was not verified for the natural restoration of Vaccinium oxycoccos–Sphagnum spp. communities, which represent plant communities in historical bogs grown on acidic peat that are maintained by rainfall and fog. Our findings partly support our hypothesis that decline in pastures creates gaps and that cumulative seed dispersal from nearby remnant wetlands allows the original wetland plant communities to regenerate. Further case studies are needed to determine how the natural restoration of bog plant communities occurs.  相似文献   

4.
Land use intensification drives biodiversity loss worldwide. In heterogeneous landscape mosaics, both overall forest area and anthropogenic matrix structure induce changes in biological communities in primary habitat remnants. However, community changes via cross‐habitat spillover processes along forest–matrix interfaces remain poorly understood. Moreover, information on how landscape attributes affect spillover processes across habitat boundaries are embryonic. Here, we quantify avian α‐ and β‐diversity (as proxies of spillover rates) across two dominant types of forest–matrix interfaces (forest–pasture and forest–eucalyptus plantation) within the Atlantic Forest biodiversity hotspot in southeast Brazil. We also assess the effects of anthropogenic matrix type and landscape attributes (forest cover, edge density and land‐use diversity) on bird taxonomic and functional β‐diversity across forest–matrix boundaries. Alpha taxonomic richness was higher in forest edges than within both matrix types, but between matrix types, it was higher in pastures than in eucalyptus plantations. Although significantly higher in forests edges than in the adjacent eucalyptus, bird functional richness did not differ between forest edges and adjacent pastures. Community changes (β‐diversity) related to species and functional replacements (turnover component) were higher across forest–pasture boundaries, whereas changes related to species and functional loss (nested component) were higher across forest–eucalyptus boundaries. Forest edges adjacent to eucalyptus had significant higher species and functional replacements than forest edges adjacent to pastures. Forest cover negatively influenced functional β‐diversity across both forest–pasture and forest–eucalyptus interfaces. We show the importance of matrix type and the structure of surrounding landscapes (mainly forest cover) on rates of bird assemblage spillover across forest‐matrix boundaries, which has profound implications to biological fluxes, ecosystem functioning and land‐use management in human‐modified landscapes.  相似文献   

5.
Semi-natural pastures have rich plant and animal communities of high conservation value which depend on extensive management. As the area of such land decreases, abandoned semi-natural grasslands have been restored to re-establish biodiversity. Restoration schemes, which include thinning of woody plants and reintroduction of grazing, are mainly designed according to the responses of well-studied groups (such as vascular plants and birds). Weevils (Curculionidae) are a very diverse phytophagous beetle family. Here, we evaluated the restoration success of pastures for weevils (Curculionidae), by comparing their species diversity in abandoned, restored, and continuously grazed semi-natural pastures on 24 sites in central Sweden. Weevils were sampled by sweep-netting. We recorded 3019 weevil individuals belonging to 104 species. There was no statistically significant difference in species numbers between the pasture management treatments. However, weevil species composition of abandoned pastures differed from those in restored and continuously managed pastures, but there was no significant difference in community composition between restored and continuously grazed pastures. The abandoned sites tended to be dominated by polyphagous species, whereas the grazed sites contained more monophagous and oligophagous species. The number of weevil species was positively related to understory vegetation height and connectivity to other semi-natural grasslands and negatively related to the cover of trees and shrubs in the pastures. We conclude that restoration of abandoned semi-natural pastures is a good approach to restore weevil communities. To maintain a species rich weevil community, pastures should be managed to be relatively open, but still have patches of tall field-layer vegetation. Restoration and conservation measures should primarily be targeted on regions and landscapes where a high proportion of semi-natural grassland still remains.  相似文献   

