首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ecological explanations for the success and persistence of invasive species vastly outnumber evolutionary hypotheses, yet evolution is a fundamental process in the success of any species. The Evolution of Increased Competitive Ability (EICA) hypothesis (Blossey and Nötzold 1995) proposes that evolutionary change in response to release from coevolved herbivores is responsible for the success of many invasive plant species. Studies that evaluate this hypothesis have used different approaches to test whether invasive populations allocate fewer resources to defense and more to growth and competitive ability than do source populations, with mixed results. We conducted a meta‐analysis of experimental tests of evolutionary change in the context of EICA. In contrast to previous reviews, there was no support across invasive species for EICA's predictions regarding defense or competitive ability, although invasive populations were more productive than conspecific native populations under noncompetitive conditions. We found broad support for genetically based changes in defense and competitive plant traits after introduction into new ranges, but not in the manner suggested by EICA. This review suggests that evolution occurs as a result of plant introduction and population expansion in invasive plant species, and may contribute to the invasiveness and persistence of some introduced species.  相似文献   

2.
3.
We examined multivariate evolution of 20 leaf terpenoids in the invasive plant Melaleuca quinquenervia in a common garden experiment. Although most compounds, including 1,8-Cineole and Viridiflorol, were reduced in home compared with invaded range genotypes, consistent with an evolutionary decrease in defense, one compound (E-Nerolidol) was greater in invaded than home range genotypes. Nerolidol was negatively genetically correlated with Cineole and Viridiflorol, and the increase in this compound in the new range may have been driven by this negative correlation. There was positive selection on all three focal compounds, and a loss of genetic variation in introduced range genotypes. Selection skewers analysis predicted an increase in Cineole and Viridiflorol and a decrease or no change in Nerolidol, in direct contrast to the observed changes in the new range. This discrepancy could be due to differences in patterns of selection, genetic correlations, or the herbivore communities in the home versus introduced ranges. Although evolutionary changes in most compounds were consistent with the evolution of increased competitive ability hypothesis, changes in other compounds as well as selection patterns were not, indicating that it is important to understand selection and the nature of genetic correlations to predict evolutionary change in invasive species.  相似文献   

4.
The Evolution of Increased Competitive Ability (EICA) hypothesis suggests that plants from the invasive range should perform better than plants of the same species from the native range. To properly test this, we need to compare growth of plants from the two ranges in a common environment. Ideally, all the natural enemies should be excluded, to make sure that the differences are not due to different response of plants from the two ranges to the natural enemies. We used the above design to examine the difference in growth and reproduction in Cirsium arvense plants from the invasive (North America) and native range (Europe). To account for possible differences within the ranges, we used plants from two regions, separated by at least 1000 km, in each range. Because the higher performance of species from the invasive range can be caused by their higher ability to acquire resources we compared growth of the plants in two different nutrient levels. The results indicate that plants from the invasive range are larger in most size parameters as well as parameters more closely related to fitness. For aboveground biomass, the response of plants from the invasive range to nutrient addition was weaker than that of plants from the native range and the difference between the ranges was stronger in the nutrient poor substrate. The results are in agreement with the EICA hypothesis and suggest that plants from the invasive range have higher ability to use resources and are thus able to perform well also in nutrient poor conditions.  相似文献   

5.
Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant. Release of a wide variety of HIPVs in response to herbivore damage and their role in plant-plant, plant-carnivore and intraplant communications represents a new facet of the complex interactions among different trophic levels. HIPVs are released from leaves, flowers, and fruits into the atmosphere or into the soil from roots in response to herbivore attack. Moreover, HIPVs act as feeding and/or oviposition deterrents to insect pests. HIPVs also mediate the interactions between the plants and the microorganisms. This review presents an overview of HIPVs emitted by plants, their role in plant defense against herbivores and their implications for pest management.  相似文献   

6.
The susceptibility of plants to herbivores can be strongly influenced by the identity, morphology and palatability of neighboring plants. While the defensive traits of neighbors often determine the mechanism and strength of associational resistance and susceptibility, the effect of neighbors on plant defense phenotype remains poorly understood. We used field surveys and a prickle‐removal experiment in a semi‐arid Kenyan savanna to evaluate the efficacy of physical defenses against large mammalian herbivores in a common understory plant, Solanum campylacanthum. We then quantified the respective effects of spinescent Acacia trees and short‐statured grasses on browsing damage and prickle density in S. campylacanthum. We paired measurements of prickle density beneath and outside tree canopies with long‐term herbivore‐exclusion experiments to evaluate whether associational resistance reduced defense investment by decreasing browsing damage. Likewise, we compared defense phenotype within and outside pre‐existing and experimentally created clearings to determine whether grass neighbors increased defense investment via associational susceptibility. Removing prickles increased the frequency of browsing by ~25%, and surveys of herbivory damage on defended leaves suggested that herbivores tended to avoid prickles. As predicted, associational resistance and susceptibility had opposing effects on plant phenotype: individuals growing beneath Acacia canopies (or, analogously, within large‐herbivore exclosures) had a significantly lower proportion of their leaves browsed and produced ~ 70–80% fewer prickles than those outside refuges, whereas plants in grass‐dominated clearings were more heavily browsed and produced nearly twice as many prickles as plants outside clearings. Our results demonstrate that associational resistance and susceptibility have strong, but opposing, effects on plant defense phenotype, and that variable herbivore damage is a major source of intraspecific variation in defense phenotype in this system.  相似文献   

