首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasticity studies suggest that behavioral relevance can change the cortical processing of trained or conditioned sensory stimuli. However, whether this occurs in the context of natural communication, where stimulus significance is acquired through social interaction, has not been well investigated, perhaps because neural responses to species-specific vocalizations can be difficult to interpret within a systematic framework. The ultrasonic communication system between isolated mouse pups and adult females that either do or do not recognize the calls' significance provides an opportunity to explore this issue. We applied an information-based analysis to multi- and single unit data collected from anesthetized mothers and pup-naïve females to quantify how the communicative significance of pup calls affects their encoding in the auditory cortex. The timing and magnitude of information that cortical responses convey (at a 2-ms resolution) for pup call detection and discrimination was significantly improved in mothers compared to naïve females, most likely because of changes in call frequency encoding. This was not the case for a non-natural sound ensemble outside the mouse vocalization repertoire. The results demonstrate that a sensory cortical change in the timing code for communication sounds is correlated with the vocalizations' behavioral relevance, potentially enhancing functional processing by improving its signal to noise ratio.  相似文献   

2.
Songbirds learn individually unique songs through vocal imitation and use them in courtship and territorial displays. Previous work has identified a forebrain auditory area, the caudomedial nidopallium (NCM), that appears specialized for discriminating and remembering conspecific vocalizations. In zebra finches (ZFs), only males produce learned vocalizations, but both sexes process these and other signals. This study assessed sex differences in auditory processing by recording extracellular multiunit activity at multiple sites within NCM. Juvenile female ZFs (n = 46) were reared in individual isolation and artificially tutored with song. In adulthood, songs were played back to assess auditory responses, stimulus‐specific adaptation, neural bias for conspecific song, and memory for the tutor's song, as well as recently heard songs. In a subset of females (n = 36), estradiol (E2) levels were manipulated to test the contribution of E2, known to be synthesized in the brain, to auditory responses. Untreated females (n = 10) showed significant differences in response magnitude and stimulus‐specific adaptation compared to males reared in the same paradigm (n = 9). In hormone‐manipulated females, E2 augmentation facilitated the memory for recently heard songs in adulthood, but neither E2 augmentation (n = 15) nor E2 synthesis blockade (n = 9) affected tutor song memory or the neural bias for conspecific song. The results demonstrate subtle sex differences in processing communication signals, and show that E2 levels in female songbirds can affect the memory for songs of potential suitors, thus contributing to the process of mate selection. The results also have potential relevance to clinical interventions that manipulate E2 in human patients. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 302–314, 2015  相似文献   

3.
Female behavioral responses to sensory stimuli can be highly variable across the reproductive cycle. Female green treefrogs (Hyla cinerea) use the male vocal signal to locate and choose a mate. Gravid females approach a vocalizing male to mate but do not approach if they have recently mated. Such differences in behavioral response may be due in part to shifts in the neural representation of auditory information in the brain. In this study, we investigated the influence of female reproductive state on neural responses in the auditory midbrain to both communication signals (advertisement calls) and non-communication sounds (band limited noise bursts). Recently mated females exhibited significantly reduced response strengths compared to females not recently mated. Reduced response strengths in post-mated females were in response to both noise bursts and male advertisement calls but were limited to the lower frequency range corresponding to the amphibian papilla of the peripheral auditory system. Our results therefore show that the ability of social signals to stimulate the auditory system differs in females depending on their reproductive state, and that the differential effect on low versus high spectral sensitivities may influence the way the two spectral peaks of male advertisement calls are represented.  相似文献   

