首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of reproductive isolation is a prerequisite in the formation of new species. Although there are numerous studies on ejaculates in lepidopteran insects, ejaculate comparisons among sibling species have not been adequately addressed to understand possible reproductive barriers to hybridization. Here, we examined the interspecific and intraspecific variations of ejaculates in the sibling noctuid moths Helicoverpa armigera and Helicoverpa assulta. We found that there were considerable variations in the number of apyrene and eupyrene sperm and the length of eupyrene sperm. Male pupal mass explained not only a significant proportion of the variation in apyrene sperm number in both H. armigera and H. assulta, but also a significant proportion of the variation in eupyrene sperm number in H. assulta. There was a significant positive relationship between the number of eupyrene sperm and the number of apyrene sperm in both species. No difference in the length of eupyrene sperm was found between them; however, ejaculates of H. armigera had many more eupyrene sperm than H. assulta had. In H. armigera, large males generally mated with large females. The evolutionary consequences of these differences are discussed in this paper.  相似文献   

2.
Two sibling species, Helicoverpa assulta and Helicoverpa armigera both use (Z)-9-hexadecenal and (Z)-11-hexadecenal as their sex pheromone components but in almost reversed ratios, 93:7 and 3:97, respectively. H. assulta and H. armigera males performed upwind flight in response to the H. assulta sex pheromone blend (93:7). H. armigera responded strongly to the H. armigera blend (3:97), whereas H. assulta males remained inactive upon exposure to this blend. Both species gave clear dose-dependent electrophysiological responses to (Z)-11-hexadecenal. However, (Z)-9-hexadecenal evoked strong dose-dependent electrophysiological responses in H. assulta males but not in H. armigera. The two male F1 hybrids exhibited similar behavioral responses to two sex pheromone blends and electrophysiological responses to two pheromone components as H. armigera males. This indicated that H. armigera genes appear dominant in determining the behavioral response and electrophysiological responses. Behavioral and electrophysiological responses of backcrosses of male F1 hybrids (H. armigera female × H. assulta male) with female H. assulta and H. armigera were close to that of H. assulta and H. armigera, respectively. However, backcrosses of female F1 hybrids (H. assulta female × H. armigera male) with male H. assulta and H. armigera showed reduced behavioral responses but normal electrophysiological responses compared to males of the respective parental line.  相似文献   

3.
Variation in the incidence of diapause in local populations of Helicoverpa armigera (Hübner) and Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae) was examined in relation to changes in photoperiod and/or temperature during the larval period. Temperate zone populations of H. assulta, a native species in temperate Japan, showed a high incidence of diapause induction when only the photoperiod was decreased during the larval period, even at favorable temperatures. This photoperiod‐dependent response may allow H. assulta to foresee the beginning of autumn well in advance in the temperate zone, where temperature conditions are severe. In contrast, temperate zone populations of H. armigera, an invasive and polyphagous species mainly distributed in the subtropics, showed a high incidence of diapause only when both photoperiod and temperature decreased, whereas subtropical populations showed a very low incidence of diapause under the same conditions. Furthermore, both temperate zone and subtropical populations of H. armigera enter diapause under constant low temperatures at short‐day photoperiod. Thus, there is geographic variation in sensitivity to diapause‐inducing stimuli (changes in photoperiod and temperature) in H. armigera. This variation may be a part of the climatic adaptation achieved by H. armigera in Japan.  相似文献   

4.
5.
Plant secondary compounds not only play an important role in plant defense, but have been a driving force for host adaptation by herbivores. Capsaicin (8-methyl-N-vanillyl-6-nonenamide), an alkaloid found in the fruit of Capsicum spp. (Solanaceae), is responsible for the pungency of hot pepper fruits and is unique to the genus. The oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae), is a specialist herbivore feeding on solanaceous plants including Capsicum annuum, and is one of a very few insect herbivores worldwide capable of feeding on hot pepper fruits. To determine whether this is due in part to an increased physiological tolerance of capsaicin, we compared H. assulta with another specialist on Solanaceae, Heliothis subflexa, and four generalist species, Spodoptera frugiperda, Heliothis virescens, Helicoverpa armigera, and Helicoverpa zea, all belonging to the family Noctuidae. When larvae were fed capsaicin-spiked artificial diet for the entire larval period, larval mortality increased in H. subflexa and H. zea but decreased in H. assulta. Larval growth decreased on the capsaicin-spiked diet in four of the species, was unaffected in H. armigera and increased in H. assulta. Food consumption and utilization experiments showed that capsaicin decreased relative consumption rate (RCR), relative growth rate (RGR) and approximate digestibility (AD) in H. zea, and increased AD and the efficiency of conversion of ingested food (ECI) in H. armigera; whereas it did not significantly change any of these nutritional indices in H. assulta. The acute toxicity of capsaicin measured by injection into early fifth instar larvae was less in H. assulta than in H. armigera and H. zea. Injection of high concentrations produced abdominal paralysis and self-cannibalism. Injection of sub-lethal doses of capsaicin resulted in reduced pupal weights in H. armigera and H. zea, but not in H. assulta. The results indicate that H. assulta is more tolerant to capsaicin than the other insects tested, suggesting that this has facilitated expansion of its host range within Solanaceae to Capsicum after introduction of the latter to the Old World about 500 years ago. The increased larval survival and growth due to chronic dietary exposure to capsaicin suggests further adaptation of H. assulta to that compound, the mechanisms of which remain to be investigated.  相似文献   

