首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
Macrophyte complexity has been associated with high abundance and richness of macroinvertebrates. While the effect on richness has been attributed to an increase in the number of niches, the effect on abundance has been explained by a higher availability of space for small individuals, refuge, and/or food. For studying effects of complexity on macroinvertebrates, we used complementary approaches of laboratory choice and field colonization experiments, with macrophytes (Egeria densa and Elodea ernstae) and plastic imitations of contrasting fractal dimension. We investigated whether macroinvertebrates may actively select complex habitats by Hyalella sp. choice experiments. Then, we tested effects of complexity on macroinvertebrate density, biomass, richness, diversity, and body size using colonization experiments. Finally, a caging experiment was performed to study interacting effects of complexity and predation. The active choice of complex substrates by Hyalella sp., and the significant positive relationship between macrophyte fractal dimension and macroinvertebrate density support the existence of a positive effect of complexity on abundance. As macroinvertebrate length was not associated with fractal dimension, such differences could not be attributed to a higher space available for smaller invertebrates in complex plants. Finally, neither macroinvertebrate density nor size was reduced by fish predation in the Las Flores stream.  相似文献   

2.
Habitat structure is one of the fundamental factors determining the distribution of organisms at all spatial scales, and vegetation is of primary importance in shaping the structural environment for invertebrates in many systems. In the majority of biotopes, invertebrates live within vegetation stands of mixed species composition, making estimates of structural complexity difficult to obtain. Here we use fractal indices to describe the structural complexity of mixed stands of aquatic macrophytes, and these are employed to examine the effects of habitat complexity on the composition of free-living invertebrate assemblages that utilise the habitat in three dimensions. Macrophytes and associated invertebrates were sampled from shallow ponds in southwest England, and rapid digital image analysis was used to quantify the fractal complexity of all plant species recorded, allowing the complexity of vegetation stands to be reconstructed based on their species composition. Fractal indices were found to be significantly related to both invertebrate biomass–body size scaling and overall invertebrate biomass; more complex stands of macrophytes contained a greater number of small animals. Habitat complexity was unrelated to invertebrate taxon richness and macrophyte surface area and species richness were not correlated with any of the invertebrate community parameters. The biomass–body size scaling relationship of lentic macroinvertebrates matched those predicted by models incorporating both allometric scaling of resource use and the fractal dimension of a habitat, suggesting that both habitat fractal complexity and allometry may control density–body size scaling in lentic macroinvertebrate communities.  相似文献   

3.
1. Ship‐induced waves disturb benthic invertebrate assemblages colonizing littoral zones of lakes and rivers. However, the impact of ship‐induced waves on invertebrates has rarely been quantified, and the influencing factors have not been addressed. 2. In an experimental wave tank, five benthic invertebrate species, Bithynia tentaculata, Calopteryx splendens, Dikerogammarus villosus, Gammarus roeseli and Laccophilus hyalinus, were exposed to waves of increasing shear stress (0.43–2.19 N m?2). Mean number of detached individuals was recorded for five littoral habitats [coarse woody debris (CWD), reeds, sand, stones and tree roots], representing different levels of structural complexity as quantified by their fractal dimensions (FD). 3. Results showed that detachment of invertebrates was significantly related to shear stress in all habitats except tree roots. Detachments averaged for the five species were significantly lower in habitats with a high degree of structural complexity, decreasing in the habitat sequence: sand, CWD, stones, reeds and tree roots. 4. Consistent with their different morphologies and methods of attachment to substrates, the five species displayed differences in their response to hydraulic stress that were dependent on habitat. 5. The increasing sheltering effect of structural habitat complexity was mirrored by increasing dissipation of the kinetic energy of waves; i.e. the FD of the habitat was positively correlated with shear stress reduction due to the flow resistance of the habitat. 6. Network habitats such as tree roots provided the best sheltering conditions against hydraulic disturbance, because they combined good refuge availability for all studied invertebrate species and maximal dissipation of kinetic wave energy. Consequently, persistent anthropogenic impacts, such as lakeshore modification or long‐term exposure to ship‐induced waves, which cause disappearance of complex littoral habitats such as tree roots or dense reed belts, will drastically increase the adverse effects of boating and ship traffic on littoral invertebrate assemblages.  相似文献   