4.
Qualitative impairments in communication, such as delayed language and poor interactive communication skills, are fundamental to the diagnosis of autism. Investigations into social communication in adult BTBR T+tf/J (BTBR) mice are needed to determine whether this inbred strain incorporates phenotypes relevant to the second diagnostic symptom of autism, communication deficits, along with its strong behavioral phenotypes relevant to the first and third diagnostic symptoms, impairments in social interactions and high levels of repetitive behavior. The aim of the present study was to simultaneously measure female urine‐elicited scent marking and ultrasonic vocalizations in adult male BTBR mice, in comparison with a standard control strain with high sociability, C57BL/6J (B6), for the assessment of a potential communication deficit in BTBR. Adult male BTBR mice displayed lower scent marking and minimal ultrasonic vocalization responses to female urine obtained from both B6 and BTBR females. Lower scent marking and ultrasonic vocalizations in a social setting by BTBR, as compared with B6, are consistent with the well‐replicated social deficits in this inbred mouse strain. Our findings support the interpretation that BTBR incorporate communication deficits, and suggest that scent marking and ultrasonic vocalizations offer promising measures of interest in social cues that may be widely applicable to investigations of mouse models of autism.  相似文献   

5.
Conspicuous polymorphism in sexually selected traits is usually attributed to processes such as frequency‐dependent selection that can maintain genetic variation. Recent evidence indicates that dramatic variation of male coloration in guppies (Poecilia reticulata) is promoted by a form of frequency‐dependent selection in which males bearing rare or novel color patterns achieve higher mating success than males bearing common patterns. Active female preference for unfamiliar or rare color patterns has been implicated in generating this rare‐phenotype advantage, but the behavioral processes responsible for the preference remain unclear. To determine whether familiarity that is developed over a very short timescale can lead to a rare‐male mating advantage, we measured female response to courtship by males with color patterns that were the same as or different from that of the previous male to court. Females showed two types of short‐term preference variation in this experiment. On the first trial day, females shifted their preferences on a timescale of minutes, showing strong preference for males bearing a color pattern different from that of the immediately previous male to court. Twenty‐four hours later, females were less responsive to male courtship overall, and there was no difference in females’ response to different‐ and same‐morph males. Females also preferred males with more orange coloration on both trial days, but this color preference was independent of the preference for ‘different’ color patterns. These data suggest that the behavioral process underlying rare‐male advantage in guppies is that females prefer males bearing unfamiliar color patterns and that familiarity is determined over a very short timescale.  相似文献   

6.
Female mate choice is fundamental to sexual selection, and determining molecular underpinnings of female preference variation is important for understanding mating character evolution. Previously it was shown that whole‐brain expression of a synaptic plasticity marker, neuroserpin, positively correlates with mating bias in the female choice poeciliid, Xiphophorus nigrensis, when exposed to conspecific courting males, whereas this relationship is reversed in Gambusia affinis, a mate coercive poeciliid with no courting males. Here we explore whether species‐level differences in female behavioral and brain molecular responses represent ‘canalized’ or ‘plastic’ traits. We expose female G. affinis to conspecific males and females, as well as coercive and courting male Poecilia latipinna, for preference assays followed by whole‐brain gene expression analyses of neuroserpin, egr‐1 and early B. We find positive correlations between gene expression and female preference strength during exposure to courting heterospecific males, but a reversed pattern following exposure to coercive heterospecific males. This suggests that the neuromolecular processes associated with female preference behavior are plastic and responsive to different male phenotypes (courting or coercive) rather than a canalized response linked to mating system. Further, we propose that female behavioral plasticity may involve learning because female association patterns shifted with experience. Compared to younger females, we found larger, more experienced females spend less time near coercive males but associate more with males in the presence of courters. We thus suggest a conserved learning‐based neuromolecular process underlying the diversity of female mate preference across the mate choice and coercion‐driven mating systems.  相似文献   