6.
Five species of noctuid moths, Helicoverpa armigera, H. punctigera, H. assulta, H. zea, and H. gelotopoeon, are major agricultural pests inhabiting various and often overlapping global distributions. Visual identification of these species requires a great deal of expertise and misidentification can have repercussions for pest management and agricultural biosecurity. Here, we report on the complete mitochondrial genomes of H. assulta assulta and H. assulta afra, H. gelotopoeon, H. punctigera, H. zea, and H. armigera armigera and H. armigera conferta’ assembled from high‐throughput sequencing data. This study significantly increases the mitogenome resources for these five agricultural pests with sequences assembled from across different continents, including an H. armigera individual collected from an invasive population in Brazil. We infer the phylogenetic relationships of these five Helicoverpa species based on the 13 mitochondrial DNA protein‐coding genes (PCG's) and show that two publicly available mitogenomes of H. assulta ( KP015198 and KR149448 ) have been misidentified or incorrectly assembled. We further consolidate existing PCR‐RFLP methods to cover all five Helicoverpa pest species, providing an updated method that will contribute to species differentiation and to future monitoring efforts of Helicoverpa pest species across different continents. We discuss the value of Helicoverpa mitogenomes to assist with species identification in view of the context of the rapid spread of H. armigera in the New World. With this work, we provide the molecular resources necessary for future studies of the evolutionary history and ecology of these species.  相似文献   

7.
Zong N  Wang CZ 《Planta》2007,226(1):215-224
Plants respond differently to damage by different herbivorous insects. We speculated that sibling herbivorous species with different host ranges might also influence plant responses differently. Such differences may be associated with the diet breadth (specialization) of herbivores within a feeding guild, and the specialist may cause less intensive plant responses than the generalist. The tobacco Nicotinana tabacum L. is the common host plant of a generalist Helicoverpa armigera (Hübner) and a specialist H. assulta Guenée (Lepidoptera, Noctuidae). The induced responses of tobacco to feeding of these two noctuid herbivores and mechanical wounding were compared. The results showed that the feeding of the specialist H. assulta and the generalist H. armigera resulted in the same inducible defensive system, but response intensity of plants was different to these two species. Inductions of jasmonic acid (JA), lipoxygenase (LOX), and proteinase inhibitors (PIs) were not significantly different concerning these two species, but H. assulta caused the less intensive foliar polyphenol oxidase (PPO) increase, more intensive nicotine and peroxidase (POD) increases in tobacco than H. armigera. The defensive response of plant to herbivores with different diet breadth seems to be more complicated than we expected, and the specialist does not necessarily cause less intensive plant responses than the generalist.  相似文献   

8.
Using the electro-physiological technique, the sensory mechanisms of maxillary sensilla styloconica to stimulants and deterrents were explored on two closely related species, the generalistHelicoverpa armigera and the specialistH. assulta. The results showed that: (i) in both species, cells sensitive to sucrose and azadirachtin were mainly in the lateral sensillum styloconicum, and those to inositol were in the medial sensillum styloconicum; (ii) sensitivity of medial sensillum styloconicum inH. assulta to inositol was higher than that inH. armigera; (iii) among 6 tested deterrents, only azadirachtin evoked high impulse discharge from the lateral sensillum styloconicum in both insects; (iv) the deterrents could disturb stimulants evoking impulse discharge from maxillary sensilla styloconica of both species in different degrees: To sucrose evoking impulses on lateral sensillum styloconicum, forH. armigera capsaicin had a strong inhibition and gossypol had a weak inhibition, while forH. assulta tannic acid, gossypol, and tomatine all had strong inhibition except nicotine and capsaicin; to inositol evoking impulses on medial sensilum styloconicum, forH. armigera inhibition of tomatine was strong but that of gossypol was weak; and forH. assulta inhibition of gossypol was strong but that of nicotine was weak.  相似文献   

