首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   

2.
Aim This study documents the effects of multiple fires and drought on the woody structure of a north Australian savanna never grazed by domestic stock. Location The study was conducted in a 500 ha pocket of Eucalyptus‐dominated savanna surrounded by a late Quaternary lava flow. The flow is known as the Great Basalt Wall, located c. 50 km northeast of Charters Towers in semi‐arid north‐eastern Australia. This region was exposed to the largest 5‐year rainfall deficit on record between 1992 and 1996. Methods All individual woody plants were tagged within a 1.56 ha plot. Species were segregated into their habitat affinities (rain forest, ecotone, savanna) and regeneration strategy (resprouter, seeder). The survivorship of plants within these categories was analysed in relation to fire intensity from the first fire, and to each of four fires lit between 1996 and 2001. Results Before the first fire, the plot contained thirty‐one tree species including twenty‐one typical of the surrounding dry rain forest. These rain forest species were represented by small individuals and constituted <1% of the total basal area of woody plants. The basal area of savanna trees was 7.5 m2 ha?1 at the commencement of monitoring, although 31% had recently died and others had major crown damage. Further death of the drought debilitated savanna trees was substantial during the first year of monitoring and the basal area of live savanna trees declined to 1.1 m2 ha?1 after 5 years. Most species from both rain forest and savanna were classified as resprouters and are capable of regenerating from underground organs after fire. Species without this ability (rain forest seeders and ecotone seeders) were mostly eliminated after the first two consecutive fires. Among resprouters, survivorship declined as fire intensity increased and this was more pronounced for rain forest than for savanna species. Repeated burning produced a cumulative effect of decreasing survivorship for rain forest resprouters relative to savanna resprouters. Main conclusions The study provides evidence that savanna and rain forest trees differ in fire susceptibility and that recurrent fire can explain the restricted distribution of rain forest in the seasonally arid Australian tropics. The time of death of the savanna trees is consistent with the regional pattern after severe drought, and highlights the importance of medium term climate cycles for the population dynamics of savanna tree species and structure of Australian savannas.  相似文献   

3.
Rainfall, fire and competition are emphasized as determinants of the density and basal area of woody vegetation in savanna. The semi‐arid savannas of Australia have substantial multi‐year rainfall deficits and insufficient grass fuel to carry annual fire in contrast to the mesic savannas in more northern regions. This study investigates the influence of rainfall deficit and excess, fire and woody competition on the population dynamics of a dominant tree in a semi‐arid savanna. All individuals of Eucalyptus melanophloia were mapped and monitored in three, 1‐ha plots over an 8.5 year period encompassing wet and dry periods. The plots were unburnt, burnt once and burnt twice. A competition index incorporating the size and distance of neighbours to target individuals was determined. Supplementary studies examined seedling recruitment and the transition of juvenile trees into the sapling layer. Mortality of burnt seedlings was related to lignotuber area but the majority of seedlings are fire resistant within 12 months of germination. Most of the juveniles (≤1 cm dbh) of E. melanophloia either died in the dry period or persisted as juveniles throughout 8.5 years of monitoring. Mortality of juveniles was positively related to woody competition and was higher in the dry period than the wet period. The transition of juveniles to a larger size class occurred at extremely low rates, and a subsidiary study along a clearing boundary suggests release from woody competition allows transition into the sapling layer. From three fires the highest proportion of saplings (1–10 cm dbh) reduced to juveniles was only 5.6% suggesting rates of ‘top‐kill’ of E. melanophloia as a result of fire are relatively low. Girth growth was enhanced in wet years, particularly for larger trees (>10 cm dbh), but all trees regardless of size or woody competition levels are vulnerable to drought‐induced mortality. Overall the results suggest that variations in rainfall, especially drought‐induced mortality, have a much stronger influence on the tree demographics of E. melanophloia in a semi‐arid savanna of north‐eastern Australia than fire.  相似文献   

4.
Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought‐fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire‐driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2‐million km2 Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait‐based differences in fire tolerance is critical for determining the climate‐carbon‐fire feedback in tropical savanna and forest biomes.  相似文献   