4.
We tested the hypothesis that structural complexity is an important factor influencing the abundance and taxon richness of microfauna (e.g., rotifers, copepods, cladocerans) in littoral habitats. Research on littoral microfauna has to date focused mainly on field observations, which commonly show microfauna have preference for some macrophytes over others. However, while such studies commonly conclude that macrophyte architecture is a major determinant of these variations, independent factors may also be responsible (e.g., differences in macrophyte ages, differences in macrophyte bed densities and the depth of the respective macrophyte beds sampled). We used artificial macrophytes with three levels of complexity to keep the surface area and mass of the substrate sampled constant, and to control for confounding factors not related to the complexity of the plants. Our results support the hypothesis that structural complexity is an important factor influencing abundance and taxon richness, independent of other potential confounding factors. Microfaunal (mainly rotifer) abundance and richness were generally greater on more complex artificial macrophytes, likely a result of more complex substrates (1) providing a greater variety of habitat, (2) supporting a greater concentration or variety of food and/or (3) affording greater protection against predators. Less mobile surface-associated (i.e., benthic/periphytic) taxa were found to discriminate among substrates, whereas the abundance and richness of planktonic species were not affected by complexity level. Relatively low abundances and taxon richness of microfauna recorded in control samples, which did not contain artificial macrophytes, supports the contention that vegetated areas sustain a higher abundance and variety of species than non-vegetated areas.  相似文献   

5.
1. Habitat complexity is thought to exert a significant influence on ecological communities, but its operation under variable natural conditions is not well understood, particularly in freshwater. To elucidate the role of habitat complexity, in particular the fractal structure of surface irregularity, in a stream system, field colonisation experiments were conducted at three times of year (summer, winter and spring) using natural substrates with different levels of fractal dimension in a small coastal mountain stream of southern Japan. 2. In the winter experiment, comparison was also made between the standard (control) treatment and the resource‐preconditioning treatment whereby experimental plates were conditioned in the natural stream environment to allow the accumulation of potential food resources (algae and detritus) for 1 month prior to the experiment. 3. Species abundance patterns observed at different times of year showed little systematic variation with levels of habitat complexity but largely followed the patterns expected from, or lying in between, the Random Assortment model and the random fraction model. 4. Taxon richness and density increased with habitat complexity in all seasons except for density in spring. Different taxa showed different patterns of change with habitat complexity, which also varied with seasons. Biomass of invertebrates showed no systematic trend with an increase in habitat complexity. 5. Chlorophyll‐a concentrations tended to be lower in more complex habitats, particularly in summer. In contrast, fine particulate organic matter (FPOM) tended to increase with habitat complexity. However, the relationship between these potential food resources and invertebrate assemblages remain unclear. 6. While there were no significant differences in taxon richness and biomass of invertebrates between the resource‐preconditioning and the control treatment, density was higher in the former than in the latter. The abundance of relatively large, surface‐dwelling animals showed more marked temporal variation over the entire period of colonisation in the resource‐preconditioning treatment than in the control treatment. 7. Body size of invertebrates tended to decline with fractal complexity, indicating that crevice sizes could affect habitat use by benthic animals of different sizes. In addition, body size was larger in the resource‐preconditioning treatment than in the control treatment, suggesting that body size in invertebrate assemblages was controlled by a mixture of factors. Thus, the present study demonstrates that habitat structure affects benthic invertebrate assemblages in a complex manner.  相似文献   

