首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   

2.
Ungulates are leading drivers of plant communities worldwide, with impacts linked to animal density, disturbance and vegetation structure, and site productivity. Many ecosystems have more than one ungulate species; however, few studies have specifically examined the combined effects of two or more species on plant communities. We examined the extent to which two ungulate browsers (moose [Alces americanus]) and white‐tailed deer [Odocoileus virginianus]) have additive (compounding) or compensatory (opposing) effects on herbaceous layer composition and diversity, 5–6 years after timber harvest in Massachusetts, USA. We established three combinations of ungulates using two types of fenced exclosures – none (full exclosure), deer (partial exclosure), and deer + moose (control) in six replicated blocks. Species composition diverged among browser treatments, and changes were generally additive. Plant assemblages characteristic of closed canopy forests were less abundant and assemblages characteristic of open/disturbed habitats were more abundant in deer + moose plots compared with ungulate excluded areas. Browsing by deer + moose resulted in greater herbaceous species richness at the plot scale (169 m2) and greater woody species richness at the subplot scale (1 m2) than ungulate exclusion and deer alone. Browsing by deer + moose resulted in strong changes to the composition, structure, and diversity of forest herbaceous layers, relative to areas free of ungulates and areas browed by white‐tailed deer alone. Our results provide evidence that moderate browsing in forest openings can promote both herbaceous and woody plant diversity. These results are consistent with the classic grazing‐species richness curve, but have rarely been documented in forests.  相似文献   

3.
Question: Which mechanisms promote the maintenance of the protected pioneer grass Corynephorus canescens in a mosaic landscape? Which are the interactive effects of small‐scale disturbances, successional stage and year‐to‐year variation on early establishment probabilities of C. canescens? Location: Brandenburg, NE Germany. Methods: We measured emergence and survival rates over 3 yr in a sowing‐experiment conducted in three successional stages (C. canescens‐dominated site, ruderal forb site and pioneer forest) under two different regimes of mechanical ground disturbance (disturbed versus undisturbed control). Results: Overall, disturbance led to higher emergence in a humid year and to lower emergence in a very dry year. Apparently, when soil moisture was sufficient, the main factor limiting C. canescens' establishment was competition, while in the dry year, water became the limiting factor. Survival rates were not affected by disturbance. In humid years, C. canescens emerged in higher numbers in open successional stages while in the dry year, emergence rates were higher in late stages, suggesting an important role of late successional stages for the persistence of C. canescens. Conclusions: Our results suggest that small‐scale disturbances can promote germination of C. canescens. However, disturbances should be carefully planned. The optimal strategy for promoting C. canescens is to apply disturbances just before seed dispersal and not during dry years. At the landscape scale, a mosaic of different vegetation types is beneficial for the protected pioneer grass as facilitation by late‐successional species may be an important mechanism for the persistence of C. canescens, especially in dry years.  相似文献   

4.
Questions: What is the effect of herbaceous layer on seedling establishment of three woody pioneer species in open areas of central Chile under a semi‐arid mediterranean climate? How do inter‐annual and habitat conditions (slope aspect) modulate this effect? Under high stress conditions such as the drier year and habitat (north‐facing slope) do herbs reach low abundance and have neutral effects on woody seedlings? Under medium stress conditions for these woody species, such as the wetter year and south‐facing slope, does the herbaceous layer reach greater abundance and have positive effects on woody seedlings due to increasing soil water content? Location: A watershed on the outskirts of Santiago, Chile, subjected to clearing of woody vegetation through firewood extraction and human‐set fires. Methods: In spring 2007, we set up 20 plots (3 m × 2 m). Half of each plot had herbs removed manually and by application of herbicide. In both halves of each plot, one seedling (8 months old) of each of the three native woody species (Colliguaya odorifera, Schinus polygamus and Quillaja saponaria) was planted and survival monitored subsequently. The experiment was repeated in two consecutive growing seasons (2007–2008 and 2008–2009) that differed significantly in total precipitation (152 and 256.5 mm, respectively), and replicated in two sites that differed in aspect and abiotic conditions: a moister south‐ and a drier north‐facing slope. Results: In the first and drier year, the herbaceous layer had low cover and no significant effect on seedling survival of woody species. During the second year, herbs had greater cover and a significant positive effect on spring survival of C. odorifera in the north‐facing slope, which was lost after summer. During this wetter year on the south‐facing slope, herb cover had a positive effect on survival of S. polygamus (mainly during summer). Conclusions: The role of mostly ruderal herbs on woody seedling establishment depended on the species, rainfall of the current year and slope aspect, and may be explained by soil moisture patterns. This suggests that the effect of ruderal herbs on woody seedlings shifts from neutral under high stress conditions produced by drought to positive under moderate stress conditions. Our results contribute to understand interactions between ruderal herbs and woody species under contrasting abiotic conditions. Therefore, control of the herbaceous layer may not be needed in restoration programmes for this region. Moreover, herbs may benefit restoration of woody cover in mesic habitats.  相似文献   