6.
We examined the size, species, location (x and y coordinates), and microsite inhabited by colonizing trees and shrubs in five abandoned pastures in southern Costa Rica. All woody stems greater than 1 m tall in the pastures were measured and mapped, from the overhanging forest edge to 50 m into the abandoned pasture. Species composition of colonists differed substantially among pastures: Croton draco (Euphorbiaceae) dominated one site, two species of Miconia (Melastomataceae) another site, and Verbesina tapentiensis (Asteraceae) a third site. Site 4 had the highest cover of rotting logs (11%), and a four‐fold greater density of colonizing woody plants than the site with the next highest colonist density. For all species pooled, and for several individual taxa, density was positively correlated across sites with abundance of log microsites. Four of the six most common woody species in site 4 occurred on logs significantly more often than expected had they been randomly distributed relative to logs. Site 5 had less abundance of logs, but the common Miconia species was again significantly more likely to be found on log microsites. These results strongly suggest that rotting wood microsites facilitate establishment of bird‐dispersed pioneer trees, which in turn could foster regrowth of other forest species.  相似文献   

7.
Habitat restoration is a key measure to counteract negative impacts on biodiversity from habitat loss and fragmentation. To assess success in restoring not only biodiversity, but also functionality of communities, we should take into account the re‐assembly of species trait composition across taxa. Attaining such functional restoration would depend on the landscape context, vegetation structure, and time since restoration. We assessed how trait composition of plant and pollinator (bee and hoverfly) communities differ between abandoned, restored (formerly abandoned) or continuously grazed (intact) semi‐natural pastures. In restored pastures, we also explored trait composition in relation to landscape context, vegetation structure, and pasture management history. Abandoned pastures differed from intact and restored pastures in trait composition of plant communities, and as expected, had lower abundances of species with traits associated with grazing adaptations. Further, plant trait composition in restored pastures became increasingly similar to that in intact pastures with increasing time since restoration. On the contrary, the trait composition of pollinator communities in both abandoned and restored pastures remained similar to intact pastures. The trait composition for both bees and hoverflies was influenced by flower abundance and, for bees, by connectivity to other intact grasslands in the landscape. The divergent responses across organism groups appeared to be mainly related to the limited dispersal ability and long individual life span in plants, the high mobility of pollinators, and the dependency of semi‐natural habitat for bees. Our results, encompassing restoration effects on trait composition for multiple taxa along a gradient in both time (time since restoration) and space (connectivity), reveal how interacting communities of plants and pollinators are shaped by different trait–environmental relationships. Complete functional restoration of pastures needs for more detailed assessments of both plants dispersal in time and of resources available within pollinator dispersal range.  相似文献   

8.
Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land‐cover change affects belowground carbon storage and nutrient availability. We measured intra‐ and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well‐replicated, long‐term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter‐ and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land‐use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities.  相似文献   

9.
The interactions between climate and land‐use change are dictating the distribution of flora and fauna and reshuffling biotic community composition around the world. Tropical mountains are particularly sensitive because they often have a high human population density, a long history of agriculture, range‐restricted species, and high‐beta diversity due to a steep elevation gradient. Here we evaluated the change in distribution of woody vegetation in the tropical Andes of South America for the period 2001–2014. For the analyses we created annual land‐cover/land‐use maps using MODIS satellite data at 250 m pixel resolution, calculated the cover of woody vegetation (trees and shrubs) in 9,274 hexagons of 115.47 km2, and then determined if there was a statistically significant (p < 0.05) 14 year linear trend (positive—forest gain, negative—forest loss) within each hexagon. Of the 1,308 hexagons with significant trends, 36.6% (n = 479) lost forests and 63.4% (n = 829) gained forests. We estimated an overall net gain of ~500,000 ha in woody vegetation. Forest loss dominated the 1,000–1,499 m elevation zone and forest gain dominated above 1,500 m. The most important transitions were forest loss at lower elevations for pastures and croplands, forest gain in abandoned pastures and cropland in mid‐elevation areas, and shrub encroachment into highland grasslands. Expert validation confirmed the observed trends, but some areas of apparent forest gain were associated with new shade coffee, pine, or eucalypt plantations. In addition, after controlling for elevation and country, forest gain was associated with a decline in the rural population. Although we document an overall gain in forest cover, the recent reversal of forest gains in Colombia demonstrates that these coupled natural‐human systems are highly dynamic and there is an urgent need of a regional real‐time land‐use, biodiversity, and ecosystem services monitoring network.  相似文献   