7.
Aims The superior performance of many non-indigenous species in a new range can be attributed to different factors such as pre-adaptation to environmental conditions in new areas or to factors inherent to displacement mechanisms such as loss of co-evolved pathogens and herbivores that increase the speed of evolutionary change towards a shift in allocation from defence to growth and reproduction. To assess the importance of the different mechanisms governing the success of Conyza canadensis, a globally successful invader, we simultaneously tested several recent hypotheses potentially explaining the factors leading to biological invasion.Methods We tested (i) whether plants from the non-native range showed a higher fitness than plants from the native North American range, (ii) whether they differed in resistance against an invasive generalist herbivore, the slug Arion lusitanicus and against a recently established specialist aphid herbivore, Uroleucon erigeronense and (iii) experimentally assessed whether C. canadensis releases allelopathic chemicals that have harmful effects on competing species in the non-native range. We compared populations along a similar latitudinal gradient both in the native North American and invasive European range and analysed patterns of adaptive clinal variation in biomass production.Important findings The invasion success of C. canadensis in Europe cannot be attributed to a single trait, but to a combination of factors. Invasive plants benefited from increased growth and above all, increased reproduction (a key trait in an annual plant) and were less attacked by a co-migrated specialist enemy. The observed loss of defence against generalist slugs did not translate into a decreased fitness as invasive C. canadensis plants showed a high re-growth potential. In contrast to earlier in vitro studies, we detected no allelopathic effects on the competing flora in the non-native range. The latitudinal cline in vegetative biomass production in the non-native range observed in our common garden study indicates a high adaptive potential. However, only further genetic studies will provide conclusive evidence whether the differentiation in the non-native range is caused by pre-adaptation and sorting-out processes of putatively repeatedly introduced populations of this composite, long-distance disperser with highly volatile seeds or evolved de novo as a rapid response to new selection pressures in the non-native range.  相似文献   

8.
The evolution of increased competitive ability (EICA) hypothesis predicts that release from natural enemies in the introduced range favors exotic plants evolving to have greater competitive ability and lower herbivore resistance than conspecifics from the native range. We tested the EICA hypothesis in a common garden experiment with Sapium sebiferum in which seedlings from native (China) and invasive (USA) populations were grown in all pairwise combinations in the native range (China) in the presence of herbivores. When paired seedlings were from the same continent, shoot mass and leaf damage per seedling were significantly greater for plants from invasive populations than those from native populations. Despite more damage from herbivores, plants from invasive populations still outperformed those from native populations when they were grown together. Increased competitive ability and higher herbivory damage of invasive populations relative to native populations of S. sebiferum support the EICA hypothesis. Regression of biomass against percent leaf damage showed that plants from invasive populations tolerated herbivory more effectively than those from native populations. The results of this study suggest that S. sebiferum has become a faster-growing, less herbivore-resistant, and more herbivore-tolerant plant in the introduced range. This implies that increased competitive ability of exotic plants may be associated with evolutionary changes in both resistance and tolerance to herbivory in the introduced range. Understanding these evolutionary changes has important implications for biological control strategies targeted at problematic invaders.  相似文献   

9.
10.

Background and Aims

The enemy release hypothesis assumes that invasive plants lose their co-evolved natural enemies during introduction into the new range. This study tested, as proposed by the evolution of increased competitive ability (EICA) hypothesis, whether escape from enemies results in a decrease in defence ability in plants from the invaded range. Two straightforward aspects of the EICA are examined: (1) if invasives have lost their enemies and their defence, they should be more negatively affected by their full natural pre-invasion herbivore spectrum than their native conspecifics; and (2) the genetic basis of evolutionary change in response to enemy release in the invasive range has not been taken sufficiently into account.

Methods

Lythrum salicaria (purple loosestrife) from several populations in its native (Europe) and invasive range (North America) was exposed to all above-ground herbivores in replicated natural populations in the native range. The experiment was performed both with plants raised from field-collected seeds as well as with offspring of these where maternal effects were removed.