5.
Although forest and savanna biomes predominate in tropics regions, the factors that control their distribution remain unclear. South American savannas occur in regions that are considered warm and humid enough to support forests, indicating that agents other than climate determine the occurrence of one or the other physiognomy. Herbivory, fire and water deficit have been considered environmental filters that limit the forest species encroachment in savanna physiognomies, but the effects of these filters on the capability of these species to recruit from seeds remain poorly understood. In this study we investigated how stress factors characteristic of savanna environments, such as soil desiccation, heat shocks and high temperatures affect the survival and germination of seeds from savanna and forest tree species. We found that desiccation (to 5%) reduced the germination percentage of forest seeds, but had no effect on the germination of savanna seeds. Forest seeds were less tolerant to heat shocks of 140°C and 200°C, and showed lower germination percentage at temperatures of 35 and 40°C, when compared with savanna seeds. Savanna seeds presented longer germination times and higher germination variance than forest seeds, indicating a risk‐spreading germination strategy among savanna species. The low tolerance of forest seeds to desiccation, heat shock and high temperatures may explain the low recruitment of forest trees into savanna physiognomies. Climate change models predict lower soil moisture, higher temperatures and higher fires frequency for South America biomes. Our results suggest that savanna species are likely to be more capable of withstanding the effects of these changes than forest species.  相似文献   

6.
Abstract Changes in plant abundance within a eucalypt savanna of north‐eastern Australia were studied using a manipulative fire experiment. Three fire regimes were compared between 1997 and 2001: (i) control, savanna burnt in the mid‐dry season (July) 1997 only; (ii) early burnt, savanna burnt in the mid‐dry season 1997 and early dry season (May) 1999; and (iii) late burnt, savanna burnt in the mid‐dry season 1997 and late dry season (October) 1999. Five annual surveys of permanent plots detected stability in the abundance of most species, irrespective of fire regime. However, a significant increase in the abundance of several subshrubs, ephemeral and twining perennial forbs, and grasses occurred in the first year after fire, particularly after late dry season fires. The abundance of these species declined toward prefire levels in the second year after fire. The dominant grass Heteropogon triticeus significantly declined in abundance with fire intervals of 4 years. The density of trees (>2 m tall) significantly increased in the absence of fire for 4 years, because of the growth of saplings; and the basal area of the dominant tree Corymbia clarksoniana significantly increased over the 5‐year study, irrespective of fire regime. Conservation management of these savannas will need to balance the role of regular fires in maintaining the diversity of herbaceous species with the requirement of fire intervals of at least 4‐years for allowing the growth of saplings >2 m in height. Whereas late dry season fires may cause some tree mortality, the use of occasional late fires may help maintain sustainable populations of many grasses and forbs.  相似文献   

7.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

8.
Aim To examine the extent to which succession from tropical savanna to rain forest in the long‐term absence of fire is matched by successional changes in ant communities. This is done by describing ant community responses to 23 years of fire exclusion in a northern Australian tropical savanna, with a particular focus on the extent of colonization by specialist rain forest taxa. Location Solar Village, near Darwin in Australia's Northern Territory. Methods Ants were sampled within 12 plots located inside (‘unburnt’– protected from fire for 23 years) and outside (burnt every 1–2 years) Solar Village in ridge and slope habitat dominated by Eucalyptus spp. The litter, ground‐foraging and arboreal faunas were sampled separately, using Berlese funnels, unbaited pitfall traps and baited pitfall traps attached to tree trunks, respectively. Each species was assigned a forest‐association score ranging from 0 (open savanna species) to 3 (specialist forest species) based on their known habitat preferences in the region. Results A total of 85 ant species from 35 genera were recorded, with multivariate analysis demonstrating distinct litter, ground and arboreal communities. Ant communities also varied substantially with topographic position, which interacted strongly with fire exclusion. A total of 72 species were recorded in burnt habitat, compared with only 45 in unburnt, and the number of ant species records was also about twice as high in burnt compared with unburnt habitat. Fire exclusion has resulted in a dramatic increase in forest‐associated taxa (those occurring in forest and denser, but rarely open, savanna), with such species representing 51% of species records in unburnt habitat compared with 19% in burnt. However, only five specialist forest species were recorded, representing < 1% of total ant records. Main conclusions Fire exclusion at Solar Village has markedly increased the prevalence of forest‐associated ant species, but has led to only very minor incursions by specialist rain forest ant taxa. These responses match very closely those of the vegetation.  相似文献   

