首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solanum dulcamara (bittersweet) is one of the few native species of Solanum present in Europe. It is a common weed that occupies a wide range of habitats and is often found in the direct vicinity of cultivated potatoes (Solanum tuberosum), where it could transmit diseases. A broad sampling of European S. dulcamara accessions was carried out to gain insight into the population structure and crossing preferences of this species. Three amplified fragment length polymorphism (AFLP®) primer combinations generating 288 polymorphic fragments were used to analyze 79 bittersweet accessions (245 individuals). Dendrograms revealed a low level of genetic polymorphism in the bittersweet populations, caused partially by the out-crossing nature of this species.  相似文献   

2.
Aim The genetic impact of Quaternary climatic fluctuations on mountain endemic species has rarely been investigated. The Pyrenean rock lizard (Iberolacerta bonnali) is restricted to alpine habitats in the Pyrenees where it exhibits a highly fragmented distribution between massifs and between habitats within massifs. Using mitochondrial DNA markers, we set out: (1) to test whether several evolutionary units exist within the species; (2) to understand how the species persisted through the Last Glacial Maximum and whether the current range fragmentation originates from distribution shifts after the Last Glacial Maximum or from more ancient events; and (3) to investigate whether current mitochondrial diversity reflects past population history or current habitat fragmentation. Location The Pyrenees in south‐western France and northern Spain. Methods We used variation in the hypervariable left domain of the mitochondrial control region of 146 lizards collected in 15 localities, supplemented by cytochrome b sequences downloaded from GenBank to cover most of the species’ distribution range. Measures of population genetic diversity were contrasted with population isolation inferred from topography. Classical (F‐statistics) and coalescence‐based methods were used to assess the level of gene flow and estimate divergence time between populations. We used coalescence‐based simulations to test the congruence of our genetic data with a scenario of simultaneous divergence of current populations. Results Coalescence‐based analyses suggested that these peripheral populations diverged simultaneously at the end of the last glacial episode when their habitats became isolated on mountain summits. High mitochondrial diversity was found in peripheral, isolated populations, while the populations from the core of the species’ range were genetically impoverished. Where mitochondrial diversity has been retained, populations within the same massif exhibited high levels of genetic differentiation. Main conclusions As suggested for many other mountain species, the Pyrenean rock lizard survived glacial maxima through short‐distance range shifts instead of migration or contraction in distant southern refugia. Most of the main Pyrenean range has apparently been re‐colonized from a single or a few source populations, resulting in a loss of genetic diversity in re‐colonized areas. As a result, current levels of intra‐population mitochondrial diversity are better explained by post‐glacial population history than by current habitat fragmentation. Genetic population differentiation within massifs implies severe reduction in female‐mediated gene flow between patches of habitats.  相似文献   

3.
Corynephorus canescens (L.) P.Beauv. is an outbreeding, short‐lived and wind‐dispersed grass species, highly specialised on scattered and disturbance‐dependent habitats of open sandy sites. Its distribution ranges from the Iberian Peninsula over Atlantic regions of Western and Central Europe, but excludes the two other classical European glacial refuge regions on the Apennine and Balkan Peninsulas. To investigate genetic patterns of this uncommon combination of ecological and biogeographic species characteristics, we analysed AFLP variation among 49 populations throughout the European distribution range, expecting (i) patterns of SW European glacial refugia and post‐glacial expansion to the NE; (ii) decreasing genetic diversity from central to marginal populations; and (iii) interacting effects of high gene flow and disturbance‐driven genetic drift. Decreasing genetic diversity from SW to NE and distinct gene pool clustering imply refugia on the Iberian Peninsula and in western France, from where range expansion originated towards the NE. High genetic diversity within and moderate genetic differentiation among populations, and a significant pattern of isolation‐by‐distance indicate a gene flow drift equilibrium within C. canescens, probably due to its restriction to scattered and dynamic habitats and limited dispersal distances. These features, as well as the re‐colonisation history, were found to affect genetic diversity gradients from central to marginal populations. Our study emphasises the need for including the specific ecology into analyses of species (re–)colonisation histories and range centre–margin analyses. To account for discontinuous distributions, new indices of marginality were tested for their suitability in studies of centre–periphery gradients.  相似文献   

