首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Frugivory evolved independently in Old and New World fruit bats (Families Pteropodidae and Phyllostomidae, respectively) and anecdotal reports state that these bats use their wings in different ways for manipulating food items and postural support during feeding. However, these often-cited behavioral differences have not been documented systematically. Here we report observations of manipulative and suspensory behavior collected from 41 individuals representing five phyllostomid and six pteropodid species. During feeding, phyllostomids used both feet to suspend themselves and invariably manipulated food with the wrists and thumbs of both wings. Most pteropodids in our sample used their thumbs for suspension during feeding and none manipulated fruit with their wings. The suspensory and feeding behaviors of pteropodids varied widely and there were significant differences between species. Discrepancies between phyllostomids and pteropodids in the use of the wings during feeding are associated with previously reported differences in wrist morphology. Based on examination of manipulative and suspensory behaviors in a phylogenetic context, we suggest that differences between pteropodids and phyllostomids reflect the distinct ancestral conditions from which these bats evolved.  相似文献   

2.
Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle.  相似文献   

3.
Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.  相似文献   

4.
Glycogen synthase, which catalyzes the synthesis of glycogen, is especially important for Old World (Pteropodidae) and New World (Phyllostomidae) fruit bats that ingest high-carbohydrate diets. Glycogen synthase 1, encoded by the Gys1 gene, is the glycogen synthase isozyme that functions in muscles. To determine whether Gys1 has undergone adaptive evolution in bats with carbohydrate-rich diets, in comparison to insect-eating sister bat taxa, we sequenced the coding region of the Gys1 gene from 10 species of bats, including two Old World fruit bats (Pteropodidae) and a New World fruit bat (Phyllostomidae). Our results show no evidence for positive selection in the Gys1 coding sequence on the ancestral Old World and the New World Artibeus lituratus branches. Tests for convergent evolution indicated convergence of the sequences and one parallel amino acid substitution (T395A) was detected on these branches, which was likely driven by natural selection.  相似文献   

5.
S. E. Courts 《Mammal Review》1998,28(4):185-194
The complexity of dietary strategies evolved by megachiropterans (Pteropodidae) is gaining recognition, although there are relatively few reports of feeding habits other than frugivory, and even fewer of non-herbivorous ones. This paper reviews the information obtained so far on how the diets of Old World fruit bats may provide them with sufficient protein, as most fruits are known to be low in this vital nutrient. There is evidence to suggest that pollen, leaves or insects may provide wild pteropodids with the extra protein that studies in captivity have shown to be necessary.  相似文献   

6.
Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.  相似文献   

7.

Background

The family Pteropodidae comprises bats commonly known as megabats or Old World fruit bats. Molecular phylogenetic studies of pteropodids have provided considerable insight into intrafamilial relationships, but these studies have included only a fraction of the extant diversity (a maximum of 26 out of the 46 currently recognized genera) and have failed to resolve deep relationships among internal clades. Here we readdress the systematics of pteropodids by applying a strategy to try to resolve ancient relationships within Pteropodidae, while providing further insight into subgroup membership, by 1) increasing the taxonomic sample to 42 genera; 2) increasing the number of characters (to >8,000 bp) and nuclear genomic representation; 3) minimizing missing data; 4) controlling for sequence bias; and 5) using appropriate data partitioning and models of sequence evolution.

Results

Our analyses recovered six principal clades and one additional independent lineage (consisting of a single genus) within Pteropodidae. Reciprocal monophyly of these groups was highly supported and generally congruent among the different methods and datasets used. Likewise, most relationships within these principal clades were well resolved and statistically supported. Relationships among the 7 principal groups, however, were poorly supported in all analyses. This result could not be explained by any detectable systematic bias in the data or incongruence among loci. The SOWH test confirmed that basal branches' lengths were not different from zero, which points to closely-spaced cladogenesis as the most likely explanation for the poor resolution of the deep pteropodid relationships. Simulations suggest that an increase in the amount of sequence data is likely to solve this problem.

Conclusions

The phylogenetic hypothesis generated here provides a robust framework for a revised cladistic classification of Pteropodidae into subfamilies and tribes and will greatly contribute to the understanding of character evolution and biogeography of pteropodids. The inability of our data to resolve the deepest relationships of the major pteropodid lineages suggests an explosive diversification soon after origin of the crown pteropodids. Several characteristics of pteropodids are consistent with this conclusion, including high species diversity, great morphological diversity, and presence of key innovations in relation to their sister group.  相似文献   