9.
Liu Z  Scheirs J  Heckel DG 《Oecologia》2012,168(2):459-469
Much attention has been paid to the question of the relative importance of female behaviour versus larval feeding capacities in determining the host range of herbivorous insects. Host-use trade-offs displayed by generalist and specialist sister species of the genus Helicoverpa were evaluated to examine the relationship between maternal choice and offspring performance. The prediction of optimal oviposition theory, that females will choose to lay eggs on plants on which their offspring perform best as larvae, was tested by measuring oviposition preference and larval performance of Helicoverpa armigera and H. assulta on tobacco, sunflower, and hot pepper. These two measures were more highly correlated in the specialist H. assulta. Both species exhibited the same oviposition preference ranking: tobacco > sunflower > hot pepper. H. armigera larvae preferred sunflower, followed by tobacco and hot pepper; while H. assulta larvae preferred tobacco to sunflower and hot pepper, consistent with their mothers’ oviposition preference. Duration of the total period from egg to adult emergence for each species was significantly shorter on the host plant preferred by the larvae. H. assulta had shorter larval duration and higher relative growth rate than H. armigera on tobacco and hot pepper, and vice versa for sunflower, indicating species differences in host utilization. Thus, while only the specialist H. assulta displayed the predicted optimal oviposition pattern, females of both species show the least preference for the plant on which their offspring perform worst. Selection for optimal oviposition may be stronger on the specialist, which has fewer choices and lower lifetime fecundity than the generalist.  相似文献   

10.
11.
The relative proportions of components in a pheromone blend play a major role in sexual recognition in moths. Two sympatric species, Helicoverpa armigera and Helicoverpa assulta, use (Z)-11-hexadecenal (Z11–16: Ald) and (Z)-9-hexadecenal (Z9–16: Ald) as essential sex pheromone components but in very different ratios, 97∶3 and 7∶93 respectively. Using wind tunnel tests, single sensillum recording and in vivo calcium imaging, we comparatively studied behavioral responses and physiological activities at the level of antennal sensilla and antennal lobe (AL) in males of the two species to blends of the two pheromone components in different ratios (100∶0, 97∶3, 50∶50, 7∶93, 0∶100). Z11–16: Ald and Z9–16: Ald were recognized by two populations of olfactory sensory neurons (OSNs) in different trichoid sensilla on antennae of both species. The ratios of OSNs responding to Z11–16:Ald and Z9–16:Ald OSNs were 100∶28.9 and 21.9∶100 in H. armigera and H. assulta, respectively. The Z11–16:Ald OSNs in H. armigera exhibited higher sensitivity and efficacy than those in H. assulta, while the Z9–16:Ald OSNs in H. armigera had the same sensitivity but lower efficacy than those in H. assulta. At the dosage of 10 µg, Z11–16: Ald and Z9–16: Ald evoked calcium activity in 8.5% and 3.0% of the AL surface in H. armigera, while 5.4% and 8.6% of AL in H. assulta, respectively. The calcium activities in the AL reflected the peripheral input signals of the binary pheromone mixtures and correlated with the behavioral output. These results demonstrate that the binary pheromone blends were precisely coded by the firing frequency of individual OSNs tuned to Z11–16: Ald or Z9–16: Ald, as well as their population sizes. Such information was then accurately reported to ALs of H. armigera and H. assulta, eventually producing different behaviors.  相似文献   

12.
Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano‐liquid chromatography–mass spectrometry identified upregulated 23‐proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real‐time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography–mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects.  相似文献   