4.
Many ephemeral mudflat species, which rely on a soil seed bank to build up the next generation, are endangered in their natural habitat due to the widespread regulation of rivers. The aim of the present study was to elucidate the role of the soil seed bank and dispersal for the maintenance of genetic diversity in populations of near‐natural river habitats and anthropogenic habitats created by traditional fish farming practices using Cyperus fuscus as a model. Using microsatellite markers, we found no difference in genetic diversity levels between soil seed bank and above‐ground population and only moderate differentiation between the two fractions. One possible interpretation is the difference in short‐term selection during germination under specific conditions (glasshouse versus field) resulting in an ecological filtering of genotypes out of the reservoir in the soil. River populations harbored significantly more genetic diversity than populations from the anthropogenic pond types. We suggest that altered levels and patterns of dispersal together with stronger selection pressures and historical bottlenecks in anthropogenic habitats are responsible for the observed reduction in genetic diversity. Dispersal is also supposed to largely prohibit genetic structure across Europe, although there is a gradient in private allelic richness from southern Europe (high values) to northern, especially north‐western, Europe (low values), which probably relates to postglacial expansion out of southern and/or eastern refugia.  相似文献   

5.
Phylogeographic forces driving evolution of sea‐dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo‐West Pacific region and identify the phylogeographic factors influencing its present‐day distribution. Analysis of five chloroplast DNA fragments’ sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo‐Malesia and Australasia was not so prominent. Long‐distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.  相似文献   

6.
Population genetics and phenotypic structures are often predicted to vary along the geographic range of a species. This phenomenon would be accentuated for species with large range areas, with discontinuities and marginal populations. We herein compare the genetic patterns of central populations of Coccinella septempunctata L. with those of two phenotypically differentiated populations considered as rear‐edge populations and subspecies based on phenotype (Algeria and Japan). According to the central‐marginal model and expected characteristics of rear‐edge populations, we hypothesize that these rear‐edge populations have (1) a reduced genetic diversity, resulting from their relative isolation over long periods of time, (2) a higher population genetic differentiation, explained by low contemporary gene flow levels, and (3) a relationship between genetic diversity characteristics and phenotypes, due to historical isolation and/or local adaptation. Based on genotyping of 28 populations for 18 microsatellite markers, several levels of regional genetic diversity and differentiation are observed between and within populations, according to their localization: low within‐population genetic diversity and higher genetic differentiation of rear‐edge populations. The genetic structuring clearly dissociates the Algerian and Eastern Asia populations from the others. Geographical patterns of genetic diversity and differentiation support the hypothesis of the central‐marginal model. The pattern observed is in agreement with the phenotypic structure across species range. A clear genetic break between populations of Algeria, the Eastern Asia, and the remaining populations is a dominant feature of the data. Differential local adaptations, absence of gene flow between marginal and central populations, and/or incapacity to mate after colonization, have contributed to their distinct genotypic and phenotypic characteristics.  相似文献   

