首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Understanding the biodiversity of functionally important communities in Earth’s ecosystems is vital in the apportionment of limited ecosystem management funds and efforts. In southern California shrublands, which lie in a global biodiversity hotspot, biological soil crusts (BSCs) confer critical ecosystem services; however, their biodiversity remains unknown. In this study, six sites (n = 4 each, 25 m2) were established along a mediterranean shrubland environmental gradient in southern California. Here, the biodiversity of all BSC-forming lichens and bryophytes was evaluated, related to environmental traits along the gradient, and compared to species richness among North American ecosystems supporting BSCs (data from previous studies). In total, 59 BSC-forming lichens and bryophytes were observed, including the very rare Sarcogyne crustacea, a rare moss, and five endemic lichen species. Over half (61%) of the species observed were found at a single site. Along the gradient, species evenness of late-successional BSC was related to dew point and elevation, and both evenness and richness were related to distance to coast. Using an ordination analysis, five distinct late-successional BSC communities were identified: Riversidian, Spike moss, Casperian, Alisian, and Lagunian. Twenty-five lichens and 19 bryophytes are newly reported for North American BSC-forming organisms, now comprising ~1/2 of the North American total. BSCs in North American hot and cold deserts were approximately 4.0 and 2.4 times less species rich than BSCs found in southern California shrublands, respectively. Given the anthropogenic impacts on quality and distribution of California mediterranean shrublands, our results show that these sites represent important refugia of BSC species in this globally important region.  相似文献   

2.
Biological soil crusts (BSCs) cover non-vegetated areas in most arid and semiarid ecosystems. BSCs play a crucial role in the redistribution of water and sediments and, ultimately, in the maintenance of ecosystem function. The effects of BSCs on water infiltration are complex. BSCs increase porosity and micro-topography, thus enhancing infiltration, but, at the same time, they can increase runoff by the secretion of hydrophobic compounds and clogging of soil pores upon wetting. BSCs confer stability on soil surfaces, reducing soil detachment locally; however, they can also increase runoff, which may increase sediment yield. Although the key role of BSCs in controlling infiltration–runoff and erosion is commonly accepted, conflicting evidence has been reported concerning the influence of BSCs on runoff generation. Very little is known about the relative importance of different BSC features such as cover, composition, roughness, or water repellency, and the interactions of these attributes in runoff and erosion. Because BSC characteristics can affect water flows and erosion both directly and indirectly, we examined the direct and indirect effects of different BSC features on runoff and erosion in a semiarid ecosystem under conditions of natural rainfall. We built structural equation models to determine the relative importance of BSC cover and type and their derived surface attributes controlling runoff and soil erosion. Our results show that the hydrological response of BSCs varies depending on rainfall properties, which, in turn, determine the process governing overland flow generation. During intense rainfalls, runoff is controlled not only by rainfall intensity but also by BSC cover, which exerts a strong direct and indirect influence on infiltration and surface hydrophobicity. Surface hydrophobicity was especially high for lichen BSCs, thus masking the positive effect of lichen crust on infiltration, and explaining the lower infiltration rates recorded on lichen than on cyanobacterial BSCs. Under low intensity, rainfall volume exerts a stronger effect than rainfall intensity, and BSC features play a secondary role in runoff generation, reducing runoff through their effect on surface micro-topography. Under these conditions, lichen BSCs presented higher infiltration rates than cyanobacterial BSCs. Our results highlight the significant protective effect against erosion exerted by BSCs at the plot scale, enhancing surface stability and reducing sediment yield in both high- and low-magnitude rainfall events.  相似文献   