6.
1. We investigated the responsiveness of aquatic invertebrates to rehydration of floodplain soil in a south‐eastern U.S. river floodplain. Non‐inundated soil divots containing invertebrate seedbanks were collected from three floodplain elevations with different inundation histories (inundated for 2, 38, and 78% of a year), and subjected to rehydration (experimental inundation) in aquaria for 10 weeks. 2. Before rehydration, samples were collected to assess the initial density and composition of invertebrates in non‐inundated soil at each elevation. After rehydration, benthic samples were collected biweekly and emergence of aquatic insects was collected weekly from aquaria. 3. The surviving invertebrates were classified as aquatic, semi‐aquatic and terrestrial. Some aquatic invertebrates survived the non‐inundated period in an active state (e.g. Chironomidae and Ceratopogonidae), while others appeared to be dormant (e.g. Heptageniidae, microcrustaceans and Chironomidae). The response for several invertebrates (e.g. Chironominae, Oligochaeta, Collembola and terrestrial invertebrates) depended on the length of rehydration and inundation history. 4. The capacity of aquatic invertebrates to survive and recover was greatest at the most frequently inundated site. Despite variation in floodplain environments, both active and dormant invertebrates persisting in non‐inundated floodplain soil contributed to the floodplain assemblage during flooding. Thus, maintaining the connection between river and floodplain appears to be important in sustaining the invertebrate seedbank and its capacity to recover during inundation. River channelisation and regulation that severs this connection may result in a loss of diversity and abundance.  相似文献   

7.
8.
Macroinvertebrate community structure was compared between habitat types within a navigation pool and between navigation pools of the Upper Mississippi River. Bottom samples were taken using a grab or Wilding sampler from 40 and 14 stations on Pool 19 and 26, respectively. In both Pools, distinct communities developed based on substrate type or the presence of aquatic macrophytes rather than specific habitats as defined by river morphometry. Areas with sand substrates usually had communities of low density and diversity. Communities of the highest density, including Hexagenia or Musculium or both, occurred in habitats with silt-sand substrates. However, these areas were low in diversity. High diversity was found in both vegetated areas and habitats with coarse substrates, the latter dominated by net-spinning caddisfly larvae. Due to pool age and longitudinal distribution of species, community similarity between Pools 19 and 26 was not significant, p < 0.05, but functional feeding similarities occurred between communities from the same type of substrate.  相似文献   

9.
Coastal human‐made structures, such as marinas and harbors, are expanding worldwide. Species assemblages described from these artificial habitats are novel relative to natural reefs, particularly in terms of the abundance of nonindigenous species (NIS). Although these fouling assemblages are clearly distinctive, the ecosystem functioning and species interactions taking place there are little understood. For instance, large predators may influence the fouling community development either directly (feeding on sessile fauna) or indirectly (feeding on small predators associated with these assemblages). In addition, by providing refuges, habitat complexity may modify the outcome of species interactions and the extent of biotic resistance (e.g., by increasing the abundance of niche‐specific competitors and predators of NIS). Using experimental settlement panels deployed in the field for 2.5 months, we tested the influence of predation (i.e., caging experiment), artificial structural complexity (i.e., mimics of turf‐forming species), and their interactions (i.e., refuge effects) on the development of sessile and mobile fauna in two marinas. In addition, we tested the role of biotic complexity—arising from the habitat‐forming species that grew on the panels during the trial—on the richness and abundance of mobile fauna. The effect of predation and artificial habitat complexity was negligible, regardless of assemblage status (i.e., native, cryptogenic, and nonindigenous). Conversely, habitat‐forming species and associated epibionts, responsible for biotic complexity, had a significant effect on mobile invertebrates (richness, abundance, and community structure). In particular, the richness and abundance of mobile NIS were positively affected by biotic complexity, with site‐dependent relationships. Altogether, our results indicate that biotic complexity prevails over artificial habitat complexity in determining the distribution of mobile species under low predation pressure. Facilitation of native and non‐native species thus seems to act upon diversity and community development: This process deserves further consideration in models of biotic resistance to invasion in urban marine habitats.  相似文献   