5.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

6.
Abstract. Vegetation samples from 15 successional seres in various disturbed habitats in the western part of the Czech Republic were analysed to detect possible trends. For particular seres, data on species cover were available from the onset to 10–76 yr of succession. All seres started on bare ground. Species which attained at least 1% cover in any sere in any year were used as input data for Canonical Correspondence Analysis, assessing the effect of time as the environmental variable, for Detrended Correspondence Analysis and TWINSPAN classification. Two distinct groups ofseres were distinguished: ‘ruderal’, occurring in agricultural, industrial or urban landscapes altered by men, usually on fertile sites; and ‘non‐ruderul’, occurring in less altered, mostly forested landscapes, usually on acid, nutrient‐poor and wetter soils. The former type of succession starts with ruderal annuals, being followed by ruderal perennials. In the latter case non‐ruderal clonal perennials prevail from the onset of succession. The landscape frame is emphasized, beside site environmental conditions, as influencing the type of succession. The character of species attaining dominance in succession, participation of dominant woody plants and the character of late successional stages, i.e. features important from the point of view of potential restoration of human‐disturbed habitats, are discussed.  相似文献   

7.
To control shrubs, which are increasing in dominance in wetlands worldwide, winter burning may be an important tool, especially from the perspective of minimizing urban hazards. The goal of this project was to determine if winter burning was successful in reducing the dominance (mean percentage cover and maximum height) of Cornus sericea in sedge meadows in southern Wisconsin, where shrubs proliferated after cattle were excluded. Experimental burn and control plots were set up within sedge meadows, including an ungrazed “reference” site that had been little, if ever, grazed and a “historically grazed” site, a recovery site that had not been grazed by cattle since 1973. None of the dominant species including C. sericea was significantly affected by burning for either mean percentage cover or maximum height (analysis of variance: no burning × species interaction). Both mean percentage cover and maximum height were only weakly related to burning (28.1 and 14.3% of the variability contributed to the cumulative percentage of the coefficient of determination, respectively) at both sites based on non‐metric multidimensional scaling analysis. Although species richness increased in burned plots in 1999 and 2000, no differences were apparent between pre‐burned and unburned plots in 1997 and unburned plots in 1999 and 2000 (analysis of variance: year × burning interaction). After burning in the ungrazed site, herbaceous species appeared that had not been detected for decades, including Chelone glabra and Lathyrus palustris. Exotic species were present in both the ungrazed reference and recovery site. Although winter burning treatments did not reduce the dominance of woody shrub species in the site recovering from cattle grazing, burning was useful in stimulating the maintenance of species richness in the ungrazed sedge meadow.  相似文献   

8.
Abstract Stock grazing has degraded many riparian ecosystems around the world. However, the potential for ecosystem recovery following the removal of grazing stock is poorly known. We developed a conceptual model to predict the responses of native and exotic herbaceous plants to grazing exclusion, based on site productivity and the degree of initial vegetation degradation. The effects of excluding grazing stock on richness, cover and composition of herbaceous plants were examined over 12 years in the degraded understorey of a riparian forest in Gulpa Island State Forest in south‐eastern Australia. We predicted that grazing exclusion would lead to limited changes in vegetation cover, richness and composition, owing to presumed low site productivity and the high degree of understorey degradation. Results showed that the cover, richness and composition of native and exotic species varied significantly among years. Over all plots, regions and years, total cover was slightly but significantly lower in grazed than in ungrazed plots (43.4% vs. 50.8%). While the cover of native plants increased over time in both treatments, the rate of increase was slightly greater in ungrazed plots. Grazing exclusion had no effect on the richness of native or exotic species, but had a significant but minor impact on plant composition, with different common species (mostly exotics) being promoted or diminished in ungrazed plots. The composition of grazed and ungrazed areas did not become more different over time. Overall, the effects that could be attributed to grazing exclusion were relatively minor and transient. Results are consistent with predictions based on site productivity and initial degradation, and should not be extrapolated to other more productive, or less degraded, riparian systems.  相似文献   