3.
In arid and semiarid ecosystems, the potential threats of exotic invasive species are enhanced due to increasing human activities. Biological soil crusts (BSCs), acting as arid ecosystem engineers, may play an important role in preventing the establishment of exotic invasive plants. Our goal was to examine whether BSCs could inhibit the establishment of probable exotic plant species originating from adjacent grasslands located along the southeast edge of the Tengger Desert. In our study, we investigated the effects of three BSC types (cyanobacteria, lichen, and moss crusts) under two disturbance conditions (intact and disturbed) on the establishment of two exotic plant species (Ceratoides latens and Setaria viridis) using indoor experiments. We found both negative and positive effects of BSCs on the establishment of the two exotic plant species. Compared with the disturbed BSCs, the germination percentages of C. latens and S. viridis were reduced by 54% to 87% and 89% to 93%, respectively, in intact BSCs. In contrast, BSCs significantly promoted the height growth and aboveground biomass of the two exotic plant species (< .05) by enhancing the soil water and nutrient availability for the exotic plants. Our results confirm that BSCs strongly suppress the rapid expansion of exotic plant populations by inhibiting germination of seed with big size or appendages and have a weak inhibitory effect on exotic plant with small and smooth seeds. This may decrease the threat of propagation of exotic species. In the meantime, BSCs promote the growth of a few successful engraftment seedlings, which increased the beta diversity. Our work suggests that better understanding the two opposing effects of BSCs on the establishment of exotic plant species in different growth stages (germination and growth) is important for maintaining the health and stability of revegetated regions.  相似文献   

4.
Biological soil crusts (BSCs) are comprised of soil particles, bacteria, cyanobacteria, green algae, microfungi, lichens, and bryophytes and confer many ecosystem services in arid and semiarid ecosystems worldwide, including the highly threatened California sage scrub (CSS). These services, which include stabilizing the soil surface, can be adversely affected when BSCs are disturbed. Using field and greenhouse experiments, we tested the hypothesis that mechanical disturbance of BSC increases emergence of exotic vascular plants in a coastal CSS ecosystem. At Whiting Ranch Wilderness Park in southern California, 22 plots were established and emergence of exotic and native plants was compared between disturbed and undisturbed subplots containing BSC. In a separate germination study, seed fate in disturbed BSC cores was compared to seed fate in undisturbed BSC cores for three exotic and three native species. In the field, disturbed BSCs had significantly (>3×) greater exotic plant emergence than in undisturbed BSC, particularly for annual grasses. Native species, however, showed no difference in emergence between disturbed and undisturbed BSC. Within the disturbed treatment, emergence of native plants was significantly, and three times less than that of exotic plants. In the germination study, seed fates for all species were significantly different between disturbed and undisturbed BSC cores. Exotic species had greater emergence in disturbed BSC, whereas native plants showed either no response or a positive response. This study demonstrates another critical ecosystem service of BSCs—the inhibition of exotic plant species—and underscores the importance of BSC conservation in this biodiversity hotspot and possibly in other aridland ecosystems.  相似文献   

5.
Question: Biological soil crusts (BSCs) exist in arid and semi‐arid ecosystems worldwide, and their recovery following the removal of a disturbance agent is integral to the rehabilitation of degraded landscapes. We asked: what is the likelihood of success and time frame of BSC recovery in vegetation remnants of southeast Australia, following livestock exclusion by fencing. Location: Dryland agricultural region of northwest Victoria, Australia. Methods: We conducted a “space for time” study of BSC recovery across 21 sites where livestock have been excluded by fencing between 1 and >50 years ago, and used boosted regression tree models to explore the response of BSCs to livestock exclusion while controlling for the influence of environmental variables on BSC abundance. Results: Our results show a relatively rapid, passive recovery of BSCs following livestock exclusion, with cover stabilizing after 20 years. Sites heavily disturbed by livestock grazing at the time of fencing stabilized at a lower cover. In contrast to studies from other countries, our results suggest mosses, not cyanobacteria, are the important colonizers in our study region. Conclusions: Ecosystem function in degraded remnants of southern Australia can be improved in a relatively short time frame through passive recovery alone. This knowledge will benefit land managers choosing between restoration options in disturbed and fragmented arid‐landscapes.  相似文献   

6.
Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect the structure and composition of BSCs, and the functioning of their constituents. Using a manipulative experiment conducted over 3 years in a semi-arid site from central Spain, we evaluated how the composition, structure and performance of lichen-dominated BSCs respond to a 2.4°C increase in temperature, and to an approximately 30 per cent reduction of total annual rainfall. In areas with well-developed BSCs, warming promoted a significant decrease in the richness and diversity of the whole BSC community. This was accompanied by important compositional changes, as the cover of lichens suffered a substantial decrease with warming (from 70 to 40% on average), while that of mosses increased slightly (from 0.3 to 7% on average). The physiological performance of the BSC community, evaluated using chlorophyll fluorescence, increased with warming during the first year of the experiment, but did not respond to rainfall reduction. Our results indicate that ongoing climate change will strongly affect the diversity and composition of BSC communities, as well as their recovery after disturbances. The expected changes in richness and composition under warming could reduce or even reverse the positive effects of BSCs on important soil processes. Thus, these changes are likely to promote an overall reduction in ecosystem processes that sustain and control nutrient cycling, soil stabilization and water dynamics.  相似文献   

