共查询到13条相似文献,搜索用时 7 毫秒
1.
How a multidisciplinary approach involving ethnoecology,biology and fisheries can help explain the spatio‐temporal changes in marine fish abundance resulting from climate change 下载免费PDF全文
Josep Lloret Ana Sabatés Marta Muñoz Montserrat Demestre Ignasi Solé Toni Font Margarida Casadevall Paloma Martín Sílvia Gómez 《Global Ecology and Biogeography》2015,24(4):448-461
2.
3.
In boreal landscapes, emphasis is currently placed on close‐to‐nature management strategies, which aim to maintain the biodiversity and ecosystem services related to old‐growth forests. The success of these strategies, however, depends on an accurate understanding of the dynamics within these forests. While moderate‐severity disturbances have recently been recognized as important drivers of boreal forests, little is known about their effects on stand structure and growth. This study therefore aimed to reconstruct the disturbance and postdisturbance dynamics in boreal old‐growth forests that are driven by recurrent moderate‐severity disturbances. We studied eight primary old‐growth forests in Québec, Canada, that have recorded recurrent and moderately severe spruce budworm (Choristoneura fumiferana [Clem.]) outbreaks over the 20th century. We applied an innovative dendrochronological approach based on the combined study of growth patterns and releases to reconstruct stand disturbance and postdisturbance dynamics. We identified nine growth patterns; they represented trees differing in age, size, and canopy layer. These patterns highlighted the ability of suppressed trees to rapidly fill gaps created by moderate‐severity disturbances through a single and significant increase in radial growth and height. Trees that are unable to attain the canopy following the disturbance tend to remain in the lower canopy layers, even if subsequent disturbances create new gaps. This combination of a low stand height typical of boreal forests, periodic disturbances, and rapid canopy closure often resulted in stands constituted mainly of dominant and codominant trees, similar to even‐aged forests. Overall, this study underscored the resistance of boreal old‐growth forests owing to their capacity to withstand repeated moderate‐severity disturbances. Moreover, the combined study of growth patterns and growth release demonstrated the efficacy of such an approach for improving the understanding of the fine‐scale dynamics of natural forests. The results of this research will thus help develop silvicultural practices that approximate the moderate‐severity disturbance dynamics observed in primary and old‐growth boreal forests. 相似文献
4.
Michael T. Burrows Silvana N. R. Birchenough Eva Capasso Polly Cleall‐Harding Julia Crummy Callan Duck Damien Eloire Matthew Frost Ailsa J. Hall Stephen J. Hawkins David G. Johns David W. Sims Timothy J. Smyth Chris L. J. Frid 《Global Change Biology》2012,18(4):1270-1281
Regime shifts are sudden changes in ecosystem structure that can be detected across several ecosystem components. The concept that regime shifts are common in marine ecosystems has gained popularity in recent years. Many studies have searched for the step‐like changes in ecosystem state expected under a simple interpretation of this idea. However, other kinds of change, such as pervasive trends, have often been ignored. We assembled over 300 ecological time series from seven UK marine regions, covering two to three decades. We developed state‐space models for the first principal component of the time series in each region, a common measure of ecosystem state. Our models allowed both trends and step changes, possibly in combination. We found trends in three of seven regions and step changes in two of seven regions. Gradual and sudden changes are therefore important trajectories to consider in marine ecosystems. 相似文献
5.
Alvaro G. Gutiérrez Juan Carlos Aravena Natalia V. Carrasco-Farías Duncan A. Christie Mauricio Fuentes Juan J. Armesto 《Journal of Biogeography》2008,35(9):1674-1687
Aim A major question with regard to the ecology of temperate rain forests in south‐central Chile is how pioneer and shade‐tolerant tree species coexist in old‐growth forests. We explored the correspondence between tree regeneration dynamics and life‐history traits to explain the coexistence of these two functional types in stands apparently representing a non‐equilibrium mixture. Location This study was conducted in northern Chiloé Island, Chile (41.6° S, 73.9° W) in a temperate coastal rain forest with no evidence of stand disruption by human impact. Methods We assessed stand structure by sampling all stems within two 50 × 20 m and four 5 × 100 m plots. A 600‐m long transect, with 20 uniformly spaced sampling points, was used to quantify seedling and sapling densities, obtain increment cores, and randomly select 10 tree‐fall gaps. We used tree‐ring analysis to assess establishment periods and to relate the influences of disturbances to the regeneration dynamics of the main canopy species. Results Canopy emergent tree species were the long‐lived pioneer Eucryphia cordifolia and the shade‐tolerant Aextoxicon punctatum. Shade‐tolerant species such as Laureliopsis philippiana and several species of Myrtaceae occupied the main canopy. The stem diameter distribution for E. cordifolia was distinctly unimodal, while for A. punctatum it was multi‐modal, with all age classes represented. Myrtaceae accounted for most of the small trees. Most tree seedlings and saplings occurred beneath canopy gaps. Based on tree‐ring counts, the largest individuals of A. punctatum and E. cordifolia had minimum ages estimated to be > 350 years and > 286 years, respectively. Shade‐tolerant Myrtaceae species and L. philippiana had shorter life spans (< 200 years). Most growth releases, regardless of tree species, were moderate and have occurred continuously since 1750. Main conclusions We suggest that this coastal forest has remained largely free of stand‐disrupting disturbances for at least 450 years, without substantial changes in canopy composition. Release patterns are consistent with this hypothesis and suggest that the disturbance regime is dominated by individual tree‐fall gaps, with sporadic multiple tree falls. Long life spans, maximum height and differences in shade tolerance provide a basis for understanding the long‐term coexistence of pioneer and shade‐tolerant tree species in this coastal, old‐growth rain forest, despite the rarity of major disturbances. 相似文献
6.