7.
Abstract The rehabilitation of native plant communities in urban bushland remnants is an increasingly important activity requiring the collection of large amounts of seed. Best practice generally identifies that local seed are best, but how far does the local provenance extend? Using the DNA fingerprinting technique amplified fragment length polymorphism, we assessed genetic differentiation between potential seed source populations and the target population, Bold Park, a large and significant bushland remnant in Perth, Western Australia. For each of 15 species, analysis of molecular variance was used to partition genetic variation within and among populations. Genetic differentiation between Bold Park and potential seed source populations was assessed by non‐metric multidimensional scaling ordination, and statistically by Fisher’s exact tests. The partitioning of variation among populations (ΦST) varied from 0.66 for Santalum acuminatum to 0.04 for Mesomelaena pseudostygia. For eight of 15 species, Bold Park plants were completely or largely non‐overlapping with other populations in ordinations, suggesting genetic differentiation and a narrow provenance. Five species showed overlap between Bold Park and some other, but not all, populations sampled, with geographically closest populations generally undifferentiated. Only two species, Acanthocarpus preissii and Mesomeleana pseudostygia, showed little genetic differentiation between Bold Park and all other populations, suggesting a regional genetic provenance. These species can be classified into three broad provenance classes – narrow, local and regional – to help guide decisions about appropriate seed‐collection zones for the rehabilitation of urban bushland remnants.  相似文献   

8.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

9.
We analysed 123 white‐tailed sea eagles (Haliaeetus albicilla) from (primarily central) Europe with respect to variability and differentiation based on 499 bp of the mitochondrial control region and genotypes at seven unlinked nuclear microsatellites. Variability was high (overall expected heterozygosity, haplotype and nucleotide diversity being 0.70, 0.764 and 0.00698, respectively) and both marker systems showed a subdivision into two main genetic clusters (microsatellites) or haplogroups (mtDNA). In line with earlier analyses focusing on populations from northern and eastern Europe, as well as from Asia, we found a high level of admixture in Europe and no signs of a bottleneck – despite a severe decline of white‐tailed sea eagle populations during the 20th century. Europe is thus a global stronghold for this species not only with respect to the number of breeding pairs but also regarding the proportion of species‐wide genetic diversity. Our dense sampling revealed a possibly clinal variation within central Europe from north‐west to south‐east that was reflected by the distribution of mtDNA haplotypes as well as the two microsatellite‐based clusters. This population differentiation in central Europe probably originated from a geographically structured postglacial colonization and was later enhanced by recent demographic fluctuations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 727–737.  相似文献   

10.
Human activities affect microevolutionary dynamics by inducing environmental changes. In particular, land cover conversion and loss of native habitats decrease genetic diversity and jeopardize the adaptive ability of populations. Nonetheless, new anthropogenic habitats can also promote the successful establishment of emblematic pioneer species. We investigated this issue by examining the population genetic features and evolutionary history of the natterjack toad (Bufo [Epidalea] calamita) in northern France, where populations can be found in native coastal habitats and coalfield habitats shaped by European industrial history, along with an additional set of European populations located outside this focal area. We predicted contrasting patterns of genetic structure, with newly settled coalfield populations departing from migration–drift equilibrium. As expected, coalfield populations showed a mosaic of genetically divergent populations with short‐range patterns of gene flow, and native coastal populations indicated an equilibrium state with an isolation‐by‐distance pattern suggestive of postglacial range expansion. However, coalfield populations exhibited (i) high levels of genetic diversity, (ii) no evidence of local inbreeding or reduced effective population size and (iii) multiple maternal mitochondrial lineages, a genetic footprint depicting independent colonization events. Furthermore, approximate Bayesian computations suggested several evolutionary trajectories from ancient isolation in glacial refugia during the Pleistocene, with biogeographical signatures of recent expansion probably confounded by human‐mediated mixing of different lineages. From an evolutionary and conservation perspective, this study highlights the ecological value of industrial areas, provided that ongoing regional gene flow is ensured within the existing lineage boundaries.  相似文献   