7.
In temperate regions, biological soil crusts (BSCs: complex communities of cyanobacteria, eukaryotic algae, bryophytes, and lichens) are not well investigated regarding community structure and diversity. Furthermore, studies on succession are rare. For that reason, the community assembly of crusts representing two successional stages (initial, 5 years old; and stable, >20 years old) were analyzed in an inland sand ecosystem in Germany in a plot-based approach (2 × 18 plots, each 20 × 20 cm). Two different methods were used to record the cyanobacteria and eukaryotic algae in these communities comprehensively: determination directly out of the soil and enrichment culture techniques. Additionally, lichens, bryophytes, and phanerogams were determined. We examine four hypotheses: (1) A combination of direct determination and enrichment culture technique is necessary to detect cyanobacteria and eukaryotic algae comprehensively. In total, 45 species of cyanobacteria and eukaryotic algae were detected in the study area with both techniques, including 26 eukaryotic algae and 19 cyanobacteria species. With both determination techniques, 22 identical taxa were detected (11 eukaryotic algae and 11 cyanobacteria). Thirteen taxa were only found by direct determination, and ten taxa were only found in enrichment cultures. Hence, the hypothesis is supported. Additionally, five lichen species (three genera), five bryophyte species (five genera), and 24 vascular plant species occurred. (2) There is a clear difference between the floristic structure of initial and stable crusts. The different successional stages are clearly separated by detrended correspondence analysis, showing a distinct structure of the community assembly in each stage. In the initial crusts, Klebsormidium flaccidum, Klebsormidium cf. klebsii, and Stichococcus bacillaris were important indicator species, whereas the stable crusts are especially characterized by Tortella inclinata. (3) The biodiversity of BSC taxa and vascular plant species increases from initial to stable BSCs. There are significantly higher genera and species numbers of cyanobacteria and eukaryotic algae in initial BSCs. Stable BSCs are characterized by significantly higher species numbers of bryophytes and vascular plant species. The results show that, in the investigated temperate region, the often-assumed increase of biodiversity in the course of succession is clearly taxa-dependent. Both successional stages of BSCs are diversity “hot spots” with about 29 species of all taxa per 20 × 20 cm plot. (4) Nitrogen and chlorophyll a concentrations increase in the course of succession. The chlorophyll a content of the crusts (cyanobacteria, eukaryotic algae, bryophyte protonemata) is highly variable across the studied samples, with no significant differences between initial and stable BSCs; nor were ecologically significant differences in soil nutrient contents observed. According to our results, we cannot confirm this hypothesis; the age difference between our two stages is probably not big enough to show such an increase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Vegetation can exert a strong influence on the distribution and activity of biotic communities across a broad range of spatial scales, especially in arid and semi‐arid ecosystems. At fine spatial scales, patches created by individual plants can support different faunal and floral communities even at locations distant from the plant. These differences can have profound effects on a range of ecosystem processes, including seed dispersal, nutrient cycling and resource distribution. In semi‐arid Australia, areas surrounding groves of western myall (Acacia papyrocarpa) trees are largely devoid of vegetation, being referred to as ‘halos’. Here, we investigate the soil‐dwelling Collembola in groves of western myall trees, the surrounding halos and nearby chenopod shrubland. We also investigated whether the abundance of Collembola was influenced by soil depth (0–5 cm layer vs. 6–10 cm layer) in groves. We found that collembolan density was approximately nine times lower and taxonomic richness half that in a halo compared with the grove and chenopod vegetation. Furthermore, analyses at finer taxonomic levels indicate that vegetation patches differed in species composition, with some species restricted to or preferring particular patches. In the grove, we found a higher abundance of Collembola in the 0–5 cm soil layer compared with the 6–10 layer. Our results indicate vegetation patches strongly influence collembolan abundance and species composition in bare patches around western myall. As patches created by vegetation are a common feature of semi‐arid and arid regions, we suspect that these effects are widespread although seldom reported. Furthermore, as Collembola are involved in the decomposition process, Acacia papyrocarpa patches will be influencing nutrient cycling through their effects on the soil biota. Our results also emphasize that comprehensive fauna survey and management of woodland ecosystems need to consider fine‐scale processes.  相似文献   