8.
9.
Bats, flowers and fruit: evolutionary relationships in the Old World   总被引:5,自引:0,他引:5  
Old World phytophagous bats (Megachiroptera: Pteropodidae) number 173 species of which 79% are Asian and 21% African. Bats arose, presumably monophyletically, in the early Tertiary, the Megachiroptera soon diverging from the Microchiroptera. By the Cretaceous-Tertiary boundary the major groups of modern angiosperms were present, some of these probably being pollinated nocturnally by large insects and non-flying mammals and others with seeds dispersed by terrestrial vertebrates. Early bats were perhaps initially attracted to such flowers and fruit by the insects found around them, later finding the plants themselves nutritious. Megabats today feed upon floral resources, fruit and leaves from a total of at least 188 plant genera in 64 families. They may effect both pollination and seed-dispersal, and both bat-flower and bat-fruit syndromes are commonly recognized. Individual species are generally catholic in their feeding, favoured food varying with locality and season. Depending upon roosting habits and season, megabats may travel considerable distances each night to feed and may undertake seasonal migrations. Their feeding in orchards may sometimes require their control, but the future of certain species is more seriously threatened by slaughter for food and particularly by habitat destruction.  相似文献   

10.
Bats are important ecosystem service providers, and therefore most relevant for both lowland and highland habitats, particularly in the tropics. Yet, it is poorly understood to what extent they perform large-scale movements, especially movements along mountain slopes. Here, we studied the movement ecology of the potentially migratory species Miniopterus natalensis at Mount Kilimanjaro in Tanzania. We analysed stable isotope ratios of C (δ13C), N (δ15N) and H (δ2H) in keratin of sedentary frugivorous and insectivorous bats captured between 800 and 2,400 m above sea level to establish elevational gradients of stable isotope ratios in consumer tissues. We expected correlations between stable isotope ratios of the non-exchangeable portion of H in fur keratin and the elevation of capture site, but not necessarily for δ13C and δ15N. Yet, in bats of both feeding ensembles, we found δ15N of fur keratin to correlate positively with the elevation of capture sites but not δ2H. In frugivorous bats, δ13C increased with increasing capture elevation as well. By looking at intra-individual variation of δ13C and δ15N in fur keratin and wing membrane tissues of sedentary Rhinolophus cf. clivosus and of the potentially migratory species M. natalensis, we gathered evidence that M. natalensis migrates seasonally between low and high elevations along the slopes of Mount Kilimanjaro. Finally, based on an isoscape origin model we estimated that M. natalensis captured before and after the cold period at around 1,800 m above sea level originated from around 1,400 m a.s.l. or lower. Thus, we received convergent results in support of seasonal elevational movements of M. natalensis, probably in search for cold hibernacula at higher elevations of Mount Kilimanjaro.  相似文献   

11.
Seed dispersal and pollination by animals play a crucial role in the maintenance of forest ecosystems worldwide. Frugivorous bats are important pollen and seed dispersers in both the Palaeo- and Neotropics, and at least 300 plant species are known to rely on Old World fruit bats (Megachiroptera, Pteropodidae) for their propagation. However, rapid food transit times (generally less than 30 minutes) in frugivorous bats have been thought to limit their ability to disperse seeds to just a few tens of kilometres. Here we demonstrate regular daytime (greater than 12 hours) retention of food and viable fig seeds (Ficus, Moraceae) in the gut of the Old World fruit bat Cynopterus sphinx: a behaviour not previously reported for any frugivorous bat. Field observations indicate that this behaviour also occurs in other genera. Old World fruit bats are highly mobile and many species undertake considerable foraging and migration flights. Our findings indicate that Old World fruit bats have the potential to disperse small seeds hundreds of kilometres. This necessitates a reappraisal of their importance in transporting zoochorous seeds to remote areas and facilitating gene flow between isolated populations of plants, both within mainlands and across ocean barriers.  相似文献   

12.
Shen B  Han X  Zhang J  Rossiter SJ  Zhang S 《PloS one》2012,7(4):e33197
Frugivorous and nectarivorous bats are able to ingest large quantities of sugar in a short time span while avoiding the potentially adverse side-effects of elevated blood glucose. The glucose transporter 4 protein (GLUT4) encoded by the Slc2a4 gene plays a critical role in transmembrane skeletal muscle glucose uptake and thus glucose homeostasis. To test whether the Slc2a4 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Slc2a4 gene in a number of bat species, including four Old World fruit bats (Pteropodidae) and three New World fruit bats (Phyllostomidae). Our molecular evolutionary analyses revealed evidence that Slc2a4 has undergone a change in selection pressure in Old World fruit bats with 11 amino acid substitutions detected on the ancestral branch, whereas, no positive selection was detected in the New World fruit bats. We noted that in the former group, amino acid replacements were biased towards either Serine or Isoleucine, and, of the 11 changes, six were specific to Old World fruit bats (A133S, A164S, V377F, V386I, V441I and G459S). Our study presents preliminary evidence that the Slc2a4 gene has undergone adaptive changes in Old World fruit bats in relation to their ability to meet the demands of a high sugar diet.  相似文献   