7.
Social experiences can profoundly shape social behavior and the underlying neural circuits. Across species, the formation of enduring social relationships is associated with both neural and behavioral changes. However, it remains unclear how longer‐term relationships between individuals influence brain and behavior. Here, we investigated how variation in social relationships relates to variation in female preferences for and neural responses to song in a pair‐bonding songbird. We assessed variation in the interactions between individuals in male‐female zebra finch pairs and found that female preferences for their mate's song were correlated with the degree of affiliation and amount of socially modulated singing, but not with the frequency of aggressive interactions. Moreover, variation in measures of pair quality and preference correlated with variation in the song‐induced expression of EGR1, an immediate early gene related to neural activity and plasticity, in brain regions important for auditory processing and social behavior. For example, females with weaker preferences for their mate's song had greater EGR1 expression in the nucleus Taeniae, the avian homologue of the mammalian medial amygdala, in response to playback of their mate's courtship song. Our data indicate that the quality of social interactions within pairs relates to variation in song preferences and neural responses to ethologically relevant stimuli and lend insight into neural circuits sensitive to social information. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1029–1040, 2016  相似文献   

8.
Female African elephants advertise changes in reproductive condition to males through a variety of modalities, including an increase in low‐frequency vocalizations, presumed to travel long distances. Although males respond to these vocalizations, it has been suggested that their proximate function may be to signal to nearby females rather than to distant males. Because elephants live in a female‐bonded society, it is likely that changes in female reproductive condition also affect close‐range interactions between high‐ and low‐ranking females and that vocalizations may mediate these interactions. To examine female–female interactions related to vocal production and the ovulatory cycle, this year‐long study monitored behavior, vocalizations and hormonal cycles for a group of six female captive African elephants at Disney's Animal Kingdom. Rates of several types of close‐range interactions were observed to change over the phases of the estrous cycle, and rank seemed to affect whether or not low‐frequency vocalizations were given in association with these interactions. Results of this study suggest that a female African elephant's immediate social context and rank in the social hierarchy interact with the hormonal cycle in the production of low‐frequency vocalizations, thus many of these vocalizations may not function proximately as signals to distant males, but may be a result of the changing dynamics among females. Zoo Biol 0:1–17, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

9.
The goal of the research reported here was to look for evidence of modifiability of preference for male song in female cowbirds, Molothrus ater. To this end, we investigated whether social experience affected the breadth and consistency of females’ playback preferences for geographic variants of male song. In three experiments, we varied female cowbirds’ exposure to males. Wild‐caught juvenile females showed a preference for local song in their first year when housed without males in sound‐attenuating chambers, as we had found previously with adult females. But we found that neither adult nor juvenile females showed a preference for local over distant song after they had been housed in large, outdoor aviaries with other females but without male residents. Aviary housing with local males did lead to preferences for local songs. These data represent the first unqualified evidence that adult and juvenile female cowbird preferences for song are modifiable. These data add to the growing body of literature suggesting that receivers, as well as signalers, rely on learning during development of their communication system.  相似文献   

10.
Stimulus-induced expression of the immediate early gene ZENK (egr-1) in the songbird's auditory forebrain presumably depends on the behavioral significance of the stimulus. Few studies, however, have quantified both the ZENK and behavioral responses to a stimulus in the same individuals. We played conspecific male song of either hatch (local) or foreign dialect to female white-crowned sparrows (Zonotrichia leucophrys oriantha) and quantified both the auditory ZENK response and their behavioral response, which is known to depend on dialect. Birds hearing hatch dialect showed greater ZENK induction in the caudomedial hyperstriatum ventrale and the dorsal portion of the caudomedial neostriatum than birds hearing foreign dialect, supporting previous work showing a relationship between ZENK and salience of the stimulus. In the dorsal portion of the caudomedial neostriatum, ZENK induction was correlated with the amount of non-vocal courtship behavior; however, in the caudomedial hyperstriatum ventrale, ZENK induction was more highly correlated with the females' own vocal behavior and thus may have been partly self-induced. Some females sang and showed a male-like pattern of ZENK induction in their song systems. This study provides the first evidence that the ZENK response in a sensory area to a social stimulus is proportional to the animal's preference for the stimulus.  相似文献   

