首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Question: What is the role of functional group identity in determining community composition and dynamics? Location: A natural grassland in Yukon Territory, Canada. Methods: We selectively removed single plant functional groups (graminoids, forbs, legumes) to examine their effects on biomass compensation, the distribution of biomass among common and rare colonizing species, and plant species richness and diversity. Removals were conducted across two environmental treatments (fertilization and fungicide) to test if biomass compensation was context‐dependent. Biomass was estimated non‐destructively using point‐intercept sampling. Results: When graminoids or legumes were continuously removed, there was full biomass compensation by the remaining functional groups after 5 years, but only partial compensation when forbs were removed. Biomass compensation depended on the colonizing functional group; forbs showed no increase in biomass until 5 years after the removal of any functional group, but graminoids colonized quickly after removals. After any removal, the dominant species within each remaining functional group showed no compensatory growth, whereas the first subdominant forb and graminoid both increased in biomass. Rare species had a delayed response to removals; rare species biomass only increased beginning 5 years after removals. Context dependence was observed only in the response of subdominant species to removals, and these responses did not translate into context‐dependent effects on total estimated biomass. Conclusion: We show that the effects of losing a plant functional group depends both on the identity of the group removed and on the species remaining. In this northern grassland, most compensatory growth was by the subdominant species, which may determine the direction of community development in the long term.  相似文献   

2.
We measured the proliferation of roots into experimental nutrient patches in a grassland community, distinguishing roots of graminoids and forbs. Biomass, length, and specific length were estimated for roots of each of the two functional groups, collected from patches differing in nutrient concentration, and established at four different times during a season. The ratio of graminoid and forb roots was compared with the graminoid-forb ratio in the above-ground biomass. Plant roots proliferated more intensively into patches with higher nutrient concentration, but the roots of the two functional groups had a similar ability to target richer patches. Relative proportion of graminoids was higher below-ground than above-ground and changed during the season, being lowest after mowing. Specific root length was higher for graminoid species, but did not respond to nutrient concentration in patches for either functional group. This is the first study to provide comparative information about root morphological response for graminoids and forbs, measured in a real, semi-natural plant community. The study shows no significant overall difference in the ability of these two functional types to place roots into nutrient-rich patches, but indicates other important differences among the two functional groups.  相似文献   

3.
Alpine lichen heaths are polydominant, low-productive communities where lichens and, at some localities, the dwarf shrub Vaccinium vitis-idaea prevail. To analyse the role of herbaceous dominants in the structure of alpine heaths, we established a removal experiment. We tested (1) whether dominant graminoids and forbs differ in their effects on species richness, phytomass, and abundance of individual species; and (2) which remaining species are able to replace the removed dominants. Permanent plots were established in 1996 in the Teberda Reserve (the Northwestern Caucasus, Russia) at 2750 m a.s.l. with four treatments: (1) control, (2) forb removal, (3) graminoid removal, (4) graminoid and forb removal. Target species were clipped every year to avoid regrowth. We counted the shoot numbers of all vascular plants yearly from 1996 to 2009. In 2010, we harvested the aboveground phytomass. We used mixed-effects models to assess the responses of the remaining species and phytomass fractions to the removal. The biomass of the removed dominants was almost compensated for by the remaining species, but due to diffuse competition none of the subordinate species became a new dominant. Graminoid removal reduced community weighted mean leaf dry matter content and litter accumulation. Species number per plot completely recovered after graminoid, not forb removal. Shoot numbers of Antennaria dioica, Arenaria lychnidea, Campanula tridentata, Ranunculus oreophilus, and Trifolium polyphyllum showed positive responses to graminoid removal. Anemone speciosa shoot numbers decreased after graminoid removal. In alpine heath, graminoid dominants contribute more to community structure than forb dominants.  相似文献   