9.
Question: Does clear‐felling influence forest herb colonization into post‐agricultural forest? Location: A stand of poplar cultivars with a dense understorey of Acer pseudoplatanus in Muizen forest (northern Belgium), planted in 1952 on farmland adjacent to ancient forest and clear‐felled in 1997. Methods: Shade‐tolerant forest herbs were surveyed in 112 grid‐based sample plots: just before clear‐felling, and 5 and 10 yr afterwards. Shade‐tolerant herbs were subdivided into ancient forest species (AFS) and other shade‐tolerant species (OSS). Effects of clear‐felling on species number per plot, total cover per plot and colonization rate of species groups were compared using non‐parametrical tests. Species number per plot was modelled by means of generalized linear mixed models (GLMMs), with inventory time, distance to the nearest parcel edge, and cover of light‐loving species (LS) as explanatory variables. The C‐S‐R signature (competitive, stress‐tolerant and ruderal strategies, respectively) shift of sample plots was calculated on the selected shade‐tolerant species. Results: Frequency of most species increased during the 10‐yr period. Number of OSS increased more and faster than that of AFS. OSS increased to the level of the adjacent forest, but was lower where LS cover remained high. There was a positive correlation between the change of the colonization rate and the competitive plant strategy. Conclusions: We assume that clear‐felling stimulated generative reproduction of shade‐tolerant herbs, whereas quickly emerging woody species controlled competitive exclusion by LS. Succession of dark and light phases, such as provided by an understorey managed as a coppice, could promote colonization of shade‐tolerant herbs into post‐agricultural forest.  相似文献   

10.
Overabundant ungulate populations can alter forests. Concurrently, global declines of seed dispersers may threaten native forest structure and function. On an island largely devoid of native vertebrate seed dispersers, we monitored forest succession for 7 years following ungulate exclusion from a 5‐ha area and adjacent plots with ungulates still present. We observed succession from open scrub to forest and understory cover by non‐native plants declined. Two trees, native Hibiscus tiliaceus and non‐native Leucaena leucocephala, accounted for most forest regeneration, with the latter dominant. Neither species is dependent on animal dispersers nor was there strong evidence that plants dependent on dispersers migrated into the 5‐ha study area. Passive restoration following ungulate removal may facilitate restoration, but did not show promise for fully restoring native forest on Guam. Restoration of native forest plants in bird depopulated areas will likely require active outplanting of native seedlings, control of factors resulting in bird loss, and reintroduction of seed dispersers.  相似文献   

11.
Abstract. This paper reports on vegetation development on permanent experimental plots during five years of succession. Nine (1 m2) plots were filled with three typical substrates from man-made habitats of urban and industrial areas in the region of Berlin. The three substrates (a commercial ‘topsoil’, a ruderal ‘landfill’ soil and a sandy soil), differ in organic matter and nutrient contents. Relevés of species composition and percent cover of each species present were made monthly during the growing season from the start of vegetation development. This paper describes the different successional pathways on topsoil and ruderal soil and the colonization process on sandy soil. On topsoil, ruderal annuals are dominant in the first year and are replaced by short-lived perennials from the second year. Those species were replaced by long-lived perennial herbs (Ballota nigra or Urtica dioica) from the third year of succession onwards. On the ruderal land-fill soil the early successional stages are less sharp and the perennial Solidago canadensis is able to dominate within one year after the succession was initiated. On sandy soil there is still an ongoing colonization process, where pioneer tree species like Betula pendula and Populus nigra play a main role. The importance of ‘initial floristic composition’, the role of substrate for community structure and the peculiarities of successional sequences on anthropogenic soils in the context of primary and secondary successions are discussed.  相似文献   