7.
A detailed analysis of high‐resolution structural data and computationally predicted dynamics was carried out for a designed sugar‐binding protein. The mean‐square deviations in the positions of residues derived from nuclear magnetic resonance (NMR) models and those inferred from X‐ray crystallographic B‐factors for two different crystal forms were compared with the predictions based on the Gaussian Network Model (GNM) and the results from molecular dynamics (MD) simulations. GNM systematically yielded a higher correlation than MD, with experimental data, suggesting that the lack of atomistic details in the coarse‐grained GNM is more than compensated for by the mathematically exact evaluation of fluctuations using the native contacts topology. Evidence is provided that particular loop motions are curtailed by intermolecular contacts in the crystal environment causing a discrepancy between theory and experiments. Interestingly, the information conveyed by X‐ray crystallography becomes more consistent with NMR models and computational predictions when ensembles of X‐ray models are considered. Less precise (broadly distributed) ensembles indeed appear to describe the accessible conformational space under native state conditions better than B‐factors. Our results highlight the importance of using multiple conformations obtained by alternative experimental methods, and analyzing results from both coarse‐grained models and atomic simulations, for accurate assessment of motions accessible to proteins under native state conditions. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献
8.
Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single‐species time series. 相似文献
9.
Marie‐Hlne Brice Steve Vissault Willian Vieira Dominique Gravel Pierre Legendre Marie‐Jose Fortin 《Global Change Biology》2020,26(8):4418-4435
Several temperate tree species are expected to migrate northward and colonize boreal forests in response to climate change. Tree migrations could lead to transitions in forest types, but these could be influenced by several non‐climatic factors, such as disturbances and soil conditions. We analysed over 10,000 forest inventory plots, sampled from 1970 to 2018 in meridional Québec, Canada, to identify what environmental conditions promote or prevent regional‐scale forest transitions. We used a continuous‐time multi‐state Markov model to quantify the probabilities of transitions between forest states (temperate, boreal, mixed, pioneer) as a function of climate (mean temperature and climate moisture index during the growing season), soil conditions (pH and drainage) and disturbances (severity levels of natural disturbances and logging). We further investigate how different disturbance types and severities impact forests' short‐term transient dynamics and long‐term equilibrium using properties of Markov transition matrices. The most common transitions observed during the study period were from mixed to temperate states, as well as from pioneer to boreal forests. In our study, transitions were mainly driven by natural and anthropogenic disturbances and secondarily by climate, whereas soil characteristics exerted relatively minor constraints. While major disturbances only promoted transitions to the pioneer state, moderate disturbances increased the probability of transition from mixed to temperate states. Long‐term projections of our model under the current environmental conditions indicate that moderate disturbances would promote a northward shift of the temperate forest. Moreover, disturbances reduced turnover and convergence time for all transitions, thereby accelerating forest dynamics. Contrary to our expectation, mixed to temperate transitions were not driven by temperate tree recruitment but by mortality and growth. Overall, our results suggest that moderate disturbances could catalyse rapid forest transitions and accelerate broad‐scale biome shifts. 相似文献
10.
Conspecific density dependence and community structure: Insights from 11 years of monitoring in an old‐growth temperate forest in Northeast China 下载免费PDF全文
Xu Kuang Kai Zhu Zuoqiang Yuan Fei Lin Ji Ye Xugao Wang Yunyun Wang Zhanqing Hao 《Ecology and evolution》2017,7(14):5191-5200
Forest community structure may be influenced by seedling density dependence, however, the effect is loosely coupled with population dynamics and diversity in the short term. In the long term the strength of conspecific density dependence may fluctuate over time because of seedling abundance, yet few long‐term studies exist. Based on 11 years of seedling census data and tree census data from a 25‐ha temperate forest plot in Northeast China, we used generalized linear mixed models to test the relative effects of local neighborhood density and abiotic factors on seedling density and seedling survival. Spatial point pattern analysis was used to determine if spatial patterns of saplings and juveniles, in relation to conspecific adults, were in accordance with patterns uncovered by conspecific negative density dependence at the seedling stage. Our long‐term results showed that seedling density was mainly positively affected by conspecific density, suggesting dispersal limitation of seedling development. The probability of seedling survival significantly decreased over 1 year with increasing conspecific density, indicating conspecific negative density dependence in seedling establishment. Although there was variation in conspecific negative density dependence at the seedling stage among species and across years, a dispersed pattern of conspecific saplings relative to conspecific adults at the local scale (<10 m) was observed in four of the 11 species examined. Overall, sapling spatial patterns were consistent with the impacts of conspecific density on seedling dynamics, which suggests that conspecific negative density dependence is persistent over the long term. From the long‐term perspective, conspecific density dependence is an important driver of species coexistence in temperate forests. 相似文献
11.
12.
13.
A life‐history perspective on the demographic drivers of structured population dynamics in changing environments 下载免费PDF全文
Current understanding of life‐history evolution and how demographic parameters contribute to population dynamics across species is largely based on assumptions of either constant environments or stationary environmental variation. Meanwhile, species are faced with non‐stationary environmental conditions (changing mean, variance, or both) created by climate and landscape change. To close the gap between contemporary reality and demographic theory, we develop a set of transient life table response experiments (LTREs) for decomposing realised population growth rates into contributions from specific vital rates and components of population structure. Using transient LTREs in a theoretical framework, we reveal that established concepts in population biology will require revision because of reliance on approaches that do not address the influence of unstable population structure on population growth and mean fitness. Going forward, transient LTREs will enhance understanding of demography and improve the explanatory power of models used to understand ecological and evolutionary dynamics. 相似文献