4.
Seed production and seed quality in a calcareous grassland in elevated CO2   总被引:2,自引:1,他引:1  
In diverse plant communities the relative contribution of species to community biomass may change considerably in response to elevated CO2. Along with species‐specific biomass responses, reproduction is likely to change as well with increasing CO2 and might further accelerate shifts in species composition. Here, we ask if, after 5 years of CO2 exposure, seed production and seed quality in natural nutrient‐poor calcareous grassland are affected by elevated CO2 (650 μ L L?1 vs 360 μ L L?1) and how this might affect long‐term community dynamics. The effect of elevated CO2 on the number of flowering shoots (+ 24%, P < 0.01) and seeds (+ 29%, P = 0.06) at the community level was similar to above ground biomass responses in this year, suggesting that the overall allocation to sexual reproduction remained unchanged. Compared among functional groups of species we found a 42% increase in seed number (P < 0.01) of graminoids, a 33% increase (P = 0.07) in forbs, and no significant change in legumes (? 38%, n.s.) under elevated CO2. Large responses particularly of two graminoid species and smaller responses of many forb species summed up to the significant or marginally significant increase in seed number of graminoids and forbs, respectively. In several species the increase in seed number resulted both from an increase in flowering shoots and an increase in inflorescence size. In most species, seeds tended to be heavier (+ 12%, P < 0.01), and N‐concentration of seeds was significantly reduced in eight out of 13 species. The fraction of germinating seeds did not differ between seeds produced in ambient and elevated CO2, but time to germination was significantly shortened in two species and prolonged in one species when seeds had been produced in elevated CO2. Results suggest that species specific increases in seed number and changes in seed quality will exert substantial cumulative effects on community composition in the long run.  相似文献   

5.
Direct and indirect interactions among plants contribute to shape community composition through above‐ and belowground processes. However, we have not disentangled yet the direct and indirect soil and canopy effects of dominants on understorey species. We addressed this issue in a semi‐arid system from southeast Spain dominated by the legume shrub Retama sphaerocarpa. During a year with an exceptionally dry spring, we removed the shrub canopy to quantify aboveground effects and compared removed‐canopy plots to open plots between shrubs to quantify soil effects, both with and without watering. We added a grass removal treatment in order to separate direct from indirect shrub effects and quantified biomass, abundance, richness and composition of the forb functional group. With watering, changes in forb biomass were primarily driven by indirect shrub effects, with contrasting negative soil and positive aboveground indirect effects; changes in forb abundance and composition were more influenced by direct shrub soil effects with contrasting species composition between open and Retama patches. As community composition was different between open and Retama patches the indirect effects of Retama on forb species did not concern forbs from the open community but forbs from Retama patches. Indirect effects are, thus, important at the functional group level rather than at the species level. Without watering, there were no significant interactions. Changes in species richness between treatments were weak and seldom significant. We conclude that shrub effects on understorey forbs are primarily due to their influence on soil properties, directly affecting forb species composition but indirectly affecting the biomass of the forbs of the Retama patches, and only with sufficient water.  相似文献   

6.

Background and Aims

Flooding and grazing are major disturbances that simultaneously affect plant performance in many humid grassland ecosystems. The effects of flooding on plant recovery from defoliation were studied in two species: the grass Paspalum dilatatum, regrowing primarily from current assimilation; and the legume, Lotus tenuis, which can use crown reserves during regrowth.

Methods

Plants of both species were subjected to intense defoliation in combination with 15 d of flooding at 6 cm water depth. Plant recovery was evaluated during a subsequent 30-d growth period under well-watered conditions. Plant responses in tissue porosity, height, tiller or shoot number and biomass of the different organs were assessed.

Key Results

Flooding increased porosity in both P. dilatatum and L. tenuis, as expected in flood-tolerant species. In P. dilatatum, defoliation of flooded plants induced a reduction in plant height, thus encouraging the prostrated-growth response typical of defoliated plants rather than the restoration of contact with atmospheric oxygen, and most tillers remained submerged until the end of the flooding period. In contrast, in L. tenuis, plant height was not reduced when defoliated and flooded, a high proportion of shoots being presented emerging above water (72 %). In consequence, flooding plus defoliation did not depress plant recovery from defoliation in the legume species, which showed high sprouting and use of crown biomass during regrowth, whereas in the grass species it negatively affected plant recovery, achieving 32 % lower biomass than plants subjected to flooding or defoliation as single treatments.