13.
Comparative morphological analysis of the female reproductive tract in macroglossine bats was undertaken to test the hypothesis that nectarivory arose at least twice within Old World fruit bats. Given that features of the female reproductive tract are not directly involved in adaptations for feeding, this data set should provide a test of the monophyly of macroglossine bats. A cladistic analysis of variation in the structure of the ovaries, oviducts, uterus, and external genitalia supports the hypothesis that Megaloglossus has developed a nectar-feeding habit independent of other macroglossine genera. Most of the variation in female reproductive organs among pteropodids is found in the development of derived external and internal features of the uterus. Fusion of uterine cornua, expansion of the common uterine body, and elaboration of the cervical region are found in a group which includes species of Pteropus, Dobsonia, Nyctimene, and the macroglossines (excluding Megaloglossus). Results of this study are concordant with independent data sets, thus providing a phylogenetic framework to evaluate critically structural and functional design in the evolution of pteropodid feeding mechanisms.  相似文献   

14.
Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera) represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients.  相似文献   

15.
Two bat families, the leaf-nosed (Phyllostomidae) and fruit bats (Pteropodidae), have independently evolved the ability to consume plant resources. However, despite their similar ages, species richness and the strong selective pressures placed on the evolution of skull shape by plant-based foods, phyllostomids display more craniofacial diversity than pteropodids. In this study, we used morphometrics to investigate the distribution of palate variation and the evolution of palate diversity in these groups. We focused on the palate because evolutionary alterations in palate morphology are thought to underlie much feeding specialization in bats. We hypothesize that the distribution of palate variation differs in phyllostomids and pteropodids, and that the rate of palate evolution is higher in phyllostomids than pteropodids. The results suggest that the overall level of palate integration is higher in adult populations of pteropodids than phyllostomids but that the distribution of palate variation is otherwise generally conserved among phyllostomids and pteropodids. Furthermore, the results are consistent with these differences in palate integration likely having a developmental basis. The results also suggest that palate evolution has occurred significantly more rapidly in phyllostomids than pteropodids. These findings are consistent with a scenario in which the greater integration of the pteropodid palate has limited its evolvability.  相似文献   

16.
Wounds and the origin of blood-feeding in bats   总被引:2,自引:0,他引:2  
This new theory about the origin of blood-feeding in bats is based on four main premises: (1) that the diets and feeding behaviour of some bats have always varied; (2) that the Miocene mammal fauna of South America included many large (≥ 2 kg body mass) forms; (3) that wounds offered protovampaire bats the opportunity to feed on blood; and (4) that sharp, strong upper incisor teeth were a prerequisite to feeding at wounds. This theory proposes that variation in feeding behaviour led protovampire bats to feed on concentrations of insect larvae at wounds on large mammals, thence to insects and body fluids, and finally to blood. The chiropteran family Phyllostomidae is confined to the New World and its members frequently have robust upper incisor teeth and flexible foraging behaviour. Elsewhere in the world, bats with flexible foraging behaviour lack robust incisors, while those with robust incisors are more conservative in their foraging. The wound theory of the origin of blood-feeding in bats takes into account their anatomy and foraging behaviour as well as the availability of large prey. In contrast to earlier theories that blood-feeding in bats originated from fruit-eaters with robust incisors or through the gleaning of ectoparasites, the wound theory also explains why vampire bats occur only in the New World.  相似文献   

17.
《Mammalian Biology》2014,79(2):110-116
Nitrogen stable isotope analysis studies have become a useful tool in dietary studies to quantify differences in diet composition among species or individuals. However, laboratory studies have revealed several factors that influence the nitrogen isotope ratios (δ15N) in animal tissues (e.g. habitat, amount of ingested food, and metabolic rate). The influence of these factors has not been validated for free-ranging bat species, which is important for interpreting nitrogen isotope data in field studies. In this study, we measured δ15N from wing membranes (δ15Nw) and habitat samples (δ15Nh; soil and leaf, or sediment) to test for effects of diet, age, and individual energy demand in three free-living bat species (Myotis daubentonii, Nyctalus noctula and Nyctalus leisleri). We hypothesised that based on differences in diet composition δ15Nw values should increase in the sequence M. daubentonii, N. leisleri, and highest N. noctula. Furthermore, juveniles should have significantly lower δ15Nw compared to their mothers. Thirdly, the δ15Nw values of reproductively active individuals should be significantly higher than those of non-reproductive individuals. Values of δ15Nw were significantly influenced by differences in feeding ecology among species and individual reproductive status, but not by animal age. Our results show that species feeding on primary consumers have lower δ15Nw values than species feeding on secondary and tertiary consumers. Further, independent young did not differ in their δ15Nw values from adults suggesting that their tissues already reflect the insect diet. The effect of reproductive status varied among species which might reflect intra-specific differences in foraging behaviour of generalist vs. specialist species. In this study, we demonstrated that δ15N can provide information on the dietary range of bats, but researchers should account for variation owing to reproductive status, habitat, and species.  相似文献   