11.
This study investigated behavioral signals of estrus by systematically monitoring the interactions of one male with four female African elephants housed in a naturalistic outdoor enclosure at Disney's Animal Kingdom over a period of 11 months. We measured changes in five spatial behaviors and 22 tactile‐contact behaviors, as well as changes in serum progestagen and LH concentrations, across three ovarian cycles for each female. Two females did not cycle during the study. Three different phases of the ovarian cycle were identified: mid luteal, anovulatory follicular, ovulatory follicular. The male followed more and carried out more genital inspections, flehmen, and trunk‐to‐mouth behaviors toward cycling females during their ovulatory phase. Genital inspections by the male peaked above baseline levels on the day of an LH surge, and up to 9 days before, in both cycling females and, thus, might be a useful behavioral index of estrus. The male also carried out more genital inspections, flehmen, and trunk touches to the back leg toward ovulatory cycling than noncycling females. Overall, our results indicated that: 1) a single subadult African elephant male could discriminate two females in the ovulatory phase of their cycle (i.e., during the 3 weeks preceding ovulation) from the mid luteal phase; 2) the male also discriminated two cycling females in the ovulatory and anovulatory follicular phases from two noncycling females; 3) two females in the ovulatory phase of the cycle displayed a greater variety of tactile‐contact behavior toward the male compared to the other cycle phases. Zoo Biol 0:1–19, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

12.
Female mate preference is an important component of sexual selection because some male traits, such as physiology and proficiency in acquiring resources, are indicators of male quality. In lizards, the importance of female choice remains unclear as results reported from previous experiments are contradictory. Here, we investigated the influence of male activity level, its associated physiology, and territory quality on female preference, estimated as association time, for male brown anoles, Anolis sagrei. Male A. sagrei were first rated for endurance then used in mismatched‐pair female association trials. Preference was scored as the time a female spent near a male relative to the amount of time she was in his half of the trial arena, and both male and female behaviors were recorded. Levels of blood glucose were measured in males before and after the endurance tests, and before and after the association trials. Levels of stored glycogen were measured in leg muscle and liver samples collected from males after an association trial. A path analysis indicates that final blood glucose levels affect male activity and that female preference is influenced by male activity. In a second experiment, females were given a choice between a male in a territory supplemented with plants and a size‐matched male in a bare territory. Male activity levels were recorded when both males interacted with the female. In those cases, females spent more time with the more active of the two males, regardless of territory quality. Combined, these results suggest that female A. sagrei exhibit preference for male activity regardless of territory quality.  相似文献   

13.
Terleph TA  Lu K  Vicario DS 《PloS one》2008,3(8):e2854
The caudomedial nidopallium (NCM) is a telencephalic auditory area that is selectively activated by conspecific vocalizations in zebra finches and canaries. We recently demonstrated that temporal and spectral dynamics of auditory tuning in NCM differ between these species [1]. In order to determine whether these differences reflect recent experience, we exposed separate groups of each species and sex to different housing conditions. Adult birds were housed either in an aviary with conspecifics (NORM), with heterospecifics (canary subjects in a zebra finch aviary, and vice versa: (CROSS)), or in isolation (ISO) for 9 days prior to testing. We then recorded extracellular multi-unit electrophysiological responses to simple pure tone stimuli (250-5000 Hz) in awake birds from each group and analyzed auditory tuning width using methods from our earlier studies. Relative to NORM birds, tuning was narrower in CROSS birds, and wider in ISO birds. The trend was greater in canaries, especially females. The date of recording was also included as a covariate in ANCOVAs that analyzed a larger set of the canary data, including data from birds tested outside of the breeding season, and treated housing condition and sex as independent variables. These tests show that tuning width was narrower early in the year and broader later. This effect was most pronounced in CROSS males. The degree of the short-term neural plasticity described here differs across sexes and species, and may reflect differences in NCM's anatomical and functional organization related to species differences in song characteristics, adult plasticity and/or social factors. More generally, NCM tuning is labile and may be modulated by recent experience to reflect the auditory processing required for behavioral adaptation to the current acoustic, social or seasonal context.  相似文献   