Conclusions

The interactive effect of flooding and defoliation determines a reduction in the regrowth of P. dilatatum that was not detected in L. tenuis. In the legume, the use of crown reserves seems to be a key factor in plant recovery from defoliation under flooding conditions.Key words: Allocation, defoliation, flooding, Lotus tenuis, Paspalum dilatatum, submergence  相似文献   

7.
Questions: How do arbuscular mycorrhiza and earthworms affect the structure and diversity of a ruderal plant community? Is the establishment success of newcomer plants enhanced by these soil organisms and their interactions? Methods: We grew a native ruderal plant community composed of different functional groups (grasses, legumes and forbs) in the presence and absence of arbuscular mycorrhizal fungi (AMF) and endogeic earthworms in mesocosms. We introduced seeds of five, mainly exotic, plant species from the same functional groups after a disturbance simulating mowing. The effects of the soil organisms on the native ruderal plant community and seedling establishment of the newcomer plants were assessed. Results: After disturbance, the total above‐ground regrowth of the native plant community was not affected by the soil organisms. However, AMF increased plant diversity and shoot biomass of forbs, but decreased shoot biomass of grasses of the native plant community. Earthworms led to a reduction in total root biomass. Establishment of the introduced newcomer plants increased in the presence of AMF and earthworms. Especially, seedling establishment of the introduced non‐native legume Lupinus polyphyllus and the native forb Plantago lanceolata was promoted in the presence of AMF and earthworms, respectively. The endogeic earthworms gained more weight in the presence of AMF and led to increased extraradical AMF hyphal length in soil. However, earthworms did not seem to modify the effect of AMF on the plant community. Conclusion: The present study shows the importance of mutualistic soil organisms in mediating the establishment success of newcomer plants in a native plant community. Mutualistic soil organisms lead to changes in the structure and diversity of the native plant community and might promote newcomer plants, including exotic species.  相似文献   

8.
Broad‐scale threats to floristic diversity in native temperate grasslands are well‐documented and include elevated soil nutrients, changes in disturbance regimes and exotic species. However, fine‐scale variables associated with the presence of native forbs, such as gap size and biomass cover, have received relatively little attention. We conducted a case–control study to determine the relative influence of physical structural dimensions and other fine‐scale variables associated with the presence of native forbs in a modified temperate grassland previously used for domestic grazing. We matched 145 case plots centred on 27 different species of native forbs with 290 control plots not centred on a native forb. For each percentage increase in ground litter cover, dead biomass cover, grass cover or exotic forb cover, or the area of bare ground within 30 cm, the relative odds that a native forb was present vs absent declined by a mean of 10–13%. Living and dead biomass reduces light availability, and the former can also reduce nutrient and water availability. Declines in the presence of native forbs associated with increasing total bare ground may suggest that gap sizes were too small or the soil surface condition too degraded. Our results add to a body of evidence suggesting that native forbs in temperate native grassland are likely to benefit from periodic removal of living and dead grass biomass and a reduction in the cover of exotic forbs.  相似文献   

9.
Functional redundancy predicts that some species may play equivalent roles in ecosystem functioning therefore conferring a kind of ‘insurance’ to perturbation when species richness is reduced, by the compensation of species of the same functional group on ecosystem processes. We evaluate functional redundancy on grassland plant communities by a removal experiment in which the evaluated treatments were: GG – clipping two graminoid species, FF – clipping two forb species, GF – clipping one graminoid and one forb species and Control – no removal. We tested the hypothesis that the above‐ground biomass removal of one species of each functional group would cause less change in the community composition (community persistence) and less decrease in biomass production than the above‐ground biomass removal of two species of the same functional group. Functional redundancy was corroborated for community persistence since treatments FG and C caused less change in community composition than treatments GG and FF, although no differences were found between treatments for above‐ground biomass. We verified that clipped species tend to be compensated by an increase in the percent cover of the remaining species of the same functional group. This work provides experimental evidence of early responses after plant clipping in small spatial scale of functional redundancy in naturally established grassland plant communities. We highlight redundancy as an intrinsic feature of communities insuring their reliability, as a consequence of species compensation within functional groups.  相似文献   