Key Results

Absolute and relative leaf damage was higher for introduced than for native plants. Despite having smaller height growth rate, invasive plants attained a much larger final size than natives irrespective of damage, indicating large tolerance rather than effective defence. Origin effects on response to herbivory and growth were stronger in second-generation plants, suggesting that invasive potential through enemy release has a genetic basis.

Conclusions

The findings support two predictions of the EICA hypothesis – a genetically determined difference between native and invasive plants in plant vigour and response to enemies – and point to the importance of experiments that control for maternal effects and include the entire spectrum of native range enemies.  相似文献   

11.
The evolution of increased competitive ability (EICA) hypothesis predicts that plants released from natural enemies should evolve to become more invasive through a shift in resource allocation from defense to growth. Resource availability in the environment is widely regarded as a major determinant of defense investment and invasiveness, and thus should be incorporated into the conceptual framework of EICA. Analysis of a simple model from the optimal defense literature demonstrates that, in contrast to the EICA hypothesis, enemy release is neither sufficient nor necessary for evolution of reduced resistance among introduced plants when habitat productivity co-varies. In particular, if the invasive range is more nutrient-poor than the native range, there could be selection for more plant defenses even with enemy release.  相似文献   

12.
Attempts over the past 50 years to explain variation in the abundance, distribution and diversity of plant secondary compounds gave rise to theories of plant defense. Remarkably, few phylogenetically robust tests of these long-standing theories have been conducted. Using >50 species of milkweed (Asclepias spp.), we show that variation among plant species in the induction of toxic cardenolides is explained by latitude, with higher inducibility evolving more frequently at lower latitudes. We also found that: (1) the production of cardenolides showed positive-correlated evolution with the diversity of cardenolides, (2) greater cardenolide investment by a species is accompanied by an increase in an estimate of toxicity (measured as chemical polarity) and (3) instead of trading off, constitutive and induced cardenolides were positively correlated. Analyses of root and shoot cardenolides showed concordant patterns. Thus, milkweed species from lower latitudes are better defended with higher inducibility, greater diversity and added toxicity of cardenolides.  相似文献   

13.
14.
增强竞争能力的进化假说认为,在入侵地外来植物逃离了原产地天敌的控制,把原来用于防御的资源分配到生长、生殖等,从而提高竞争力。为探讨进化在恶性外来入侵植物飞机草(Chromolaena odorata)入侵中的作用,在同质种植园中的两个养分条件下比较研究了飞机草原产地和入侵地各8个种群叶片单宁含量,茎和叶片总酚、半纤维素和纤维素含量以及总生物量的差异。结果表明,在两个养分条件下,飞机草入侵种群和原产地种群总生物量差异均不显著,入侵种群茎和叶片半纤维素含量均低于原产地种群;在高养分条件下,飞机草入侵种群叶片纤维素含量低于原产地种群;在低养分条件下,入侵种群茎和叶片总酚含量高于原产地种群。由此,我们得出结论:在入侵地,飞机草未发生加快生长的进化,但数量型化学防御物质发生了遗传变化;降低的半纤维素和纤维素含量可能是对入侵地专性天敌缺乏做出进化响应的结果,提高的总酚含量有利于飞机草防御入侵地的广谱天敌。  相似文献   

15.
The optimal defense hypothesis (ODH) provides a functional explanation for the inhomogeneous distribution of defensive structures and defense metabolites throughout a plant’s body: tissues that are most valuable in terms of fitness and have the highest probability of attack are generally the best defended. In a previous review,1 we argue that ontogenically-controlled accumulations of defense metabolites are likely regulated through an integration of developmental and defense signaling pathways. In this addendum, we extend the discussion of ODH patterns by including the recent discoveries of circadian clock-controlled defenses in plants.  相似文献   

16.
Facilitation, both by inter‐ and intra‐specific neighbours, is known to be an important process in structuring plant communities. However, only a small number of experiments have been reported on facilitation in plant invasions, especially between invasive con‐specific individuals. Here, we focus on how con‐specific neighbours of the invasive alien plant alligator weed affect the tolerance of alligator weed to herbivory by the introduced biological control agent, Agasicles hygrophila. We conducted greenhouse and garden experiments in which invasive plant density and herbivory intensity (artificial clipping and real herbivory) were manipulated. In the greenhouse experiment, artificial clipping significantly reduced plant biomass when plants were grown individually, but when con‐specific neighbours were present in the same pot, biomass was not significantly different from control plants. Similarly, when compared to control plants, plants that were subjected to herbivory by A. hygrophila produced more biomass when grown with two con‐specific neighbours than when grown alone. Real herbivory also resulted in an increased number of vegetative buds, and again when two con‐specific neighbours were present this effect was increased (a 55.3% increase in buds when there was no neighbour, but a 111.6% increase in buds when two con‐specific neighbours were present). In the garden experiment, in which plants were grown at high density (6 plants per pot), alligator weed fully recovered from defoliation caused by insects at levels from 20–30% to 100%. Our results indicate that the con‐specific association may increase the compensatory ability to cope with intense damage in this invasive plant.  相似文献   