9.
Question: What is the nature of the relationships between cover, diversity and abundance of biological soil crusts, cover and diversity of vascular plants, and annual rainfall, soil texture and forestry practices in Callitris glaucophylla woodlands? Location: Arid and semi‐arid Callitris glaucophylla‐domi‐nated woodlands of eastern Australia. Methods: We documented soil crust‐forming mosses, lichens and liverworts at 83 woodland sites along a gradient of declining rainfall. Linear and non‐linear regression were used to examine relationships between soil crust species and attributes of vascular plant communities, and a similarity matrix (species abundance X sites) was subjected to Non‐metric Multi‐Dimensional Scaling (MDS), and Analysis of Similarities (ANOSIM) to show the degree of association between groups of taxa, and soil texture, rainfall classes and forestry practices. Results : We collected 86 taxa. Mosses were dominated by the family Pottiaceae, and lichens were dominated by squamulose forms. Average annual rainfall was highly correlated with soil crust community composition, and loamy soils supported a greater cover and diversity of taxa compared with sandy soils. Increases in tree cover were associated with significant, though weak, increases in abundance, but not diversity, of crusts. Crusts tended to be more diverse in areas that (1) had a sparse cover of ground‐storey plants; (2) were relatively stable ‐ as indicated by the proportion of perennial and/or native plants; (3) had more stable soil surfaces; and (4) were unlogged. Litter cover, overstorey thinning, and livestock grazing had no appreciable effect on crust diversity or cover. Conclusions : Callitris glaucophylla woodlands provide substantial habitat for soil crust organisms, and the dense tree cover and closed canopies of Callitris do not appear to have a major influence on the structure of biological crust communities. Unlike other woodland systems, relatively few patches would be required to reserve a high diversity of crust species.  相似文献   

10.
We examined the dynamics of cryptogamic soil crusts in a derived (disclimax) grassland near Orange in southeastern Australia. Changes in the cover of cryptogamic crusts and floristics and abundance of the constituent species were measured on four treatments with two levels each of grazing and cultivation. Twenty‐two lichens, mosses and liverworts were found at the study site and, of these, 13 were collected in the quadrats. Three moss species (Barbula calycina, Eccremidium arcuatum and Bryum pachytheca) and one lichen species (Cladonia tessalata) accounted for 67% of total cover‐abundance scores. Generally, cover‐abundance was significantly higher in the unvegetated microsites than in the vegetated microsites. Species richness was not significantly different between the four grazing‐cultivation treatments but, on average, there were significantly more species in the unvegetated microsites (mean = 3.2 species) than in the vegetated microsites (0.54 species). Grazing and cultivation resulted in significantly greater cover of bare ground and consequently significantly greater crust cover. Averaged across all treatments, approximately half of the area of unvegetated soil was occupied by cryptogams. Overall, the results indicate that lichens and bryophytes are important components of derived temperate grasslands, surviving in even densely vegetated swards. This study suggests that strategies which disturb the soil surface (e.g. grazing and cultivation) will stimulate the abundance and cover of soil crust organisms by increasing the availability of unvegetated microsites.  相似文献   

11.
The interest of the scientific community in biological soil crusts has grown exponentially over the last decades. One of the scientific research interests is the study of the effect of these crusts on plant establishment. Findings in this topic have been controversial, and some differences were attributed to crust types. Biological soil crusts dominated by lichens are common components of Stipa tenacissima steppes in arid and semi‐arid environments of the southern Mediterranean. In the current study, we conducted growth chamber experiments to investigate the differential effects of two lichen species with continuous crustose thalli (Diploschistes diacapsis) and with squamulose semicontinuous thalli (Fulgensia bracteata) on seed germination, root penetration, shoot emergence and seed viability of the tussock grass species S. tenacissima. Our results showed that under laboratory conditions, two distinct lichen species had significantly different effects on the establishment of S. tenacissima. Our findings clearly demonstrated that D. diacapsis significantly decreased germination, root penetration and shoot emergence of S. tenacissima compared to F. bracteata. This can be related to differences in morphological and physiological characteristics between crustose and squamulose lichens. Overall, we suggest that D. diacapsis and crustose lichens generally can act as natural barrier to the establishment of S. tenacissima.  相似文献   