10.
Changes of agricultural practices have led to decline of semi-natural habitats sustained by traditional animal husbandry in many European regions. The abandonment of semi-natural pastures leads to increase of vascular plant biomass and subsequent decline of weak competitors such as bryophytes. Re-establishing traditional animal husbandry may potentially restore biodiversity but the success of such measures remains insufficiently known. In this study, we asked if re-establishing cattle grazing on previously abandoned grasslands will restore their bryophyte communities. The effect of cattle grazing on bryophyte communities of mesic semi-natural grasslands was studied in south-western Finland in a comparison of (i) continuously grazed pastures, (ii) previously abandoned pastures where grazing was re-established during 1990s, and (iii) abandoned pastures, where grazing had ceased during late 1960s to early 1980s. The average cover, species richness, species density and species diversity of bryophytes were significantly higher in the continuously grazed than in the abandoned grasslands. Ordination analyses revealed clear differences also in community structure between the management classes. Re-established grasslands were ecologically heterogeneous and situated in between the continuously grazed and abandoned grasslands in all characteristics, indicating variable effect of the restoration measure. Seventeen bryophyte species were recognized as significant indicators of the three grassland classes, four of which could be used as indicators of valuable grassland habitats. Although there was variation in the consequences of re-introduction of grazing, the results give evidence of positive effect of grazing on regaining bryophyte diversity of abandoned grasslands.  相似文献   

11.
Philip G. Hahn  John L. Orrock 《Oikos》2015,124(4):497-506
Past and present human activities, such as historic agriculture and fire suppression, are widespread and can create depauperate plant communities. Although many studies show that herbivory on focal plants depends on the density of herbivores or the composition of the surrounding plant community, it is unclear whether anthropogenic changes to plant communities alter herbivory. We tested the hypothesis that human activities that alter the plant community lead to subsequent changes in herbivory. At 20 sites distributed across 80 300 hectares, we conducted a field experiment that manipulated insect herbivore access (full exclosures and pseudo‐exclosures) to four focal plant species in longleaf pine woodlands with different land‐use histories (post‐agricultural sites or non‐agricultural sites) and degrees of fire frequency (frequent and infrequent). Plant cover, particularly herbaceous cover, was lower in post‐agricultural and fire suppressed woodlands. Density of the dominant insect herbivore at our site (grasshoppers) was positively related to plant cover. Herbivore access reduced biomass of the palatable forb Solidago odora in frequently burned post‐agricultural sites and in infrequently burned non‐agricultural woodlands and increased mortality of another forb (Pityopsis graminifolia), but did not affect two other less palatable species (Schizachyrium scoparium and Tephrosia virginiana). Herbivory on S. odora exhibited a hump‐shaped response to plant cover, with low herbivory at low and high levels of plant cover. Herbivore density had a weak negative effect on herbivory. These findings suggest that changes in plant cover related to past and present human activities can modify damage rates on focal S. odora plants by altering grasshopper foraging behavior rather than by altering local grasshopper density. The resulting changes in herbivory may have the potential to limit natural recovery or restoration efforts by reducing the establishment or performance of palatable plant species.  相似文献   

12.
Forest restoration by planting trees often accelerates succession, but the trajectories toward reference ecosystems have rarely been evaluated. Using a chronosequence (4–53 years) of 26 riparian forest undergoing restoration in the Brazilian Atlantic Forest, we modeled how the variables representing forest structure, tree species richness and composition, and the proportion of plant functional guilds change through time. We also estimated the time required for these variables to reach different types of reference ecosystems: old‐growth forest (OGF), degraded forest, and secondary forest. Among the attributes which follow a predictable trajectory over time are: the basal area, canopy cover, density and tree species richness, as well as proportions of shade tolerant and slow growing species or individuals. Most of the variation in density of pteridophythes, lianas, shrubs and phorophythes, proportion of animal‐dispersed individuals, rarefied richness and floristic similarity with reference ecosystems remain unexplained. Estimated time to reach the reference ecosystems is, in general, shorter for structural attributes than for species composition or proportion of functional guilds. The length of this time varies among the three types of reference ecosystems for most attributes. For instance, tree species richness and proportion of shade tolerant or slow growing individuals become similar to secondary forests in about 40 years, but is estimated to take 70 years or more to reach the OGF. Of all the variables considered, canopy cover, basal area, density, and richness of the understory—by their ecological relevance and predictability—are recommended as ecological indicators for monitoring tropical forest restoration success.  相似文献   