10.
Olevi Kull  Anne Aan 《Ecography》1997,20(2):146-154
The proportional share of graminoid and forb life-form in the herbaceous layer was investigated along a productivity gradient at Laelatu, western Estonia With an increase in the herbaceous layer standing crop from 43 5 to 723 7 g m−2 the graminoid life-form became dominant in total above-ground mass and in species number Three hypotheses to better explain competitive ability of graminoids were tested 1) graminoids are able to form higher foliage, 2) they are able to distribute foliage nitrogen in a more beneficial way, 3) they have better nitrogen use efficiency 21 sample plots 50 × 50 cm were harvested All above-ground parts of vascular plants were removed by two canopy layers Vertical separation of layers were made according to the height of half light interception A species list was compiled, total and leaf masses and leaf nitrogen content of both life-forms were measured by layer ANOVA showed that there were no significant differences in vertical distribution of foliage or foliage nitrogen between life-forms in the productivity gradient, and hypotheses 1) and 2) are not supported by our data-set Hypothesis 3) is approved partly as the nitrogen concentration in graminoid foliage was 20% less than in forbs If one supposes that nitrogen retention time is equal in both life-forms then graminoids must have higher nitrogen use efficiency when compared to forbs Although the influence of life-form x productivity interaction on leaf nitrogen concentration was not significant, there was a tendency that difference in leaf mass to nitrogen ratio of the two life-forms increased with increasing incident light Thus, we can hypothesize that graminoid species dominate in high productive plots where the incident light intensity is also higher due to their better nitrogen use efficiency when compared to forb species  相似文献   

11.
Abstract. We report the successional trends of the major life‐forms (graminoids and forbs) in natural grasslands of Uruguay over a 9‐yr period after the removal of domestic herbivores. For the whole community, species richness and diversity decreased over the successional period. In graminoids we observed clear temporal trajectories in floristic composition; the rate of floristic change decreased with time and was associated with a shift in plant traits. The exclusion of large herbivores promoted erect and tall grasses with narrow leaves and greater seed length, vegetative growth constrained to the cool season and increased frequency of annual species. Forbs did not show a clear temporal trend in species composition, but there was, nevertheless, a plot‐specific species turnover of this functional group that was reflected in their attributes. Species spreading by means of rhizomes, with vegetative growth restricted to the warm season. Species with larger seeds increased under grazing exclusion, as did annual and nitrogen‐fixing forbs. The floristic changes induced by cattle exclusion occurred early in the succession. This early high rate of change has practical implications for management and conservation programs of the natural grasslands of Uruguay. Additionally, the shift in plant traits may be helpful in devising simple indicators of grazing impact.  相似文献   

12.
The effects of herbivores and their interactions with nutrient availability on primary production and plant community composition in grassland systems is expected to vary with herbivore type. We examined the effects of invertebrate and small vertebrate herbivores and their interactions with nutrient availability on grassland plant community composition and aboveground biomass in a tallgrass prairie ecosystem. The abundance of forbs relative to grasses increased with invertebrate herbivore removals. This increase in forb abundance led to a shift in community composition, where invertebrate removals resulted in greater plant species evenness as well as a divergence in composition among plots. In contrast, vertebrate herbivore removals did not affect plant community composition or aboveground biomass. Nutrient additions alone resulted in a decrease in plant species richness and an increase in the abundance of the dominant grass, but the dominant grass species did not greatly increase in abundance when nutrient additions were combined with invertebrate removals. Rather, several subdominant forbs came to dominate the plant community. Additionally, the combined nutrient addition and invertebrate herbivore removal treatment increased forb biomass, suggesting that invertebrate herbivores suppress the responses of forb species to chronic nutrient additions. Overall, the release of forbs from invertebrate herbivore pressure may result in large shifts in species composition, with consequences for aboveground biomass and forage quality due to altered grass:forb ratios in grassland systems.  相似文献   

13.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

14.
Abstract Net primary production (NPP) and nutrient dynamics of grasslands are regulated by different biotic and abiotic factors, which may differentially affect functional plant groups. Most studies have dealt with grasslands that have extremely low or zero production over a significant period of the year. Here we explore the relative importance of a few environmental factors as controls of aerial and below‐ground plant biomass production and nutrient dynamics in a grassland that is active throughout the year. We investigate their effect on the response of three main plant functional groups (warm‐ and cool‐season graminoids and forbs). We conducted a factorial experiment in a continuously grazed site in the Flooding Pampa grassland (Argentina). Factors were seasons (summer, autumn, winter and spring), and environmental agents (mowing, shade, addition of phosphorus [P] and nitrogen [N]). N addition had the largest and most extended impact: it tripled aerial NPP in spring and summer but had no effect on below‐ground biomass. This positive effect was accompanied by higher N acquisition and higher soil N availability. Mowing increased aerial NPP in winter, increased root biomass in the first 10 cm during autumn and winter and promoted N and P uptake by plants. Shading did not affect aerial NPP, but stimulated N and P uptake by plants. P addition had no effect on aerial NPP, but increased shallow root biomass and its N content in spring, and tripled P accumulation in plant biomass. The three plant functional groups differentially accounted for these ecosystem‐level responses. Graminoids explained the greater biomass production of N‐fertilized plots and mowing tended to promote forbs. These results suggest that the environmental controls of aerial NPP in this grassland vary among seasons, differentially impact the major floristic groups, and affect the energy and nutrient transfer to herbivores.  相似文献   