18.
Humpback whales feed on a variety of prey, but significant differences likely occur between regional feeding grounds. In this study, the diets of humpback whales were analyzed by comparing stable isotope ratios in animal tissues at three humpback whale feeding grounds in the Russian Far East: Karaginsky Gulf, Anadyr Gulf, and the Commander Islands. Anadyr Gulf is a neritic zone far from a shelf break, Karaginsky Gulf is a neritic zone close to a shelf break, and the Commander Islands represent an open oceanic ecosystem where whales feed off the shelf break. Samples from the Commander Islands had the lowest mean δ13C and δ15N values (mean ± SE: δ13C = ?18.7 ± 0.1, δ15N = 10.4 ± 0.1) compared to the samples from Karaginsky Gulf (δ13C = ?17.2 ± 0.1, δ15N = 12.7 ± 0.2) and Anadyr Gulf (δ13C= ?17.8 ± 0.1, δ15N = 14.0 ± 0.4). The samples from Anadyr Gulf had the highest δ15N values, while the samples from Karaginsky Gulf had the highest δ13C values. Both δ13C and δ15N values differed significantly among all three areas. Our data support the hypothesis that humpback whales tend to feed on fish in neritic areas and on plankton in deep oceanic waters.  相似文献   

19.
Aim We review several aspects of the structure of regional and local assemblages of nectar‐feeding birds and bats and their relationships with food plants to determine the extent to which evolutionary convergence has or has not occurred in the New and Old World tropics. Location Our review is pantropical in extent and also includes the subtropics of South Africa and eastern Australia. Within the tropics, it deals mostly with lowland forest habitats. Methods An extensive literature review was conducted to compile data bases on the regional and local species richness of nectar‐feeding birds and bats, pollinator sizes, morphology, and diets. Coefficients of variation (CVs) were used to quantify the morphospace occupied by the various families of pollinators. The extent to which plants have become evolutionarily specialized for vertebrate pollination was explored using several criteria: number and diversity of growth forms of plant families providing food for all the considered pollinator families; the most common flower morphologies visited by all the considered pollinator families; and the number of plant families that contain genera with both bird‐ and bat‐specialized species. Results Vertebrate pollinator assemblages in the New World tropics differ from those in the Old World in terms of their greater species richness, the greater morphological diversity of their most specialized taxa, and the greater degree of taxonomic and ecological diversity and morphological specialization of their food plants. Within the Old World tropics, Africa contains more specialized nectar‐feeding birds than Asia and Australasia; Old World nectar‐feeding bats are everywhere less specialized than their New World counterparts. Main conclusions We propose that two factors – phylogenetic history and spatio‐temporal predictability (STP) of flower resources – largely account for hemispheric and regional differences in the structure of vertebrate pollinator assemblages. Greater resource diversity and resource STP in the New World have favoured the radiation of small, hovering nectar‐feeding birds and bats into a variety of relatively specialized feeding niches. In contrast, reduced resource diversity and STP in aseasonal parts of Asia as well as in Australasia have favoured the evolution of larger, non‐hovering birds and bats with relatively generalized feeding niches. Tropical Africa more closely resembles the Neotropics than Southeast Asia and Australasia in terms of resource STP and in the niche structure of its nectar‐feeding birds but not its flower‐visiting bats.  相似文献   

20.
The present paper characterizes, for the first time, the diet of the Harlequin crab Lissocarcinus orbicularis, an obligate symbiotic crab that associates with sea cucumbers (holothuroids) belonging to the genera Thelenota, Bohadschia and Holothuria. These tropical holothuroids host a rich symbiotic community in the Indo-West Pacific Ocean of which the Harlequin crab is the best known. The diet of L. orbicularis was characterized by analyzing the microscopic, molecular and isotopic signatures obtained from its gastric content. The presence of sea cucumber ossicles in the gastric mills of the crabs suggests that symbionts eat the superficial integument of their host and this was supported by the fact that Holothuroid DNA was detected in the stomach of L. orbicularis after DGGE and sequencing of the 18S rDNA gene. The stable isotopic δ13C and δ15N values of crab tissues were compared with diverse potential food sources including three holothuroids, three algae, one sea grass as well as the organic matter contained in the water column, in the sediment, and the second most abundant symbiont, the polychaete Gastrolepidia clavigera. The low δ15N values of crabs suggests that the crabs do not exclusively feed on sea cucumber tissue but assimilate diverse food sources such as sea grasses and organic matter contained in sediment that have similar δ13C values. There were no differences between the feeding of males and females but there was a positive correlation between the carapace length and the stable isotopic values indicating a shift of the food source as crabs grow larger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号