13.
Protease inhibitors play an important role in host plant defence against herbivores. However, insects have the ability to elevate the production of proteinases or resort to production of a diverse array of proteinases to offset the effect of proteinase inhibitors. Therefore, we studied the inhibition of pro‐proteinase(s) activation in the midgut of the polyphagous pest Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in response to protease inhibitors to develop appropriate strategies for the control of this pest. Gelatin coating present on X‐ray film was used as a substrate to detect electrophoretically separated pro‐proteinases and proteinases of H. armigera gut extract on native‐ and sodium dodecyl sulphate‐polyacrylamide gel electrophoresis. Six activated pro‐proteinase bands were detected in H. armigera gut lumen, which were partially purified and characterized using substrate assays. Activated H. armigera midgut pro‐proteinase(s) showed activity maxima at pH 8 and 10, and exhibited optimal activity at 40 °C. The activation of H. armigera gut pro‐proteinase isoforms was observed in the fraction eluted on benzamidine‐sepharose 4B column. Purification and substrate assay studies revealed that 23–70 kDa polypeptides were likely the trypsin/chymotrypsin‐like pro‐proteinases. Larvae of H. armigera fed on a cocktail of synthetic inhibitors (antipain, aprotinin, leupeptin, and pefabloc) showed maximum activation of pro‐proteinases compared with the larvae fed on individual inhibitors. The implications of these results for developing plants expressing proteinase inhibitors for conferring resistance to H. armigera are discussed.  相似文献   

14.
Induced resistance in plants affects insect growth and development as a result of the up‐regulation of defence‐related secondary metabolites or enzyme‐binding proteins. In the present study, the effects of jasmonic acid (JA) and salicylic acid (SA) induced resistance in groundnut on Helicoverpa armigera (Hübner) are examined. Larval survival, larval weights and the activities of digestive enzymes (total serine protease and trypsin) and of detoxifying enzymes [glutathione S‐transferase (GST) and esterase (EST)] are studied in insects fed on four groundnut genotypes with moderate levels of resistance to H. armigera (ICGV 86699, ICGV 86031, ICG 2271 and ICG 1697) and a susceptible genotype (JL 24). The plants are pre‐ and/or simultaneously treated with JA and SA, and then infested with H. armigera, which are allowed to feed for 6 days. Significantly lower serine protease and trypsin activities are observed in H. armigera fed on plants treated with JA. Greater GST activity is recorded in insects fed on JA and SA treated plants, whereas EST activity is low in H. armigera larvae fed on plants treated with JA and SA. Serine proteases, trypsin and GST activities and larval weights (r = 0.74–0.95) and larval survival (r = 0.77–0.93) are positively correlated, whereas EST activity and larval weight (r = ?0.55) and larval survival (r = ?0.65) are negatively correlated. The results suggest that midgut digestive and detoxifying enzymes can be used as indicators of the adverse effects of constitutive and/or induced resistance in crop plants on the insect pests and the role of JA and SA in insect pest management.  相似文献   

15.
Although lysis of invading organisms is a major innate form of immunity used by invertebrates, it remains unclear whether herbivorous insects have hemolysin or not. To address this general question, we tested the hemolytic (HL) activity of the hemolymph and tissue extracts from various stages of the polyphagous insect Helicoverpa armigera (Hübner) against the erythrocytes from chicken, duck, and rabbit. An HL activity was identified in the hemolymph of H. armigera larvae. Further studies demonstrated that the HL activity is proteinaceous as it was precipitable by deproteinizing agents. Hemolysins were found in Helicoverpa egg, larva, pupa, and adult, but the activity was higher in feeding larvae than in molting or newly molted larvae. Hemolysins were distributed among a variety of larval tissues including salivary gland, fat body, epidermis, midgut, or testes, but the highest activity was found in salivary gland and fat body. Relative to nonparasitized larvae, parasitization of H. armigera larvae by the endoparasitoid Campoletis chlorideae Uchida induced a 3.4‐fold increase in the HL activity in the plasma of parasitized host at day two postparasitization. The present study shows the presence of a parasitoid inducible HL factor in the parasitized insect. The HL activity increased significantly in H. armigera larvae at 12 and 24 h postinjection with Escherichia coli. We infer the HL factor(s) is inducible or due to de novo synthesis, which means that the HL factor(s) is associated with insect immune response by inhibiting or clearance of invading organisms.  相似文献   

16.
Bacillus thuringiensis (Bt) is an efficient entomopathogen used for pest control. While Bt pathogenesis has been thoroughly studied, less is known about the biological effects of sublethal Bt exposure. To address this knowledge gap, we document sublethal effects of Bacillus thuringiensis var. kurstaki (Btk) on the biology and development of Helicoverpa armigera (Hübner) under laboratory conditions. The results obtained revealed that duration of the different life stages in treated neonates of H. armigera was significantly affected by sublethal treatments. Furthermore, fecundity was also negatively affected in female moths developed from Btk‐treated neonates, with the rate of egg hatchability reaching zero in the LC25. We also present data supporting that the effect of sublethal Btk concentrations could carry over to the next generation. Sublethal Btk concentrations reduced the net reproduction rate (R0), and there were also significant differences among the values of this parameter at all treatments tested when compared with controls. The intrinsic and finite rates of increase (rm and λ, respectively) were significantly lower in insects treated with sublethal Btk concentrations compared with control insects. Consequent with the reduce rate of development observed for H. armigera treated with Btk, the mean generation time (T) and doubling time (DT) were significantly higher in insects exposed to any Btk concentration tested compared with control. Our data demonstrate significant fitness costs resulting from sublethal Btk exposure in H. armigera. These observations underline the importance of considering the role of sublethal effects when attempting to evaluate the impact of Bt treatment on an insect pest population and its progeny.  相似文献   