10.
While the number of studies on the role of biodiversity on ecosystem functioning is steadily increasing, a key component of biogeochemical cycling in forests, dead wood decay, has been largely neglected. It remains widely unknown whether and how dead wood decay is affected by diversity loss in forests. We studied the hierarchical effects of tree species diversity on wood decay rates in a subtropical forest landscape in southeast China via its influence on fungal OTU richness and invertebrate diversity using piecewise structural equation models. The experiment was conducted in natural forest plots that span a wide gradient of tree species diversity embedded in a heterogeneous topography. To account for interactions between macro‐invertebrates and fungi, that potentially modify the influence of tree biodiversity and climate on dead wood decay, we compared a macro‐invertebrate exclusion treatment with a control treatment that allowed access to all types of decomposers. Diversity effects of trees on wood decay rates were mostly negative and mediated by the diversity of macro‐invertebrates. However, the effects of tree species diversity or fungal OTU richness and macro‐invertebrate diversity on wood decay rates were comparatively weak. Temperature affected decay rates positively and had the strongest influence in all treatments. While the exclusion of macro‐invertebrates did not lead to a reduction of wood decay rates, our results suggest that they may however have a mediating role in the process. In the presence of invertebrates the predictability of wood decay rates was higher and we observed a tendency of a stronger temperature control. Our results suggest that there is evidence for diversity effects on wood decomposition, but the temperature control is still more important. Thus, an increase in mean annual temperature will increase carbon and nutrient turnover through wood decomposition in subtropical forest irrespective of biotic composition.  相似文献   

11.
Most studies on zooplankton ecology have been conducted in open waters. However, it has been considered of great importance to extend such studies to other habitats, such as those generated of macrophytes. We studied the spatial and temporal variation of the microcrustacean and rotifer assemblage structures associated with macrophytes, and compare them with the variation exhibited in open waters. Integrated samples were collected for zooplankton and phytoplankton biomass using a Schindler bottle, in four open water sites and four other sites covered by macrophytes in the floodplain complex of Ayapel (Córdoba, Colombia) during different limnimetric levels. The significant differences in the structure were evaluated using Kruskal & Wallis and discriminant analyses, and the similarity among sampling sites was evaluated using Bray & Curtis analysis. Zooplanktonic richness was favored by macrophytes. However, we did not find a constant spatial pattern for density, and only particular trends apparently conditionated by flood pulses. The presence of Eichhornia azurea (Pontederiaceae) contributed in a significant way with an increase in the diversity and density of benthic taxa. The density of some zooplanktonic groups was related with environmental conditions and phytoplanktonic biomass.  相似文献   

12.
13.
The differences among blennioid assemblages (families Blenniidae and Tripterygiidae) on different habitats were assessed at two localities of the Ligurian Sea, namely Arenzano and Riva Trigoso. The assemblage composition and species relative density were evaluated visually on four different habitats of diverse wave exposure and substratum orientation (macro‐habitat characteristics): two vertical intertidal and subtidal habitats (exposed and sheltered rockwalls) and two horizontal subtidal habitats (semi‐exposed flat rock and boulders and pebbles). Each habitat was also characterized in relation to micro‐habitat features, such as substratum complexity, heterogeneity and amount of algae cover. Patterns of differences among habitats in assemblage variables and fish density, and the influences of macro‐ and micro‐habitat features on these patterns were studied at small (within localities) and large (across localities) spatial scales. Higher values of species richness (S), diversity and evenness (J) were generally associated with vertical habitats, as a result of a positive correlation with substratum orientation. The presence of an intertidal zone in the rockwall habitats may partially explain the observed differences in assemblage variables between vertical and horizontal habitats. The strength of relationships between S, and J and the other investigated habitat variables (exposure, complexity, heterogeneity and algae cover) varied greatly depending on spatial scale. All these relationships were positive, except for complexity. Significant variation in the assemblage total density among habitats was recorded only at Arenzano, where a larger number of fishes were counted on rockwalls rather than on the horizontal habitats. The positive effect of orientation on fish total density was strictly dependent on spatial scale. Fish total density showed a negative correlation with complexity and a positive correlation with heterogeneity, both relationships being unaffected by spatial scale. The unexpected relationship with complexity was probably due to the fact that, in the most complex habitat (i.e. boulder and pebbles), the potential positive effect of high complexity on fish density might be overcome by the negative influence of other environmental features, such as horizontal orientation and low wave exposure. Complexity and heterogeneity thus seemed good predictors of fish total density, but their role needs to be carefully interpreted. The most marked differences in species composition and relative density were found between rockwalls and the other habitats, mostly due to an unbalanced distribution of some stenoecious species. Variations in species relative density were related to different combinations of both macro‐ and micro‐habitat features, and these relationships usually changed depending on spatial scale.  相似文献   