9.
Forest encroachment into savanna is occurring at an unprecedented rate across tropical Africa, leading to a loss of valuable savanna habitat. One of the first stages of forest encroachment is the establishment of tree seedlings at the forest–savanna transition. This study examines the demographic bottleneck in the seedlings of five species of tropical forest pioneer trees in a forest–savanna transition zone in West Africa. Five species of tropical pioneer forest tree seedlings were planted in savanna, mixed/transition, and forest vegetation types and grown for 12 months, during which time fire occurred in the area. We examined seedling survival rates, height, and stem diameter before and after fire; and seedling biomass and starch allocation patterns after fire. Seedling survival rates were significantly affected by fire, drought, and vegetation type. Seedlings that preferentially allocated more resources to increasing root and leaf starch (starch storage helps recovery from fire) survived better in savanna environments (frequently burnt), while seedlings that allocated more resources to growth and resource‐capture traits (height, the number of leaves, stem diameter, specific leaf area, specific root length, root‐to‐shoot ratio) survived better in mixed/transition and forest environments. Larger (taller with a greater stem diameter) seedlings survived burning better than smaller seedlings. However, larger seedlings survived better than smaller ones even in the absence of fire. Bombax buonopozense was the forest species that survived best in the savanna environment, likely as a result of increased access to light allowing greater investment in belowground starch storage capacity and therefore a greater ability to cope with fire. Synthesis: Forest pioneer tree species survived best through fire and drought in the savanna compared to the other two vegetation types. This was likely a result of the open‐canopied savanna providing greater access to light, thereby releasing seedlings from light limitation and enabling them to make and store more starch. Fire can be used as a management tool for controlling forest encroachment into savanna as it significantly affects seedling survival. However, if rainfall increases as a result of global change factors, encroachment may be more difficult to control as seedling survival ostensibly increases when the pressure of drought is lifted. We propose B. buonopozense as an indicator species for forest encroachment into savanna in West African forest–savanna transitions.  相似文献   

10.
  • Several Cerrado tree species have traits and structures that protect from fires. The effectiveness of a trait depends on the fire regime, especially the frequency. We used Vochysia elliptica, a common Cerrado tree, as a model to test whether different fire frequencies alter crown architecture and flower, fruit and seed production.
  • We analysed the effect of fire on the production of inflorescences, fruits and seeds, as well as seed germination and tree architecture of 20 trees in each of three plots of a long‐term ecological experiment managed with different fire regimes: burned every 2 years (B), burned every 4 years (Q) in mid‐dry season and an area protected from fire (C).
  • We found a large negative effect of fire frequency on crown architecture and on flower and fruit production. Trees in C and Q had significantly more main branches and a larger crown area than trees in B. At its peak, a tree in C was expected to produce 2.4 times more inflorescences than Q, and 15.5 times more than B, with similar magnitudes for fruits. Sixty per cent of trees in B and 10% in Q produced no fruits.
  • The differences in architecture might explain the reduction in sexual reproduction due to a smaller physical space to produce flowers at the branch apices. Resource limitation due to plant investment to replace burned vegetative parts may also decrease sexual reproduction. Our results indicate potentially severe consequences of high fire frequencies for population dynamics and species persistence in Cerrado communities.
  相似文献   

11.
The persistence of mesic savannas has been theorised as being dependent on disturbances that restrict the number of juveniles growing through the sapling size class to become fire-tolerant trees. We analysed the population structures of four dominant tropical savanna tree species from 30 locations in Kakadu National Park (KNP), northern Australia. We found that across KNP as a whole, the population size structures of these species do not exhibit recruitment bottlenecks. However, individual stands had multimodal size-class distributions and mixtures of tree species consistent with episodic and individualistic recruitment of co-occurring tree species. Using information theory and multimodel inference, we examined the relative importance of fire frequency, stand basal area and elevation difference between a site and permanent water in explaining variations in the proportion of sapling to adult stems in four dominant tree species. This showed that the proportion of the tree population made up of saplings was negatively related to both fire frequencies and stand basal area. Overall, fire frequency has density-dependent effects in the regulation of the transition of saplings to trees in this Australian savanna, due to interactions with stem size, regeneration strategies, growth rates and tree–tree competition. Although stable at the regional scale, the spatiotemporal variability of fire can result in structural and floristic diversity of savanna tree populations.  相似文献   

12.
Abstract The spatial pattern of dry rainforest and savanna tree species was analysed in a 1.56‐ha plot within an unburnt eucalypt savanna woodland in north Queensland, Australia. Rainforest colonization constituted only 1.3% of the basal area and mostly consisted of individuals less than 3 m high. The distribution of rainforest trees was highly clumped around the large savanna eucalypt trees. Ecological mechanisms generating the clumped distribution are discussed in light of evidence from this study and the literature. Herbaceous biomass was not reduced under trees, suggesting that relief from grass competition has not favoured rainforest colonization under tree crowns. Edaphic facilitation through nutrient enrichment under savanna tree crowns appears to be only minor on the moderate fertility soils of the area. The highly clumped pattern of colonizing dry rainforest may be a consequence of seeds dropped from birds roosting in savanna trees.  相似文献   