13.
The expansion of rainforest pioneer trees into long‐unburnt open forests has become increasingly widespread across high rainfall regions of Australia. Increasing tree cover can limit resource availability for understorey plant communities and reduce understorey diversity. However, it remains unclear if sclerophyll and rainforest trees differ in their competitive exclusion of understory plant communities, which contain most of the floristic diversity of open forests. Here, we examine dry open forest across contrasting fire histories (burnt and unburnt) and levels of rainforest invasion (sclerophyll or rainforest midstorey) to hindcast changes in understorey plant density, richness and composition. The influence of these treatments and other site variables (midstorey structure, midstorey composition and soil parameters) on understorey plant communities were all examined. This study is the first to demonstrate significantly greater losses of understorey species richness, particularly of dry open‐forest specialists, under an invading rainforest midstorey compared to a typical sclerophyll midstorey. Rainforest pioneers displaced over half of the understorey plant species, and reduced ground cover and density of dry forest specialists by ~90%. Significant understorey declines also occurred with increased sclerophyll midstorey cover following fire exclusion, although losses were typically less than half that of rainforest‐invaded sites over the same period. Understorey declines were closely related to leaf area index and basal area of rainforest and wattle trees, suggesting competitive exclusion through shading and potentially belowground competition for water. Around 20% of displaced species lacked any capacity for population recovery, while transient seed banks or distance‐limited dispersal may hinder recovery for a further 68%. We conclude that rainforest invasion leads to significant declines in understorey plant diversity and cover in open forests. To avoid elimination of local native plant populations in open forests, fires should occur with sufficient frequency to prevent overstorey cover from reaching a level where shade‐intolerant species fail to thrive.  相似文献   

14.
Nearly all published rates of secondary forest (SF) regrowth for Amazonia are inferred from chronosequences. We examined SF regrowth on abandoned pastures over a 4‐year period to determine if measured rates of forest recovery differ from chronosequence predictions. We studied the emergence, development and death of over 1300 stems in 10 SFs representing three age classes (<1–5, 6–10 and 11–14 years old). Mean tree biomass accumulation in both the <1–5 and 6–10 years old (4.4 and 5.7 Mg ha−1 yr−1, respectively) abandoned pastures was lower than predicted and deviated significantly (57% and 41%) from rates estimated from the chronosequence. The older SFs, with a mean growth rate of 9.9 Mg ha−1 yr−1 followed the rate predicted by the chronosequence. Understocking was the primary cause of low biomass recovery rates in the youngest forests; although the youngest stands had a diameter at breast height increment three times the oldest stands, the youngest stands lacked sufficient density to cumulatively produce high biomass accumulation rates. Four years of measurement indicated that the youngest stands had developed 59% of the stems measured in the older stands during the same time period. The 6–10‐year‐old stands were rapidly self‐thinning and approached stem density values measured in the same aged stands at the onset of the study. Mortality was high for all stands, with 54% of the original stems remaining after 4 years in intermediate‐aged stands. The forests were dominated by the tree Vismia, which represented 55–66% of the biomass in all stands. The Vismia share of the biomass was decreasing over time, with other genera replacing the pioneer. Our measured rates of regrowth indicate that generalized estimates of forest regrowth through chronosequence studies will overestimate forest regrowth for the youngest forests that were under land use for longer time‐periods before abandonment. Certified Emission Reductions under the Clean Development Mechanism of the Kyoto protocol should consider these results when predicting and compensating for carbon sequestered under natural forest management.  相似文献   