12.
Abstract. Spatial heterogeneity, an important characteristic in semi‐arid grassland vegetation, may be altered through grazing by large herbivores. We used Moran's I, a measure of autocorrelation, to test the effect of livestock grazing on the fine scale spatial heterogeneity of dominant plant species in the shortgrass steppe of northeastern Colorado. Autocorrelation in ungrazed plots was significantly higher than in grazed plots for the cover of the dominant species Bouteloua gracilis, litter cover and density of other bunchgrasses. No species had higher autocorrelation in grazed compared to ungrazed sites. B. gracilis cover was significantly auto‐correlated in seven of eight 60‐yr ungrazed exclosures, four of six 8‐yr exclosures, and only three of eight grazed sites. Autocorrelograms showed that B. gracilis cover in ungrazed sites was frequently and positively spatially correlated at lag distances less than 5 m. B. gracilis cover was rarely autocorrelated at any sampled lag distance in grazed sites. The greater spatial heterogeneity in ungrazed sites appeared linked to patches characterized by uniformly low cover of B. gracilis and high cover of C3 grasses. This interpretation was supported by simple simulations that modified data from grazed sites by reducing the cover of B. gracilis in patches of ca. 8 m diameter and produced patterns quite similar to those observed in ungrazed sites. In the one exclosure where we intensively sampled soil texture, autocorrelation coefficients for sand content and B. gracilis cover were similar at lag distances up to 12 m. We suggest that the negative effect of sand content on B. gracilis generates spatial heterogeneity, but only in the absence of grazing. An additional source of heterogeneity in ungrazed sites may be the negative interaction between livestock exclusion and B. gracilis recovery following patchy disturbance.  相似文献   

13.
Different disturbances in similar habitats can produce unique successional assemblages of plants. We collected plant species composition and cover data to investigate the effects of three common types of disturbances—fire, anthropogenic clearing (‘cleared’), and clearing followed by goat grazing (‘cleared‐and‐grazed’)—on early‐successional coppice (dry forest) community structure and development on Eleuthera, Bahamas. For each disturbance type, both the ground layer (<0.5 m height) and shrub layer (>0.5 m height) were sampled in eight patches (>1 ha) of varying age (1–28 yr) since large‐scale mature coppice disturbance. Overall, plant communities differed among disturbance types; several common species had significantly higher cover in the shrub layer of fire patches, and cleared‐and‐grazed patches exhibited higher woody ground cover. Total percent cover in the shrub layer increased in a similar linear fashion along the investigated chronosequence of each disturbance type; however, cover of the common tree species, Bursera simaruba, increased at a notably slower rate in cleared‐and‐grazed patches. The pattern of increase and subsequent decrease in cover of Lantana spp. and Zanthoxylum fagara in the shrub layer was characterized by longer persistence and higher covers, respectively, in cleared‐and‐grazed patches, which also exhibited low peak cover and fast decline of nonwoody ground cover. Our results suggest that goats may accelerate some aspects of succession (e.g., quickly removing nonwoody ground cover) and retard other aspects (e.g., inhibiting growth of tree species and maintaining early‐successional shrubs in the shrub layer). These effects may lead to different successional trajectories, and have important conservation implications.  相似文献   

14.
Forest restoration efforts should aim at creating landscapes with a balanced array of forest stands at varying successional stages, thus providing habitat for a wealth of species and multiple ecosystem services. In most high‐mountain ecosystems of South America, long‐term livestock rearing activities that include fires, browsing, and trampling have delayed or stopped forest succession resulting in simplified landscapes. To determine appropriate restoration goals for Polylepis australis mountain forests of Central Argentina, we established 146 plots of 900 m2 plots throughout five river basins with different historic livestock stocking rates. In each plot, we measured tree heights, canopy cover, estimated age of oldest tree, volume of standing and fallen dead wood, fern cover, and abundance of shade tolerant Maytenus boaria trees. K‐means cluster analysis using tree heights and canopy cover as classificatory variables yielded four biologically meaningful clusters. Clusters 1, 2, 3, and 4 comprising 68, 10, 13, and 9% of the plots, respectively, showed increasing amounts of standing and fallen dead wood, fern cover, and abundance of shade tolerant M. boaria trees. Plots in clusters 1 and 2 were proportionally more abundant in basins with high human impact and at the altitudinal extremes of P. australis distribution, whereas plots in clusters 3 and 4 were relatively more abundant in well‐preserved basins and at the optimum of their altitudinal distribution. We interpret clusters 1, 2, 3, and 4 as degraded, regenerating, young, and mature forests, respectively. Restoration goals should focus on attaining an even distribution of forest types similar to that found in our best‐preserved basins.  相似文献   