13.
Fire shapes the distribution of savanna and forest through complex interactions involving climate, resources and species traits. Based on data from central Brazil, we propose that these interactions are governed by two critical thresholds. The fire-resistance threshold is reached when individual trees have accumulated sufficient bark to avoid stem death, whereas the fire-suppression threshold is reached when an ecosystem has sufficient canopy cover to suppress fire by excluding grasses. Surpassing either threshold is dependent upon long fire-free intervals, which are rare in mesic savanna. On high-resource sites, the thresholds are reached quickly, increasing the probability that savanna switches to forest, whereas low-resource sites are likely to remain as savanna even if fire is infrequent. Species traits influence both thresholds; saplings of savanna trees accumulate bark thickness more quickly than forest trees, and are more likely to become fire resistant during fire-free intervals. Forest trees accumulate leaf area more rapidly than savanna trees, thereby accelerating the transition to forest. Thus, multiple factors interact with fire to determine the distribution of savanna and forest by influencing the time needed to reach these thresholds. Future work should decipher multiple environmental controls over the rates of tree growth and canopy closure in savanna.  相似文献   

14.
Abstract. The history of a rapidly changing mosaic of prairie and oak savanna in northern Indiana was reconstructed using several methods emphasizing different time scales ranging from annual to millennial. Vegetation change was monitored for 8 yr using plots and for 30 yr using aerial photographs. A 20th century fire history was reconstructed from the stand structure of multiple-stemmed trees and fire scars. General Land Office Survey data were used to reconstruct the forest of A.D. 1834. Fossil pollen and charcoal records were used to reconstruct the last 4000 yr of vegetation and fire history. Since its deposition along the shore of Lake Michigan about 4000 yr ago, the area has followed a classical primary dune successional sequence, gradually changing from pine forest to prairie/oak savanna between A.D. 264 and 1007. This successional trend, predicted in the models of Henry Cowles, occurred even though the climate cooled and prairies elsewhere in the region retreated. Severe fires in the 19th century reduced most tree species but led to a temporary increase in Populus tremuloides. During the last few decades, the prairie has been invaded by oaks and other woody species, primarily because of fire suppression since A.D. 1972. The rapid and complex changes now occurring are a response to the compounded effects of plant succession, intense burning and logging in the 19th century, recent fire suppression, and possibly increased airborne deposition of nitrates. The compilation of several historical research techniques emphasizing different time scales allows this study of the interactions between multiple disturbance variables.  相似文献   

15.
Attalea princeps is an important palm species that shapes the forest–savanna mosaic in Beni, Bolivia, as it dominates the two principal forest landscape elements (forest islands and gallery forest), and provides a vital microhabitat, food, and nesting source for numerous plant and animal species. The forest–savanna mosaic is used for extensive grazing, and the palm population is declining on the forest islands due to a low regeneration rate, which threatens the maintenance of this landscape. We therefore examined the (a)biotic factors that influence the population structure of Attalea in the centers and edges of forest islands and gallery forests. Ninety‐one 0.1‐ha plots were established, and 500 palm adults and 3,700 juveniles were measured for their size, health condition, and fire damage. For each plot, habitat characteristics, such as landscape position, grazing pressure, and soil conditions, were measured. Attalea population density was significantly lower on the forest islands than in the gallery forests, especially in the juvenile life stage. A structural equation model showed that juvenile density is positively related to the health condition of juveniles and amount of fruits present, where the amount of fruits is positively affected by the condition of adults. Juvenile density is negatively influenced by grazing, affecting the health condition of the juvenile, as well as organic matter and phosphate availability in the soil. Therefore, it is recommended to decrease the grazing pressure by decreasing livestock densities, fencing off vulnerable forest islands, or by rotating cattle.Abstract in Spanish is available with online material.  相似文献   

16.
R.M. Holdo 《植被学杂志》2006,17(3):369-378
Questions: How does tree growth in a tropical woodland savanna vary as a function of size, and how is it affected by competition from neighbours, site attributes, and damage caused by disturbance? Location: western Zimbabwe. Methods: Trees of common species were tagged, mapped, and measured annually between 2001 and 2003 in a Kalahari sand woodland savanna. Diameter increments were analysed with mixed model regressions for the largest ramet in each genet. Stem diameter and damage, soil texture, and indices of competition at multiple spatial scales were used as covariates. Results: Stem diameter increased initially and then declined as a function of size in undamaged trees, which grew faster than damaged trees. Growth in damaged trees declined with size. No site differences were detected, and there was evidence for between‐tree competition on growth only in the fastest‐growing species, Brachystegia spiciformis. In several species the growth rate of the largest ramet increased as a function of the basal area of secondary ramets, contrary to expectations. For many species, the growth models showed poor explanatory power. Conclusions: Growth in Kalahari sand savanna trees varies as a function of size and changes in tree architecture caused by disturbance agents such as fire, frost, and elephant browsing. Disturbance may thus play an important role on vegetation dynamics through its effects on growth in the post‐disturbance phase. Growth is highly stochastic for some species in this system, and more deterministic in others. It is hypothesized that this dichotomy may be driven by differences in rooting depth among species.  相似文献   