12.
Here we report details of the European research initiative “Soil Crust International” (SCIN) focusing on the biodiversity of biological soil crusts (BSC, composed of bacteria, algae, lichens, and bryophytes) and on functional aspects in their specific environment. Known as the so-called “colored soil lichen community” (Bunte Erdflechtengesellschaft), these BSCs occur all over Europe, extending into subtropical and arid regions. Our goal is to study the uniqueness of these BSCs on the regional scale and investigate how this community can cope with large macroclimatic differences. One of the major aims of this project is to develop biodiversity conservation and sustainable management strategies for European BSCs. To achieve this, we established a latitudinal transect from the Great Alvar of Öland, Sweden in the north over Gössenheim, Central Germany and Hochtor in the Hohe Tauern National Park, Austria down to the badlands of Tabernas, Spain in the south. The transect stretches over 20° latitude and 2,300 m in altitude, including natural (Hochtor, Tabernas) and semi-natural sites that require maintenance such as by grazing activities (Öland, Gössenheim). At all four sites BSC coverage exceeded 30 % of the referring landscape, with the alpine site (Hochtor) reaching the highest cyanobacterial cover and the two semi-natural sites (Öland, Gössenheim) the highest bryophyte cover. Although BSCs of the four European sites share a common set of bacteria, algae (including cyanobacteria) lichens and bryophytes, first results indicate not only climate specific additions of species, but also genetic/phenotypic uniqueness of species between the four sites. While macroclimatic conditions are rather different, microclimatic conditions and partly soil properties seem fairly homogeneous between the four sites, with the exception of water availability. Continuous activity monitoring of photosystem II revealed the BSCs of the Spanish site as the least active in terms of photosynthetic active periods.  相似文献   

13.
Little is known about the impact of changing temperature regimes on composition and diversity of cryptogam communities in the Arctic and Subarctic, despite the well‐known importance of lichens and bryophytes to the functioning and climate feedbacks of northern ecosystems. We investigated changes in diversity and abundance of lichens and bryophytes within long‐term (9–16 years) warming experiments and along natural climatic gradients, ranging from Swedish subarctic birch forest and subarctic/subalpine tundra to Alaskan arctic tussock tundra. In both Sweden and Alaska, lichen diversity responded negatively to experimental warming (with the exception of a birch forest) and to higher temperatures along climatic gradients. Bryophytes were less sensitive to experimental warming than lichens, but depending on the length of the gradient, bryophyte diversity decreased both with increasing temperatures and at extremely low temperatures. Among bryophytes, Sphagnum mosses were particularly resistant to experimental warming in terms of both abundance and diversity. Temperature, on both continents, was the main driver of species composition within experiments and along gradients, with the exception of the Swedish subarctic birch forest where amount of litter constituted the best explanatory variable. In a warming experiment in moist acidic tussock tundra in Alaska, temperature together with soil ammonium availability were the most important factors influencing species composition. Overall, dwarf shrub abundance (deciduous and evergreen) was positively related to warming but so were the bryophytes Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi; the majority of other cryptogams showed a negative relationship to warming. This unique combination of intercontinental comparison, natural gradient studies and experimental studies shows that cryptogam diversity and abundance, especially within lichens, is likely to decrease under arctic climate warming. Given the many ecosystem processes affected by cryptogams in high latitudes (e.g. carbon sequestration, N2‐fixation, trophic interactions), these changes will have important feedback consequences for ecosystem functions and climate.  相似文献   