15.
Questions: How do changes in forest management, i.e. in disturbance type and frequency, influence species diversity, abundance and composition of the seed bank? How does the relationship between seed bank and vegetation change? What are the implications for seed bank dynamics? Location: An ancient Quercus petraea — Carpinus betulus forest in conversion from coppice‐with‐standards to regular Quercus high forest near Montargis, France. Methods: Seed bank and vegetation were sampled in six replicated stand types, forming a chronosequence along the conversion pathway. The stand types represented mid‐successional stages of stands in transition from coppice‐with‐standards (to high forest (16 plots) and early‐ and mid‐successional high forest stands (32 plots). Results: Seed bank density and species richness decreased with time since last disturbance. Adjusting for seed density effects obscured species richness differences between stand types, but species of later seres were nested subsets of earlier seres, implying concomitant shifts in species richness and composition with time since disturbance. Later seres were characterized by species with low seed weight and high seed longevity. Seed banks of early seres were more similar to vegetation than to later seres. Conclusions: Abandonment of the coppice‐with‐standards regime altered the seed bank characteristics, as well as its relationship with vegetation. Longer management cycles under high forest yield impoverished seed banks. For their persistence, seed bank species will increasingly rely on management of permanently open areas in the forest landscape. Thus, revegetation at the beginning of new high‐forest cycles may increasingly depend on inflow from seed sources.  相似文献   

16.
Abstract The majority of existing remnants of wandoo Eucalyptus capillosa woodland in the Western Australian wheatbelt have been grazed by sheep for several decades and are often visibly degraded. A pilot survey was conducted into the effects of sheep on vegetation and soil variables, and the abundance, diversity and species frequency of occurrence of subterranean termite communities. Ten 1/4 ha study plots were used for paired grazed/ungrazed comparisons. Ungrazed plots had more litter mass (dry weight), leaf and woody litter, canopy cover (%) and soil moisture (moisture content <1.2% across study plots); grazed plots had a higher percentage of bare ground. Termites were as abundant, and as diverse, in grazed as in ungrazed plots, and were equally often sampled in the soil and surface wood. Termite species eating sound wood, decayed wood/debris and grass were sampled equally often, and were of equal diversity in sheep-grazed as in ungrazed plots. The mounds of Drepanotermes tamminensis were more abundant in grazed plots. These findings indicate that prolonged sheep grazing in remnants of wandoo woodland of the Western Australian wheatbelt has had no detrimental or beneficial effect on its subterranean termites.  相似文献   

17.
Most Hawaiian forests lack resiliency following disturbance due to the presence of non‐native and invasive plant and animal species. The montane wet forest within Hakalau Forest National Wildlife Refuge on Hawai'i island has a long history of ungulate disturbance but portions of the refuge were fenced and most ungulates excluded by the early 1990s. We examined patterns of regeneration within two 100 ha study sites in this forest following the removal of ungulates and in the absence of invasive woody tree species to determine, in part, if passive restoration techniques can be successful under these conditions. We characterized growth, mortality, and basal area (BA) changes for approximately 7,100 marked individuals of all native tree species present in two surveys over a 17–18‐year period within two hundred 30 m diameter forest plots. Considerable recruitment within plots of new trees of all species significantly changed size class distributions and erased deficits in small‐sized trees observed during the first survey, particularly for the codominant canopy tree, koa (Acacia koa). Overall, growth of established dominant 'ōhi'a trees (Metrosideros polymorpha) and recruitment of mid‐canopy trees contributed to increases in BA while high levels of mortality for large A. koa trees contributed to decreased BA. This resulted in a slight increase in BA between the two surveys (+1.9%). This study demonstrates that fencing and ungulate removal may have rescued the A. koa population by facilitating the first real pulse in recruitment in over a century, and that passive restoration can be a successful management strategy in this forest.  相似文献   