14.
Floodplain lakes along the rivers Lower Rhine and Meuse in TheNetherlands can be categorized according to their hydrologyand geomorphology. The impact of hydrology on the summer planktoncommunity composition in 100 floodplain lakes was studied bymultivariate analyses (TWINSPAN, FLEXCLUS, DCA) of relativeabundance data of plankton. The phyto- and zooplankton communitycomposition in floodplain lakes is clearly related to hydrology,relevant nutritional resources and habitat characteristics,mainly via input of N and P from the eutrophic main channelsduring floods. The plankton species richness was related tothe complexity of habitats formed by the presence of aquaticvegetation. There was a good agreement between the ecologicaland the environmental characterization of site groups. Cyanobacteria,Chlorophyta and filter-feeding zooplankton taxa associated withopen water are characteristic for floodplain lakes with a longannual flood duration, low Si/N and Si/P ratios, and a poorlydeveloped aquatic vegetation. Bacillariophyceae and scrapingzooplankton taxa associated with aquatic macrophytes are characteristicfor floodplain lakes with a short annual flood duration, highSi/N and Si/P ratios, and a well-developed aquatic vegetation.It is concluded that the restoration of connections betweenrarely flooded lakes and the highly eutrophic main channelsof the Lower Rhine and Meuse will result in hypertrophic conditionsand a reduced plankton diversity in these lakes.  相似文献   

15.
In fluvial systems, the interactions between rivers and groundwater significantly affect various ecological structures (for example, riparian vegetation) and functions. To examine the effects of hydrological exchange between groundwater and surface water on the distribution of aquatic invertebrates within a riverine landscape, we investigated the main stem, tributaries, and various surface and subsurface waters of two floodplains of a southern Alpine river (Brenno, Switzerland) in terms of their physicochemical, hydraulic, substratum, and faunal characteristics. The origins of the water were investigated by analyzing geomorphic settings and physicochemical variables. The two floodplains had different hydrological regimes. The middle floodplain was dominated by lateral inputs and exfiltration of hillslope groundwater from two different subcatchments. Bank filtration of river water sustained subsurface water only close to the channel. The aquatic habitats of the middle floodplain formed a rather homogeneous group with high taxon richness and intrahabitat diversities. These aquatic habitats resembled mountain springbrooks in their physicochemical characteristics and faunal compositions. In the lower floodplain, the exchange between river water and groundwater was more extensive. The aquatic floodplain habitats of the lower floodplain were fed mainly by deep and shallow alluvial groundwater, hyporheic exfiltration, and partly by surface water. In contrast to aquatic habitats of the middle floodplain, habitats of the lower floodplain showed a low intrahabitat and a high interhabitat diversity in terms of both substrate characteristics and faunal compositions. For both floodplains, ordination analyses showed a high concordance between the structure of the invertebrate community and the characteristics of the environmental habitat, including chemical, geomorphic, and hydraulic variables. Ordinations grouped aquatic habitats according to the origins of the waters. Taxon richness was related to local structural diversity, but species turnover was related to differential vertical and lateral connectivity. Exfiltration of groundwaters provided aquatic floodplain habitats for several specialized species. The results of this study show the significance of the river–groundwater connectivity for the creation of the habitat mosaic that sustains biodiversity in floodplains and thus have important implications for managing the ecological integrity of floodplains.  相似文献   