11.
Aim Today’s genetic population structure and diversity of species can be understood as the result of range expansion from the area of origin, past climatic oscillations and contemporary processes. We examined the relative importance of these factors in Veratrum album L., a toxic weed of mountain grasslands. Location Continental Europe. Methods Forty populations from the Asian border (Urals and Caucasus) to Portugal were studied using amplified fragment length polymorphisms (AFLPs) combined with selected plant and population measures. The data were analysed with phylogenetic, population genetic and regression methods inferring both genetic structure and diversity from geographic and ecological factors. Results Fragment frequency clines together with genetic distance clustering and principal coordinates analysis indicated an east–west direction in the genetic structure of V. album, suggesting ancient migration into Europe from a proposed Asian origin. However, the strong geographic pattern in the genetic structure, pronounced isolation by distance (R2 = 0.74) and moderate overall population differentiation (FST = 0.13) suggests high historical gene flow, possibly during glacials, and vicariance into mountainous regions during interglacials. Occurrence of V. album during the last glaciation in several areas along the periphery of the Alps and recolonization of this mountain range from both eastern and central–western areas was indicated. Genetic diversity was highest in central Europe, a pattern that did not agree with the expectations from east–west migration into Europe. Furthermore, managed habitats showed higher levels of genetic diversity compared to unmanaged habitats. Stepwise linear regression determined shoot density and soil phosphorus as the main predictors of within‐population genetic diversity (R2 = 0.40). Main conclusions Our results showed that V. album retained genetic imprints of historical range expansion into Europe, although this was alleviated by the influence of climatic oscillations and contemporary processes. For example, genetic population structure was strongly affected by post‐glacial vicariance while patterns of genetic diversity seemed mainly to be influenced by human land use. Our findings highlight the importance of applying a synthetic approach, testing the influence of both historical and contemporary processes on genetic structure and diversity in order to understand complex phylogeographic patterns. This may especially apply to widespread species, such as weeds. Implications of our findings for biological control are briefly discussed.  相似文献   

12.
Stipa capillata L. (Poaceae) is a rare grassland species in Central Europe that is thought to have once been widespread in post‐glacial times. Such relict species are expected to show low genetic diversity within populations and high genetic differentiation between populations due to bottlenecks, long‐term isolation and ongoing habitat fragmentation. These patterns should be particularly pronounced in selfing species. We analysed patterns of random amplified polymorphic DNA (RAPD) variation in the facultatively cleistogamous S. capillata to examine whether genetic diversity is associated with population size, and to draw initial conclusions on the migration history of this species in Central Europe. We analysed 31 S. capillata populations distributed in northeastern, central and western Germany, Switzerland and Slovakia. Estimates of genetic diversity at the population level were low and not related to population size. Among all populations, extraordinarily high levels of genetic differentiation (amova : φST = 0.86; Bayesian analysis: θB = 0.758) and isolation‐by‐distance were detected. Hierarchical amova indicated that most of the variability was partitioned among geographic regions (59%), or among populations between regions when the genetically distinct Slovakian populations were excluded. These findings are supported by results of a multivariate ordination analysis. We also found two different groups in an UPGMA cluster analysis: one that contained the populations from Slovakia, and the other that combined the populations from Germany and Switzerland. Our findings imply that Scapillata is indeed a relict species that experienced strong bottlenecks in Central Europe, enhanced by isolation and selfing. Most likely, populations in Slovakia were not the main genetic source for the post‐glacial colonization of Central Europe.  相似文献   

13.
In order to conserve forest plant species under the particularly high constraints that represent urban surroundings, it is necessary to identify the key factors for population persistence. This study examined within‐ and between‐population pollen dispersal using fluorescent dye as pollen analogue, and genetic variation and structure using 15 allozyme loci in Centaurium erythraea, an insect‐pollinated, early‐successional forest biennial herb occurring in a peri‐urban forest (Brussels urban zone, Belgium). Dye dispersal showed an exponential decay distribution, with most dye transfers occurring at short distances (<15 m), and only a few long‐distance events (up to 743 m). Flowers of C. erythraea are mainly visited by Syrphids (Diptera) and small bees, which are usually considered as short‐distance pollen dispersers, and occasionally by bumblebees, which are usually longer‐distance pollen dispersers. Small and large dye source populations differed in dye deposition patterns. The populations showed low genetic diversity, high inbreeding coefficients (FIS) and high genetic differentiation (FST), suggesting restricted gene flow, which can be expected for an early‐successional biennial species with a predominantly selfing breeding system and fluctuating population sizes. The positive relationship between recruitment rate and allelic richness and expected heterozygosity, and the absence of significant correlations between genetic variation and population size suggest seedling recruitment from the seed bank, contributing to maintain genetic diversity. Long‐distance dye dispersal events indicate pollinator movements along urban forest path and road verges. These landscape elements might therefore have a potential conservation value by contributing to connectivity of early‐successional species populations located in patchy open habitats.  相似文献   