18.
Question: What are the main driving factors in 70 years of natural dynamics in tree recruitment in the Bia?owie?a National Park? Location: Bia?owie?a National Park, Poland, is one of the least disturbed temperate, lowland forest systems in Europe. Methods: We tested whether fluctuations in large herbivore populations, changes in climate and openness of the forest explained compositional dynamics. Tree recruitment (to size class DBH≥5 cm) was measured on permanent transects (in total, 14.9 ha) six times between 1936‐2002. These data were related to existing data on ungulate density, climatic parameters and estimates of forest openness collected during the same period. Results: Total recruitment of all tree species combined was negatively correlated with total ungulate density and red deer density. The variation in response between species was related to the preferences of herbivores; the more preferred forage species (especially Carpinus betulus) were positively and the less preferred species negatively related to herbivore density. Total tree recruitment rates were not related to climatic parameters and openness of the forest. Only Alnus glutinosa recruitment was significantly related to climatic parameters, and Ulmus glabra related to forest openness, but there were no predictable patterns in recruitment among species in relation to these factors. Conclusion: The present study indicated that changes in large herbivore density have played an important role in driving patterns in tree recruitment and species composition during the last 70 years in Bia?owie?a National Park. In contrast to other studies, increasing herbivore numbers were associated with higher recruitment of preferred and browsing‐tolerant species. Periodical crashes in ungulate numbers, whether human‐induced or caused by natural factors, may offer windows of opportunity for regeneration of a range of tree species and facilitate more diverse and dynamic forest development.  相似文献   

19.
Anthropogenic nutrient enrichment of mountain grasslands has boosted grasses and fast‐growing unpalatable plants at the expense of slow‐growing species, resulting in a significant loss in biodiversity. A potential tool to reduce nutrient availability and aboveground productivity without destroying the perennial vegetation is carbon (C) addition. However, little is known about its suitability under severe climatic conditions. Here, we report the results of a 3‐year field study assessing the effects of sawdust addition on soil nutrients, aboveground productivity, and vegetational composition of 10 grazed and ungrazed mountain grasslands. Of particular interest was the effect of C addition on grasses and on the tall unpalatable weed Veratrum album. After 3 years, soil pH, ammonium, and plant‐available phosphorus were not altered by sawdust application, and nitrate concentrations were marginally higher in treatment plots. However, the biomass of grasses and forbs (without V. album) was 20–25% lower in sawdust‐amended plots, whereas the biomass of V. album was marginally higher. Sawdust addition reduced the cover of grasses but did not affect evenness, vegetation diversity, or plant species richness, although species richness generally increased with decreasing biomass at our sites. Our results suggest that sawdust addition is a potent tool to reduce within a relatively short time the aboveground productivity and grass cover in both grazed and ungrazed mountain grasslands as long as they are not dominated by tall unpalatable weeds. The technique has the advantage that it preserves the topsoil and the perennial soil seed bank.  相似文献   

20.
The compensatory response of plants to defoliation is likely to have important effects on plant–ungulate equilibria in forested ecosystems. We investigated the responses of six species of Mediterranean bushes to defoliation by wild ungulates, comparing an index of browsing impact with the productivity of plants in both open and exclusion plots. The data revealed a great diversity of plant responses to herbivory: Rubus ulmifolius was able to over-compensate and replace the lost tissues. Phillyrea latifolia exhibited a similar, albeit less evident, pattern, while Cistus salvifolius was severely damaged by browsing. Other species, such as Quercus ilex, Juncus acutus and Erica arborea, were not attacked to a large extent and suffered little or no harm. The results strongly suggest that Mediterranean ecosystems may tolerate large stocking rates of ungulates. However, the reduction of plant biomass due to browsing was very different in the six studied species, suggesting that when herbivory becomes severe the structure of the ecosystem will change with the more tolerant plants becoming more abundant. We can apply these results to improve management and conservation of relict coastal forests in the Mediterranean basin which are usually of small size and where decision-makers have to compromise between the conservation of plants and that of large mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号