16.
Polychaetes inhabiting 12 different hard bottom habitats were studied. A total of 157 species belonging to 32 families were identified. Differences among habitats in polychaete density, species richness, and diversity were analysed, as well as the relationships between these ecological indices and depth range, slope and in-bay/out-bay gradient. A high faunal homogeneity was found: all biotopes were dominated by a low number of eurytopic species. Intertidal habitats and subtidal ones with scarce algal cover were typified by vagile polychaetes (syllids, nereids), while sessile polychaetes (serpulids, sabellids) appeared typically among subtidal large macrophytes, habitats with a calcareous substrate and shaded habitats. Multivariate analyses showed that habitat complexity, determined by physical disturbance, is the main structuring factor for polychaete populations. Biotopes with the highest structural complexity displayed a high number of companion species increasing ecological indices and denoting a well-structured habitat. On the other hand, communities such as those in the upper intertidal, mainly controlled by physical environmental variables, showed a poorer polychaete fauna, dominated by ubiquitous species and a few well-adapted specialists.  相似文献   

17.
1. Ship‐induced waves can affect the physical characteristics of lake and river shorelines, and laboratory studies have shown effects on littoral invertebrates. Here, we explored whether these effects could be observed under field conditions along a natural lake shore affected by wave sequences (trains) produced by boats. 2. Individuals of five invertebrate species (Bithynia tentaculata, Calopteryx splendens, Dikerogammarus villosus, Gammarus roeselii, Laccophilus hyalinus) were exposed to waves with increasing shear stress in five habitats differing in structural complexity. 3. Detachment of invertebrates increased with increasing shear stress and was best modelled using sigmoid response curves. Habitat structural complexity mitigated the effects of shear stress, and detachment rate was influenced more by habitat type than by species. A threshold (90% of the individual invertebrates unaffected) stress level of 0.64 N m?2 was found for a structurally complex reed habitat, compared to 0.37 N m?2 for a simple sand habitat. 4. Shear stress associated with wave trains created by recreational boating at a distance of 35 m from the shore and at a speed of 11 km h?1 resulted in 45% detachment of littoral invertebrates. Decreasing the boat‐to‐shore distance to 20 m increased wave shear stress by 30% and invertebrate detachments up to 75%. 5. Disturbance of littoral habitats and invertebrate assemblages are widespread in inland waters used for recreational and/or commercial navigation. Our findings show that the integrity of littoral zones of navigable surface waters could be much improved by implementing management measures such as physically protecting complex habitats with dense reed belts and tree roots, and reducing boat speeds and increasing their minimum shoreline distance.  相似文献   

18.
19.
Habitat heterogeneity provided by aquatic macrophytes and water level variations (flood pulse) are essential factors in structuring fish assemblages. This study aimed to describe the fish species that prefers macrophytes covered areas and to evaluate how macrophytes complexities and a flood pulse influence the structure of fish assemblages and selected attributes (viz. fish species density, species richness and evenness). Sampling was performed with seining nets in five floodplain lakes associated with the Baía River, before (November to December 2011) and after (February to July 2012) a flood, considering different degrees of macrophyte complexity (Absent, intermediate, and high). A total of 48 fish species was recorded, with Characiformes the most dominant. Eight species were indicators of high complexities (seven before the flood and only one after). Significant differences among the different degrees of macrophyte complexity and before and after the flood were found for assemblage structure, species density and richness. Fish assemblage attributes were high in higher habitat heterogeneity provided by macrophytes, but all before the flood. Nevertheless, macrophyte stands with high and intermediate complexity were less affected by the flood, suggesting that the structure propitiated by macrophytes favors the persistence of the fish assemblage in floodplain lakes. Therefore, any action towards conservation of fish assemblages in macrophytes should consider dam operation upstream, to ensure seasonality of flood pulses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号