14.
15.
Biological soil crusts (BSCs) are found in all dryland regions of the world, including the polar regions. They are also known to occur in the southern African region. Although there were a number of case studies on BSCs from that region, we did not know if they are a normal part of the vegetation cover or just a phenomenon that occasionally occurs here and there. In order to investigate diversity, distribution patterns, and the driving factors of both, we followed a random sampling system of observatories along a transect, stretching from the Namibian-Angolan border down south to the Cape Peninsula, covering seven different major biomes. Biological soil crusts were found to occur in six out of seven biomes. Despite the fact that soil-dwelling algae occurred in the Fynbos biome, crust formation was not observed for hitherto unknown reasons. Seven BSC types were distinguished on the basis of morphology and taxonomic composition: three of them were cyanobacteria-dominated, one with additional chlorolichens, two with bryophytes, one hypolithic type restricted to quartz gravel pavements, and the unique lichen fields of the Namib Desert. Besides 29 green algal species in 21 genera, one heterokont alga, 12 cyanolichens, 14 chlorolichens, two genera of liverworts, and three genera of mosses, these crusts are positioned among the most diverse BSCs worldwide mainly because of the unusual high cyanobacterial species richness comprising 58 species in 21 genera. They contribute considerably to the biodiversity of arid and semi-arid bioregions. Taxonomic diversity of cyanobacteria was significantly higher in the winter rain zone than in the summer rain zone (54 versus 32 species). The soil photosynthetic biomass (chlorophylla/m2), the carbon content of the soil and the number of BSC types were significantly higher in the winter rain zone (U27, 29=215.0, p=0.004 [chla]; U21, 21=135.0, p=0.031 [C]; U27, 29=261.5, p=0.028 [BSC types]; excluding the fog-dominated Namib biome). The winter rain zone is characterized by a lower precipitation amount, but a higher rain frequency with the number of rainy days more evenly distributed over the year. The dry period is significantly shorter per year in the winter rain zone (U8, 9=5.0, p=0.003). We conclude that rain frequency and duration of dry periods rather than the precipitation amount is the main factor for BSC growth and succession. Nitrogen content of the soils along the transect was generally very low and correlated with soil carbon content. There was a weak trend that an increasing proportion of silt and clay (<0.63 mm) in the soil is associated with higher values of BSC chlorophyll content (Pearson correlation coefficient=0.314, p=0.237). Furthermore, we found a significant positive correlation between silt and clay and the number of BSC types (Pearson correlation coefficient=0.519, p=0.039), suggesting that fine grain-size promotes BSC succession and their biomass content. Lichens and bryophytes occurred in BSCs with lower disturbance frequencies (e.g. trampling) only. Crust thickness and chlorophyll content increased significantly from crusts of the early successional type to the late successional crust types. From our results, we conclude that BSCs are a normal and frequent element of the vegetation in arid and semi-arid southwestern Africa, and that rain frequency and duration of dry periods rather than the precipitation amount are the key factors for the development, differentiation and composition of BSCs.  相似文献   

16.
Species richness, abundance and diversity patterns in palm communities in the Yucatan Peninsula were compared at three sites with different forest types (semi‐deciduous, semi‐evergreen and evergreen), as well as different precipitation, geomorphology and soil depth. All individual palms, including seedlings, juveniles and adults, were identified and counted in forty‐five (0.25 ha) transects. A total of 46 000 individual palms belonging to 11 species from nine genera and two subfamilies were recorded. Palm richness, diversity and abundance were highest in the evergreen forest. Species from the subfamily Coryphoideae dominated the semi‐deciduous and semi‐evergreen forests while species from the subfamily Arecoideae dominated the evergreen forest. Seven species were found only in the evergreen forest. Chamaedorea seifrizii and Sabal yapa were found in all three forest types, while Thrinax radiata was found in the semi‐deciduous and semi‐ evergreen forests and Cocothrinax readii only in the semi‐evergreen forest. Compared to other neotropical palm communities, the richness and diversity in the Yucatan Peninsula are lower than in the western Amazon basin. Although palm richness and diversity on the Yucatan Peninsula were positively associated with precipitation, other variables, in particular soil depth and fertility as well as habitat heterogeneity (microtopography and canopy cover), need to be considered to better understand the observed patterns.  相似文献   