17.
Abstract. Question: How do properties of different vegetation components vary along ecotones of semi‐deciduous forest islands, and can the depth of edge influence (DEI) of the components be detected using a novel combination of analyses? Location: Comoé National Park (CNP), NE Ivory Coast. Methods: Along eight transects at semi‐deciduous forest islands tree individuals > 20 cm DBH were mapped. At one transect, tree and shrub individuals down to 1 cm DBH were measured and cover of species was estimated. Split moving window dissimilarity analysis (SMWDA) and moving window regression analysis (MWRA) were combined to detect statistical significance of borders in multivariate vegetation data along continuous transects, to determine the width of associated ecotones, and, thus, the DEI towards the forest interior. Results: For trees > 20 cm DBH, a distinct boundary formation was detected, dominated by the semi‐fire resistant tree species Anogeissus leiocarpus. The median of DEI towards the forest interior was 55 m. Ecotone detection with all species present revealed an interlocked sequence of ecotones for grasses, herbs, woody climbers, shrubs and trees, with each of these ecotones being narrower than the overall ecotone. DEI ranged from 10 m for grasses up to 120 m for trees and shrubs. Conclusions: The coherent set of analyses applied proved to be an objective method for detecting borders and the width of associated ecotones. The patterns found may be explained by successional processes at the forest‐savanna border. The DEI measured for the forest islands in the nearly undisturbed semi‐natural system of the CNP is of relevance to concepts of core‐area analysis and the protection of forest interior species in semi‐deciduous forests in tropical West Africa.  相似文献   

18.
Woody plant encroachment of savanna ecosystems has been related to altered disturbance regimes, mainly fire suppression and herbivore exclusion. In contrast, neighbourhood interactions among resident and colonising woody species have received little attention, despite their likely influence on the pattern and rate of tree establishment. We examined how resident palm trees (Butia yatay) and established adults of two riparian forest tree species (Allophylus edulis and Sebastiania commersoniana) influenced seed arrival and seedling performance of the latter two species in a humid savanna of east-central Argentina. Seed traps and seedlings of both riparian species were placed in herbaceous openings, and beneath palm, conspecific and heterospecific adult trees in two unburned savanna patches, and were monitored for 2 years. Only seeds of the bird-dispersed Allophylus arrived in palm microsites, yet survival of Allophylus seedlings near adult palms was limited by animal damage through trampling and burrowing, a non-trophic mechanism of apparent competition. Seeds of both riparian species dispersed into conspecific microsites, although adult trees selectively reduced growth of conspecific seedlings, a pattern consistent with the “escape hypothesis”. Further, survival of Sebastiania increased in the moister Allophylus microsites, suggesting a one-way facilitative interaction between woody colonisers. Our results indicate that dispersal facilitation by resident savanna trees may be critical to riparian species invasion after fire suppression. Distance-dependent effects of conspecific and heterospecific adult trees could contribute to shape the subsequent dynamics of woody seedling establishment. Overall, we show that indirect interactions can play a prominent role in savanna encroachment by non-resident woody species.  相似文献   

19.
Fire is an important determinant of many aspects of savanna ecosystem structure and function. However, relatively little is known about the effects of fire on faunal biodiversity in savannas. We conducted a short‐term study to examine the effects of a replicated experimental burn on bird diversity and abundance in savanna habitat of central Kenya. Twenty‐two months after the burn, Shannon diversity of birds was 32% higher on plots that had been burned compared with paired control plots. We observed no significant effects of burning on total bird abundance or species richness. Several families of birds were found only on plots that had been burned; one species, the rattling cisticola (Cisticola chiniana), was found only on unburned plots. Shrub canopy area was negatively correlated with bird diversity on each plot, and highly correlated with grass height and the abundance of orthopterans. Our results suggest that the highest landscape‐level bird diversity might be obtained through a mosaic of burned and unburned patches. This is also most likely to approximate the historical state of bird diversity in this habitat, because patchy fires have been an important natural disturbance in tropical ecosystems for millennia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号