14.
Aphid species within the genus Tuberculatus Mordvilko (Hemiptera: Aphididae) exhibit a variety of interactions with ants, ranging from close associations to non‐attendance. A previous study indicated that despite wing possession, ant‐attended Tuberculatus species exhibited low dispersal rates compared with non‐attended species. This study examined if presence or absence of mutualistic interactions and habitat continuity of host plants affected intraspecific genetic diversity and genetic differentiation in mitochondrial DNA cytochrome oxidase I (COI) sequences. Sympatric ant‐attended Tuberculatus quercicola (Matsumura) (Hemiptera: Aphididae) and non‐attended Tuberculatus paiki Hille Ris Lambers (Hemiptera: Aphididae) were collected from the daimyo oak Quercus dentata Thunberg (Fagales: Fagaceae) in Japan and examined for haplotype variability. Seventeen haplotypes were identified in 568 T. quercicola individuals representing 23 populations and seven haplotypes in 425 T. paiki representing 19 populations. Haplotype diversity, which indicates the mean number of differences between all pairs of haplotypes in the sample, and nucleotide diversity were higher in T. quercicola than T. paiki. Analysis of molecular variance (AMOVA) showed higher genetic differentiation among populations within groups of T. quercicola (39.8%) than T. paiki (22.6%). The effects of attendant ant species on genetic differentiation in T. quercicola were not distinguishable from geographic factors. Despite low dispersal rates, host plant habitat continuity might facilitate widespread dispersal of a T. quercicola haplotype in Hokkaido. These results suggested that following T. quercicola colonization, gene flow among populations was limited, resulting in genetic drift within populations. However, frequent T. paiki dispersal is clearly evident by low genetic differentiation among populations within groups, resulting in lower haplotype diversity.  相似文献   

15.
Small, isolated populations are prone to genetic drift and high levels of inbreeding that can threaten their long-term survival. Alnus maritima persists exclusively in three groups of small, highly disjunct, regional populations in the Delmarva Peninsula, Georgia, and Oklahoma. Trees in the three regions are recognized as separate subspecies. Microsatellite markers were used to measure fine-scale population genetic diversity and structure (1) within and among regions and (2) within and among populations in each region. Compared to a previous study utilizing allozymes, microsatellite data show higher levels of variation, lower levels of inbreeding, but similar levels of genetic differentiation among regions. Significant genetic differentiation was detected among regions and among distinct populations within regions. Genetic differentiation was significantly correlated with geographic distance among regional populations, but not among populations within regions. Populations, therefore, likely represent fragments of formerly extensive networks of populations that have decayed and retracted due to competition with other species better adapted to the shadier habitats of late-succession environments. The unique genetic features of populations within different regions should be considered as part of future conservation efforts.  相似文献   

16.
Although the adder (Vipera berus) has a large distribution area, this species is particularly threatened in Western Europe due to high habitat fragmentation and human persecution. We developed 13 new microsatellite markers in order to evaluate population structure and genetic diversity in the Swiss and French Jura Mountains, where the species is limited to only a few scattered populations. We found that V. berus exhibits a considerable genetic differentiation among populations (global FST = 0.269), even if these are not geographically isolated. Moreover, the genetic diversity within populations in the Jura Mountains and in the less perturbed Swiss Alps is significantly lower than in other French populations, possibly due to post-glacial recolonisation processes. Finally, in order to minimize losses of genetic diversities within isolated populations, suggestions for the conservation of this species in fragmented habitats are proposed.  相似文献   