15.
Traditionally managed mountain grasslands in the Alps are species‐rich ecosystems that developed during centuries of livestock grazing. However, changes in land use including fertilisation of well accessible pastures and gradual abandonment of remote sites are increasingly threatening this diversity. In five regions of the Swiss and French Alps we assessed the relationship between land use, soil resource availability, cover of the unpalatable species Veratrum album, species richness and vegetation composition of mountain grasslands across four spatial scales ranging from 1 to 1000 m2. Mean species richness and the increase in the number of species with increasing area were lower in intensively grazed, fertilised pastures than in traditional pastures or in abandoned pastures. Species composition of abandoned pastures differed from that of the other management types. Plant species richness was influenced by different factors at different spatial scales. At the 1 m2 scale, plant species richness was negatively related to soil nitrate and influenced by the cover of V. album, depending on land use: species richness and cover of V. album were negatively correlated in abandoned pastures, but positively correlated in fertilised grasslands. At the 1000 m2 scale, a negative effect of fertilization on richness was evident. These results indicate that at small scales species richness in mountain grasslands is determined by competition for light, which should be more important if nutrient availability is high, and by positive and negative interactions with unpalatable plants. In contrast, species richness at the large scale appears to be mainly influenced by land use. This result emphasizes the importance of studying such inter‐relationships at multiple scales. Our study further suggests that the maintenance of the traditional land use scheme is crucial for the conservation of plant species richness of mountain pastures as both intensification and abandonment changed species composition and reduced plant species diversity.  相似文献   

16.
I assessed the role of low vegetation (plants ca 1 yr old and ≤50 cm tall) as a biotic facilitator or barrier in the recruitment of different growth forms and species in primary forests, secondary forests, and old‐fields (abandoned pastures) in southeastern Mexico. I removed by hand all plants (≤100 cm tall, including roots) and litter from 20, 0.25 m2 plots in each habitat. For 1 yr, I counted the number of plant species (5–50 cm tall) recruited, grouped them into different growth forms, and compared them to undisturbed control plots. Prior to manipulation, the standing density of trees and lianas was highest in primary and secondary forests. Shrubs were more abundant in secondary forests, whereas herbs, epiphytes, and hemi‐epiphytes were more abundant in old‐fields. Herbaceous plants appeared as important components of the community in all habitats. The removal of low vegetation increased total plant recruitment in all habitats. Considering each growth form, the absence of vegetation increased recruitment in primary forests for herbs, in secondary forests for epiphytes and hemi‐epiphytes, in old‐fields for trees, and for lianas in primary forests and old‐fields. In vegetation removal plots, recruitment of species was greater in pastures, lower in secondary forest, and similar in primary forest with respect to control plots. Depending on habitat type, species, and growth form, the presence of low vegetation may act as a recruitment barrier or facilitator for different species, affecting plant community structure, diversity, and composition in different habitats.  相似文献   

17.
Mycorrhizal fungi were sampled in a deciduous tropical forest on the Pacific coast of Mexico during different seasons and in natural treefall gaps and pastures. All 12 plant species sampled in the forest were arbuscular mycorrhizal. The percent root infection and spore production were closely related to the phenology of the plants. Most tree species and all herbaceous species had the highest infection in the summer rainy season, but two species, Opuntia excelsa and Jacquinia pungens, had highest infection in the dry season. Unusually high rainfall during the dry season was associated with increased infection but not increased spore production. Spore density was low for all species at all sample times, except at the beginning of the July 1993 rainy season in, when we observed up to 28 spores/g soil. The percent cover of shrubs or herbs did not increase in gaps after two years, and we observed no colonizing seedlings. No plant species with cover higher than 2.7 percent occurred exclusively in gaps or forest. The percent mycorrhizal infection did not differ significantly between gaps and forest. Spore counts were as high in the gaps as in the forest in two of the three gaps but lower in the third gap. The lack of significant response of plants in these gaps after two years differed from the rapid response in tropical rainforests. It is likely related to the small size of the gaps and to light infiltration to the forest floor. Pastures were dominated by two species of exotic grasses and one species of mycorrhizal fungus, whereas forests had 15 fungal species. The slow regrowth of vegetation in gaps was not limited by mycorrhizal fungi, since they were still abundant after the treefalls, but recovery in pastures could be affected by low fungal diversity and dominance of grasses.  相似文献   