17.
《Current biology : CB》2021,31(15):3450-3456.e5
  1. Download : Download high-res image (252KB)
  2. Download : Download full-size image
  相似文献   

18.
Plants are known to maintain fitness despite herbivore attack by a variety of damage-induced mechanisms. These mechanisms are said to confer tolerance, which can be measured as the slope of fitness over the proportion of plant biomass removed by herbivore damage. It was recently supposed by Stowe et al. (2000) that another plant property, general vigor, has little effect on tolerance. We developed simple models of annual monocarpic plants to determine if a genetic change in components of growth vigor will also change the fitness reaction to damage. We examined the impact of intrinsic growth rate on the tolerance reaction norm slope assuming plants grow geometrically, i.e., without self-limitation. In this case an increase in intrinsic growth rate decreases tolerance (the reaction norm slope becomes more negative). A logistic growth model was used to examine the impact of self-limiting growth on the relationship between intrinsic growth rate and the tolerance reaction norm slope. With self-limitation, the relationship is sensitive to the timing of attack. When attack is early and there is time for regrowth, increasing growth rate increases tolerance (slope becomes less negative). The time limitations imposed by late attack prevent appreciable regrowth and induce a negative relationship between growth rate and tolerance. In neither of these simple cases will the correlation between vigor and tolerance constrain selection on either trait. However, a positive correlation between growth rate and self-limitation will favor fast growth/strong self-limitation in a high-damage environment, but slow growth/weak self-limitation in a low-damage environment. Thus, fundamental growth rules that determine vigor have constitutive effects on tolerance. The net costs and benefits of damage-induced tolerance mechanisms will thus be influenced by the background imposed by fundamental growth rules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Many plant species have evolved defense traits against herbivores. Associational effects (AEs) refer to a kind of apparent interaction where the herbivory risk to a focal plant species depends on the composition of other plant species in a neighborhood. Despite ample evidence for AEs between different plant species, this point of view has rarely been applied to polymorphism in defense traits within a plant species. The purpose of this review is to highlight an overlooked role of conspecific AEs in maintaining polymorphism in antiherbivore defense. First, I present a general review of AE between plant species and its role in the coexistence of plant species. This viewpoint of AE can be applied to genetic polymorphism within a plant species, as it causes frequency‐ and density‐dependent herbivory between multiple plant types. Second, I introduce a case study of conspecific AEs in the trichome‐producing (hairy) and glabrous plants of Arabidopsis halleri subsp. gemmifera. Laboratory and semi‐field experiments illustrated that AEs against the brassica leaf beetle Phaedon brassicae mediate a minority advantage in defense and fitness between hairy and glabrous plants. Combined with a statistical modeling approach, field observation revealed that conspecific AEs can maintain the trichome dimorphism via negative frequency‐dependent selection in a plant population. Finally, I discuss spatial and temporal scales at which AEs contribute to shaping genetic variation in antiherbivore defense in a plant metapopulation. Based on the review and evidence, I suggest that AEs play a key role in the maintenance of genetic variation within a plant species.  相似文献   

20.
Plants defend their leaves using multiple defense traits that change functions with leaf age. We examined the effects of leaf age on the development of multiple defense traits in two related Mallotus (Euphorbiaceae) species: young plants of the fast‐growing Mallotus japonicus (Spreng.) Müll. Arg. and the slow‐growing Mallotus philippensis (Lam.) Müll. Arg. Sequential leaves of the two species were measured for their leaf area, leaf mass/area, densities of trichomes and pellucid dots, extrafloral nectar volume, and the numbers of extrafloral nectaries and pearl bodies. Mallotus japonicus shifted its defense tactics from direct defense using trichomes and pellucid dots in young leaves to biotic defense using extrafloral nectar and pearl bodies in middle‐aged leaves. In contrast, M. philippensis used direct, chemical defense throughout all leaf ages, together with the shift from indirect, biotic defense using extrafloral nectar in young leaves to direct, physical defense using leaf toughness in middle‐aged leaves. These results strongly suggest that, in relation to life history, plants can alter optimal combinations of multiple defense traits with leaf age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号