17.
Nitrogen (N) deposition has increased globally over the last 150 years and further increases are predicted. Epiphytic lichens decline in abundance and diversity in areas with high N loads, and the abundance of lichens decreases along gradients of increased deposition. Thus, although N is an essential nutrient for lichens, excessive loads may be detrimental for them. However, these gradients include many correlated pollutants and the mechanisms behind the decline are thus poorly known. The aim of this study was to assess effects of N deposition, alone, on the epiphytic lichen community composition in a naturally N‐poor boreal forest. For this purpose, whole spruce trees were fertilized daily with N at five levels, equivalent to 0.6, 6, 12.5, 25, and 50 kg N ha?1 yr?1, during four consecutive growing seasons (2006–2009), and changes in the abundance of lichens were monitored each autumn from the preceding year (2005). The studied lichen communities were highly dynamic and responded strongly to the environmental perturbation. N deposition detectably altered the direction of succession and reduced the species richness of the epiphytic lichen communities, even at the lowest fertilization application (6 kg N ha?1 yr?1). The simulated N deposition caused significant changes in the abundance of Alectoria sarmentosa, Bryoria spp., and Hypogymnia physodes, which all increased at low N loads and decreased at high loads, but with species‐specific optima. The rapid decline of A. sarmentosa may have been caused by the added nitrogen reducing the stability of the lichen thalli, possibly due to increases in the photobiont: mycobiont ratio or parasitic fungal attacks. We conclude that increases in nitrogen availability, per se, could be responsible for the reductions in lichen abundance and diversity observed along deposition gradients, and those community responses may be due to physiological responses of the individual species rather than changes in competitive interactions.  相似文献   

18.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

19.
Understanding functional diversity is critical to manage and preserve biodiversity and ecosystem functioning in the face of global change. However, the efforts to characterize this functional component have been mostly directed to vascular vegetation. We sampled lichen-dominated biological soil crusts (BSCs) in semiarid grasslands along an environmental gradient in the Iberian Peninsula. We characterized five effect functional traits for 31 lichens species, and evaluated the influence of large scale (i.e. precipitation) and small scale factors (i.e. substrate type, shrub presence, Stipa tenacissima presence) on dominant trait values; i.e. community weighted means, and functional divergence; i.e. Rao quadratic entropy in 580 sampling quadrats. Across the gradient, we found multiple trait shifts and a general increase of functional divergence with increasing precipitation. We also observed that substrate type and small scale biotic factors determined shifts in all traits studied, while these factors affected less to functional divergence. Comparing functional diversity with taxonomic diversity, we found contrasting responses to both large and small scale factors. These findings suggest that BSC community trait composition is influenced by multi-scale abiotic and biotic factors with environmental filtering dominating at large spatial scales and limiting similarity at specific small scales. Also, our results emphasize the potential differences between taxonomic and functional diversity in response to environmental factors. We concluded that functional diversity of BSCs not only provides novel and critical knowledge of BSC community structure, but also it should be considered as a critical tool in biodiversity conservation strategies, ecosystem services assessment and ecological modelling.  相似文献   

20.
We studied the relative importance of local habitat conditions and landscape structure for species richness of vascular plants, bryophytes and lichens in dry grasslands on the Baltic island of Öland (Sweden). In addition, we tested whether relationships between species richness and vegetation cover indicate that competition within and between the studied taxonomic groups is important. We recorded species numbers of vascular plants, bryophytes and lichens in 4 m2 plots (n=452), distributed over dry grassland patches differing in size and degree of isolation. Structural and environmental data were collected for each plot. We tested effects of local environmental conditions, landscape structure and vegetation cover on species richness using generalized linear mixed models. Different environmental variables explained species richness of vascular plants, bryophytes and lichens. Environmental effects, particularly soil pH, were more important than landscape structure. Interaction effects of soil pH with other environmental variables were significant in vascular plants. Plot heterogeneity enhanced species richness. Size and degree of isolation of dry grassland patches significantly affected bryophyte and lichen species richness, but not that of vascular plants. We observed negative relationships between bryophyte and lichen species richness and the cover of vascular plants. To conclude, effects of single environmental variables on species richness depend both on the taxonomic group and on the combination of environmental factors on a whole. Dispersal limitation in bryophytes and lichens confined to dry grasslands may be more common than is often assumed. Our study further suggests that competition between vascular plants and cryptogams is rather asymmetric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号