14.
Fertility-advertisement calls in females are predicted to occur in nonmonogamous species where males and females are widely separated in space. In African elephants, low-frequency vocalizations have thus been suggested as a reproductive strategy used by fertile females to attract mates. This study examined the use of low-frequency vocalizations with respect to different phases of the estrous cycle in African elephants by simultaneously monitoring vocalizations, behavior, and hormonal profiles. Subjects were one male and six female African elephants housed at Disney's Animal Kingdom. No acoustically distinct vocalizations were restricted to the ovulatory follicular phase. However, overall rate of low-frequency vocalization as well as the rate of one acoustically distinct vocalization changed over the estrous cycle, with highest rates of calling related to the first period of follicular growth, or anovulatory follicular phase. Elevated rates of vocalization thus were not restricted to behavioral estrus and occurred much earlier in the estrous cycle than in most species that produce fertility-advertisement calls. Both herd composition and elephant identity also affected rates of vocalization. Vocalizations therefore may not be reliable signals of actual fertility. However, the increase in vocalizations in advance of estrus may attract males to the herd prior to ovulation, facilitating both male-male competition and female choice. Once present in the herd, males may then switch strategies to use more reliable chemical and visual cues to detect ovulating females.  相似文献   

15.
《Zoology (Jena, Germany)》2015,118(5):357-363
The black-capped chickadee is a songbird that has been used extensively as a model of animal communication in field and laboratory settings. Although many studies have focused on the complex call and song systems of the black-capped chickadee, relatively fewer studies have focused on chickadee audition. However, we do know from behavioral and molecular work that chickadees (and auditory processing areas in their brains) discriminate between artificially generated tones, between conspecific and heterospecific vocalizations, and among different types of conspecific vocalizations. In this paper we investigate peripheral auditory processing of frequency in the black-capped chickadee and the potential influence of sex on frequency sensitivity using a technique called auditory evoked potentials. We found that male and female black-capped chickadees did not differ in any measure of frequency sensitivity. Both sexes had the greatest sensitivity to frequencies between 2 and 4 kHz. This range of frequencies is well represented in black-capped chickadee song, partially supporting the idea that sender and receiver coevolve. Finally, we suggest that the call and song system of North American parids make them an ideal taxonomic group for comparative work exploring the relationship between call systems and the evolution of auditory processing.  相似文献   

16.
Speciation by sexual selection is generally modeled as the coevolution of female preferences and elaborate male ornaments leading to behavioral (sexual) reproductive isolation. One prediction of these models is that female preference for conspecific males should evolve earlier than male preference for conspecific females in sexually dimorphic species with male ornaments. We tested that prediction in darters, a diverse group of freshwater fishes with sexually dimorphic ornamentation. Focusing on the earliest stages of divergence, we tested preference for conspecific mates in males and females of seven closely related species pairs. Contrary to expectation, male preference for conspecific females was significantly greater than female preference for conspecific males. Males in four of the 14 species significantly preferred conspecific females; whereas, females in no species significantly preferred conspecific males. Relationships between the strength of preference for conspecifics and genetic distance revealed no difference in slope between males and females, but a significant difference in intercept, also suggesting that male preference evolves earlier than females’. Our results are consistent with other recent studies in darters and suggest that the coevolution of female preferences and male ornaments may not best explain the earliest stages of behavioral isolation in this lineage.  相似文献   