17.
Lepidopterans such as Helicoverpa armigera are emerging pests of corn in Korea, causing huge yield losses and deteriorating the quality of the corn crop. We monitored four major lepidopteran pests in major corn growing areas of Korea by employing sex pheromone traps from 2012 to 2015 to understand population dynamics. H. armigera, Ostrinia furnacalis, Spodoptera litura, Spodoptera exigua and Mythimna separata were collected from April to October. Among these species, H. armigera was found to be the main pest based on crop damage intensity (80–90% of the total damage). H. armigera was generally observed during the earing stage of corn and would migrate to other fields during September to October for overwintering. We also tested select insecticides against larvae of H. armigera in the laboratory. The most effective insecticide was indoxacarb, which was applied at specific times to manage H. armigera in cornfields. Optimal timing of spraying was estimated at about 70 days after planting (earing season) to control for H. armigera. Additionally, two species of parasitoid (Therion circumflexum and Ophioninae sp.) were identified from H. armigera. However, more extensive surveys are needed to organize a control program based on natural enemies.  相似文献   

18.
Comparison of the presence and quantities of cuticular hydrocarbons has been used successfully for identifying sibling species and races of several groups of insects. This approach has been extended to four species of moths previously regarded as belonging to the same genus, Heliothis. Gas chromatography was used to quantify the numerous high-molecular weight alkanes found on the cuticle of two pairs of closely related species: Helicoverpa zea and Helicoverpa armigera, and Heliothis virescens and Heliothis subflexa. Both sexes of H. zea and H. armigera contained different quantities of several alkanes that could be used for unambiguous identification. Similar comparisons of H. subflexa and H. virescens showed four peak ratios that were different for each species. Sexual dimorphism was minor in H. subflexa and H. virescens.  相似文献   

19.
Helicoverpa armigera is a major agricultural pest that is distributed across Europe, Asia, Africa and Australasia. This species is hypothesized to have spread to the Americas 1.5 million years ago, founding a population that is at present, a distinct species, Helicoverpa zea. In 2013, H. armigera was confirmed to have re‐entered South America via Brazil and subsequently spread. The source of the recent incursion is unknown and population structure in H. armigera is poorly resolved, but a basic understanding would highlight potential biosecurity failures and determine the recent evolutionary history of region‐specific lineages. Here, we integrate several end points derived from high‐throughput sequencing to assess gene flow in H. armigera and H. zea from populations across six continents. We first assemble mitochondrial genomes to demonstrate the phylogenetic relationship of H. armigera with other Heliothine species and the lack of distinction between populations. We subsequently use de novo genotyping‐by‐sequencing and whole‐genome sequences aligned to bacterial artificial chromosomes, to assess levels of admixture. Primarily, we find that Brazilian H. armigera are derived from diverse source populations, with strong signals of gene flow from European populations, as well as prevalent signals of Asian and African ancestry. We also demonstrate a potential field‐caught hybrid between H. armigera and H. zea, and are able to provide genomic support for the presence of the H. armigera conferta subspecies in Australasia. While structure among the bulk of populations remains unresolved, we present distinctions that are pertinent to future investigations as well as to the biosecurity threat posed by H. armigera.  相似文献   

20.
Polycalin has been confirmed as a binding protein of the Cry toxins in a few Lepidoptera insects, but its function in the action mechanism of Cry1Ac and whether it is involved in resistance evolution are still unclear. In this study, Ligand blot and enzyme-linked immunosorbent assays showed that Helicoverpa armigera polycalin could specifically interact with Cry1Ac with a high affinity (Kd = 118.80 nM). Importantly, antisera blocking polycalin in H. armigera larvae decreased the toxicity of Cry1Ac by 31.84%. Furthermore, the relative gene and protein expressions were lower in Cry1Ac-resistant strain (LF60) than that in Cry1Ac-susceptible strain (LF). These findings indicated that H. armigera polycalin was a possible receptor of Cry1Ac and may be contributed to the resistance to Cry1Ac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号