15.
We offered captive common voles (Microtus arvalis) a choice of 11 plant species (representing four ecological groups) growing in vivaria. Selection was evaluated by measuring (1) the biomass of each plant species consumed and (2) functional and life-history plant traits. The legume Trifolium pratense, known for its high nutrient level, and well accessible rosette forbs creating the highest biomass at the soil ground level, were mostly preferred. Voles avoided mainly grasses and the creeping forb Thymus pulegioides. The experiment showed that foraging was strongly plant species-specific. We assessed whether plant functional traits explain selective foraging in common voles. To explore this, we reanalyzed Holišová’s (1959) data about common vole stomach contents and plant trait databases. Regression tree analysis indicated that plant guild and life span were the best predictors of dietary selection, with a probability exceeding 0.5 that voles would eat more grasses and/or legumes than forbs. These results do not correspond with the feeding trial. We suggest that the voles usually consume grasses in the field because grasses are abundant and readily available, but prefer protein-rich forbs when possible.  相似文献   

16.
Abstract. We studied the vertical structure of wet grazed grasslands in Tierra del Fuego (southern Argentina). A point quadrat method was developed using a fine needle graduated in cm. The vertical and horizontal frequency of species and organs was quantified in samples collected from non‐grazed and grazed plots in the field. There was vertical stratification in both types of samples, but only in the first eight cm above the ground in grazed samples, with a dominance of Caltha sagittata. In non‐grazed samples graminoids grew taller than forbs and their inflorescences were an important element of the canopy structure. In both treatments, vertical species diversity was maximum in the lower part of the canopy, although diversity was significantly higher in grazed pots. In grazed samples, Caltha sagittata was the dominant species in 46% of samples and its leaves occupied 35% of the upper canopy. In the non‐grazed samples, Hordeum pubiflorum and Festuca magellanica were dominant in 63% of the samples, with H. pubiflorum leaves occupying 55% of the upper canopy. Comparing species by pairs, significant differences in vertical position were maintained in non‐grazed versus grazed pots. It is concluded that vertical stratification occurs even in the shortest communities. In this community, forb species grew close to the ground in the grazed areas, while forbs grew in the gaps and grasses above them in the non‐grazed areas. The main differences were in the relative dominance of forb and grass species and the presence of inflorescences.  相似文献   

17.
Question: Does experimental warming, designed to simulate future warming of the Arctic, change the biomass allocation and mycorrhizal infection of tundra plants? Location: High Arctic tundra near Barrow, Alaska, USA (71°18′N 156°40′W). Methods: Above and below ground plant biomass of all species was harvested following 3–4 yr of 1‐2°C of experimental warming. Biomass allocation and arbuscular mycorrhizal infection were also examined in the two dominant species, Salix rotundifolia and Carex aquatilis. Results: Above‐ground biomass of graminoids increased in response to warming but there was no difference in total plant biomass or the ratio of above‐ground to below‐ground biomass for the community as a whole. Carex aquatilis increased above‐ground biomass and proportionally allocated more biomass above ground in response to warming. Salix rotundifolia increased the amount of above‐ and below‐ground biomass allocated per leaf in response to warming. Mycorrhizal infection rates showed no direct response to warming, but total abundance was estimated to have likely increased in response to warming owing to increased root biomass of S. rotundifolia. Conclusions: The community as a whole was resistant to short‐term warming and showed no significant changes in above‐ or below‐ground biomass despite significant increases in above‐ground biomass of graminoids. However, the patterns of biomass allocation for C. aquatilis and S. rotundifolia did change with warming. This suggests that long‐term warming may result in changes in the above‐ground to below‐ground biomass ratio of the community.  相似文献   