18.
During the mid‐1900s, most of the island of Puerto Rico was deforested, but a shift in the economy from agriculture to small industry beginning in the 1950s resulted in the abandonment of agricultural lands and recovery of secondary forest. This unique history provides an excellent opportunity to study secondary forest succession and suggest strategies for tropical forest restoration. To determine the pattern of secondary succession, we describe the woody vegetation in 71 abandoned pastures and forest sites in four regions of Puerto Rico. The density, basal area, aboveground biomass, and species richness of the secondary forest sites were similar to those of the old growth forest sites (>80 yr) after approximately 40 years. The dominant species that colonized recently abandoned pastures occurred over a broad elevational range and are widespread in the neotropics. The species richness of Puerto Rican secondary forests recovered rapidly, but the species composition was quite different in comparison with old growth forest sites, suggesting that enrichment planting will be necessary to restore the original composition. Exotic species were some of the most abundant species in the secondary forest, but their long‐term impact depended on life history characteristics of each species. These data demonstrate that one restoration strategy for tropical forest in abandoned pastures is simply to protect the areas from fire, and allow natural regeneration to produce secondary forest. This strategy will be most effective if remnant forest (i.e., seed sources) still exist in the landscape and soils have not been highly degraded. Patterns of forest recovery also suggest strategies for accelerating natural recovery by planting a suite of generalist species that are common in recently abandoned pastures in Puerto Rico and throughout much of the neotropics.  相似文献   

19.
Although deforestation continues to be a major threat to tropical biodiversity, abandonment of agricultural land in Puerto Rico provides an opportunity to study long-term patterns of secondary forest regeneration. Using aerial photographs from 1937, 1967, and 1995, we determined land-use history for 2443 ha in the Cayey Mountains. Pastures were the dominant land cover in 1937 and <20% of the area was classified as forest. Between 1937 and 1995, forest cover increased to 62% due to widespread abandonment of agriculture. To examine the effect of historic land use on current forest structure and species composition, we sampled secondary forests in 24 abandoned pastures, 9 abandoned coffee plantations and 4 old-growth forest sites. Sites were located on two soil types along an elevational gradient (125–710 m) and included a chronosequence from 4 to over 80 years old. After 25–30 years, basal area and species richness in secondary forest sites derived from abandoned pastures and coffee plantations were similar to old-growth forest sites. The species composition of secondary forests derived from abandoned pastures and coffee plantations remained distinct from old-growth forest. In addition to historic land use, age and elevation were important environmental variables explaining variation in secondary forest species composition. Non-indigenous species were common in recently abandoned pastures and coffee plantations, but their importance declined in the older sites. This study demonstrates that secondary forests on private land can be an important component of the conservation of tropical tree biodiversity. Received 16 June 1999; Accepted 8 October 1999.  相似文献   

20.
Chronosequences, commonly used to assess succession, have been questioned because of their failure to project successional trajectories. Here, we develop a simple analytical approach combining both chronosequence and dynamic data to test the power of age of abandonment and site factors to explain and predict succession. The approach proceeds by first fitting statistical models relating age to attribute values (the chronosequence model) and their observed changes (the dynamic model) to test explanatory power. Predictive power is then tested by bootstrapping the chronosequence model to derive confidence intervals for expected changes and comparing them with the dynamic model. Finally, residuals from both models are tested against site factors. The procedure was applied to six attributes (basal area, plant density, mean plant height, species richness, evenness, and composition) of the woody community (plants >1 cm dbh within 0.1‐ha plots) in nine abandoned cattle pastures (0–12 yr) and three old growth tropical dry forests monitored over 6 yr. Age explained 60–97 percent of the variance in community attributes and only 32–57 percent in observed changes. It significantly overestimated basal area and mean height, while species richness and composition were highly predicted. Besides age, management history also explained successional dynamics. Our results suggest age is not necessarily a reliable predictor of short‐term successional dynamics, and explanatory power is not indicative of predictive power. Because of this low reliability, caution is needed when applying chronosequences to evaluate ecosystem services' recovery. The analytical approach developed here contributes to a better exploration of those possible limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号