17.
The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise.  相似文献   

18.
Early life stressors can impair song in songbirds by negatively impacting brain development and subsequent learning. Even in species in which only males sing, early life stressors might also impact female behavior and its underlying neural mechanisms, but fewer studies have examined this possibility. We manipulated brood size in zebra finches to simultaneously examine the effects of developmental stress on male song learning and female behavioral and neural response to song. Although adult male HVC volume was unaffected, we found that males from larger broods imitated tutor song less accurately. In females, early condition did not affect the direction of song preference: all females preferred tutor song over unfamiliar song in an operant test. However, treatment did affect the magnitude of behavioral response to song: females from larger broods responded less during song preference trials. This difference in activity level did not reflect boldness per se, as a separate measure of this trait did not differ with brood size. Additionally, in females we found a treatment effect on expression of the immediate early gene ZENK in response to tutor song in brain regions involved in song perception (dNCM) and social motivation (LSc.vl, BSTm, TnA), but not in a region implicated in song memory (CMM). These results are consistent with the hypothesis that developmental stressors that impair song learning in male zebra finches also influence perceptual and/or motivational processes in females. However, our results suggest that the learning of tutor song by females is robust to disturbance by developmental stress. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   

19.
Auditory communication in humans and other animals frequently takes place in noisy environments with many co‐occurring signallers. Receivers are thus challenged to rapidly recognize salient auditory signals and filter out irrelevant sounds. Most bird species produce a variety of complex vocalizations that function to communicate with other members of their own species and behavioural evidence broadly supports preferences for conspecific over heterospecific sounds (auditory species recognition). However, it remains unclear whether such auditory signals are categorically recognized by the sensory and central nervous system. Here, we review 53 published studies that compare avian neural responses between conspecific versus heterospecific vocalizations. Irrespective of the techniques used to characterize neural activity, distinct nuclei of the auditory forebrain are consistently shown to be repeatedly conspecific selective across taxa, even in response to unfamiliar individuals with distinct acoustic properties. Yet, species‐specific neural discrimination is not a stereotyped auditory response, but is modulated according to its salience depending, for example, on ontogenetic exposure to conspecific versus heterospecific stimuli. Neuromodulators, in particular norepinephrine, may mediate species recognition by regulating the accuracy of neuronal coding for salient conspecific stimuli. Our review lends strong support for neural structures that categorically recognize conspecific signals despite the highly variable physical properties of the stimulus. The available data are in support of a ‘perceptual filter’‐based mechanism to determine the saliency of the signal, in that species identity and social experience combine to influence the neural processing of species‐specific auditory stimuli. Finally, we present hypotheses and their testable predictions, to propose next steps in species‐recognition research into the emerging model of the neural conceptual construct in avian auditory recognition.  相似文献   

20.
As cross‐disorder risk gene, CACNA1C is implicated in the etiology of all major neuropsychiatric disorders characterized by deficits in social behavior and communication and there is evidence for sex‐dependent influences of single‐nucleotide polymorphisms within CACNA1C on diagnosis, course, and recovery in humans. In this study, we aimed, therefore, at further exploring the role of Cacna1c in regulating behavioral phenotypes, focusing on sex‐specific differences in social behavior and communication during the critical developmental period of adolescence in rats. Specifically, we compared rough‐and‐tumble play, concomitant emission of pro‐social 50‐kHz ultrasonic vocalizations, and social approach behavior in response to playback of 50‐kHz ultrasonic vocalizations between constitutive heterozygous Cacna1c +/? females and wildtype Cacna1c +/+ littermate controls, and contrasted present female findings to data previously reported in males. Our results show for the first time that partial depletion of Cacna1c leads to sex‐dependent alterations in social behavior and communication in rats. In females, Cacna1c haploinsufficiency led to hypermasculinization, with rough‐and‐tumble play behavior, in general, and pinning behavior, in particular, being even higher than in males without affecting concomitant 50‐kHz ultrasonic vocalizations. In males, in contrast, rough‐and‐tumble play behavior was not altered, yet emission of 50‐kHz ultrasonic vocalizations was diminished following partial Cacna1c depletion. The behavioral responses elicited by playback of 50‐kHz ultrasonic vocalizations were reduced upon partial Cacna1c depletion in both sexes. It thus can be concluded that Cacna1c plays a prominent sex‐dependent role in regulating juvenile rat social play behavior and pro‐social 50‐kHz ultrasonic communication with relevance to sex‐specific effects seen in neuropsychiatric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号