18.
Invasive species are a common problem in restoration projects. Manipulating soil fertility and species arrival order has the potential to lower their abundance and achieve higher abundances of seeded native species. In a 7‐year experiment in Missouri, United States, we tested how nutrient addition and the timing of arrival of the invasive legume Lespedeza cuneata and seeded native prairie grass and forb species influenced overall community composition. Treatments that involved early arrival of seeded forb and grass species and late arrival of L. cuneata were most successful at creating community structure that fulfilled our restoration goals, displaying high abundance of seeded native forb species, low abundances of L. cuneata, and non‐native species. There were few treatment interactions, with the exception that timing seeded native forbs and timing of L. cuneata arrival interactively influenced the abundance of seeded native forbs. This suggests that the individual treatments are supporting the restoration goals, such as creating a community with low abundance of L. cuneate or high abundance of native seeded species, without restricting each other. This study demonstrates the importance of priority effects in disturbed habitats prone to invasion, the lasting effects of initial seeding on long‐term community composition, and the potential for fertilization to positively benefit restoration of degraded grasslands.  相似文献   

19.
From 1992 to 1995 we experimentally evaluated the effectiveness of several revegetation treatments along a segment of Going-to-the-Sun Highway in Glacier National Park, U.S.A. This segment, reconstructed during the spring and summer of 1992, is bordered by fescue prairie vegetation and is known to be susceptible to invasion by several alien species, including Centaurea maculosa (spotted knapweed) and Phleum pratense (common timothy). We used a split plot study design to evaluate the effectiveness of herbicide and seeding treatments on assisting recovery of native flora and limiting the establishment of alien species. The herbicide treatment consisted of a yearly herbicide spray application of clopyralid (3,6-dichloropicolinic acid). Five seeding treatments were evaluated, three of which included an indigenous graminoid-forb seed mix. Percent canopy coverages of four species groups—alien graminoids, native graminoids, alien forbs, and native forbs—were determined in July 1995. In addition, community-level patterns in sprayed plots and unsprayed plots were compared with a reference site of native fescue prairie. Herbicide treatments decreased mean canopy coverage of alien forbs (treated = 4.2%, untreated = 23.4%) and increased mean canopy coverage of native graminoids slightly (treated = 6.3%, untreated = 4.0%). But herbicide treatments reduced mean coverage of native forbs (treated = 3.9%, untreated = 8.9%) and likely increased coverage of alien graminoids. Treatments that included a fall 1992 seed mix increased native graminoid coverages 2.8–4.6 times, although coverages were still lower than those attained by alien graminoids. Native and alien forb coverage appeared unaffected by seeding treatments. Species composition was less diverse in sprayed plots and more dominated by alien grasses than in unsprayed plots and the reference site. Areas for additional study are suggested, including seed bank assays to determine treatment effects on recruitment of alien versus native species and the use of native graminoids to create low-diversity communities with high canopy coverages to resist establishment of alien species.  相似文献   

20.
Question: What are the effects of shallow flooding on boreal peatlands on vegetation composition and size of carbon pools in the living and dead vegetation? Location: Lake 979, Experimental Lakes Area, northwestern Ontario, Canada. Methods: A boreal basin peatland complex with treed bog, open bog, and open water was experimentally flooded by raising water level ca. 1.3 m. Vegetation and above‐ground biomass were compared between pre‐flood conditions and those nine years after flooding. Peat accumulation since flooding was also quantified. Results: Flooding caused almost all trees to die, leading to a net loss of 86% of the above‐ground living plant biomass after nine years of the flooding. Floating up of peat was rapid in the central part of the basin, and the floating peat mats were characterized by newly established open bog community. Wetland types were diversified from bog into open bog, fen, and marsh, accompanied with great species turnover. Floating open bog community accumulated the greatest amount of peat since flooding. Conclusions: This study shows that shallow flooding of bog vegetation can lead to quick re‐establishment of open bog vegetation upon the floating up of peat mats as well as changes to more diverse vegetation over decadal time spans. We estimate that the carbon pools in 2002 in living and dead plant biomass since 1992 are comparable to what they were in the above‐ground biomass in 1992. Flooding caused an initial net decrease in carbon stores, but carbon in the pre‐flood living plant biomass was replaced by both carbon in dead biomass of the pre‐flood vegetation and newly sequestered carbon in new peat growth and post‐flood living plant biomass. Possible vegetation change toward bog‐dominated system could lead to increasing rate of new peat growth, which could affect future carbon sink/source strength of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号