17.
Historical population bottlenecks and natural selection have important effects on the current genetic diversity and structure of long‐lived trees. Dracaena cambodiana is an endangered, long‐lived tree endemic to Hainan Island, China. Our field investigations showed that only 10 populations remain on Hainan Island and that almost all have been seriously isolated and grow in distinct habitats. A considerable amount of genetic variation at the species level, but little variation at the population level, and a high level of genetic differentiation among the populations with limited gene flow in D. cambodiana were detected using inter‐simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) analyses. No significant correlation was found between genetic diversity and actual population size, as the genetic diversities were similar regardless of population size. The Mantel test revealed that there was no correlation between genetic and geographic distances among the 10 populations. The UPGMA, PCoA and Bayesian analyses showed that local adaptive divergence has occurred among the D. cambodiana populations, which was further supported by habitat‐private fragments. We suggest that the current genetic diversity and population differentiation of D. cambodiana resulted from historical population bottlenecks and natural selection followed by historical isolation. However, the lack of natural regeneration of D. cambodiana indicates that former local adaptations with low genetic diversity may have been genetically weak and are unable to adapt to the current ecological environments.  相似文献   

18.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

19.
The level of genetic diversity in a population can affect ecological processes and plant responses to disturbance. In turn, disturbance can alter population genetic diversity and structure. Populations in fragmented and logged habitats often show reduced genetic diversity and increased inbreeding and differentiation. Long‐term harvesting of wild plants (for foliage, bark, and roots), can affect population genetic diversity by altering individual fitness and genetic contribution. Our understanding of these changes in genetic diversity due to the harvesting of plant organs is still limited. We used nine microsatellite markers to study the effect of long‐term bark and foliage harvest by Fulani people on the genetic diversity and structure of 12 populations of African mahogany (Khaya senegalensis) in Benin. We sampled 20 individuals in each population to test the effect of harvesting. For each population, we divided the samples equally between seedling and adults to test if the effects are stronger in seedlings. We found moderate genetic diversity (H= 0.53 ± 0.04) and weak but significant differentiation among local populations (FST = 0.043, < 0.001). There was no significant effect of harvest on genetic diversity or structure, although previous work found significant negative effects of harvest on the reproduction of adults, offspring density, and population fitness. Our results suggest that demographic responses to disturbance precede a detectable genetic response. Future studies should focus on using parentage analysis to test if genotypes of harvested parents are directly represented in the offspring populations.  相似文献   

20.
Recently, an increased effort has been directed towards understanding the distribution of genetic variation within and between populations, particularly at central and marginal areas of a species’ distribution. Much of this research is centred on the central‐marginal hypothesis, which posits that populations at range margins are sparse, small and genetically diminished compared to those at the centre of a species’ distribution range. We tested predictions derived from the central‐marginal hypothesis for the distribution of genetic variation and population differentiation in five European Coenagrionid damselfly species. We screened genetic variation (microsatellites) in populations sampled in the centre and margins of the species’ latitudinal ranges, assessed genetic diversity (HS) in the populations and the distribution of this genetic diversity between populations (FST). We further assessed genetic substructure and migration with Bayesian assignment methods, and tested for significant associations between genetic substructure and bioclimatic and spatial (altitude and latitude) variables, using general linearized models. We found no general adherence to the central‐marginal hypothesis; instead we found that other factors such as historical or current ecological factors often better explain the patterns uncovered. This was illustrated in Coenagrion mercuriale whose colonisation history and behaviour most likely led to the observation of a high genetic diversity in the south and lower genetic diversity with increasing latitude, and in C. armatum and C. pulchellum whose patterns of low genetic diversity coupled with the weakest genetic differentiation at one of their range margins suggested, respectively, possible range shifts and recent, strong selection pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号