首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary DNA repair and recombination were investigated in a recD mutant of Escherichia coli which lacked the nuclease activity of the RecBCD enzyme. The resistance of this mutant to ultraviolet (UV) light was shown to be a function of recJ. A recD recJ double mutant was found to be more sensitive to UV radiation than a recB mutant, whereas recD and recJ single mutants were resistant. Recombination in conjugational crosses with Hfr donors was also reduced in recD recJ strains, but the effect was modest in comparison with the sensitivity to UV. Within certain limits, mutations in recF, recN, recO, lexA and ruv did not affect sensitivity to UV and recombination in a recD mutant any more than in a recD + strain. The possibility that recD and recJ provide overlapping activities, either of which can promote DNA repair and recombination in the absence of the other, is discussed.  相似文献   

2.
Wang Z  Xiang L  Shao J  Wegrzyn G 《Plasmid》2007,57(3):265-274
ColE1 plasmid copy number was analyzed in relaxed (relA) and stringent (relA(+)) Escherichia coli cells after supplementation of culture media with adenosine monophosphate (AMP). When a relaxed E. coli strain bearing ColE1 plasmid was cultured in LB medium for 18 h and induced with AMP for 4h, the plasmid DNA yield was significantly increased, from 2.6 to 16.4 mgl(-1). However no AMP-induced amplification of ColE1 plasmid DNA was observed in the stringent host. Some plasmid amplification was observed in relA mutant cultures in the presence of adenosine, while adenine, ADP, ATP, ribose, potassium pyrophosphate and sodium phosphate caused a minor, if any, increase in ColE1 copy number. A mechanism for amplification of ColE1 plasmid DNA with AMP in relA mutant bacteria is suggested, in which AMP interferes with the aminoacylation of tRNAs, increases the abundance of uncharged tRNAs, and uncharged tRNAs promote plasmid DNA replication. According to this proposal, in relA(+) cells, the AMP induction could not increase ColE1 plasmid copy number because of lower abundance of uncharged tRNAs. Our results suggest that the induction with AMP can be used as an effective method of amplification of ColE1 plasmid DNA in relaxed strains of E. coli.  相似文献   

3.
Summary A system for detecting a spontaneous deletion in Escherichia coli was developed and the role of DNA gyrase in deletion formation was studied. A derivative of plac5, AM36, was isolated in which whole pBR322 DNA was inserted in the lacZ gene and 227 by of the lac gene duplicated at both sides of the pBR322 DNA. E. coli lac strains lysogenized by AM36 had a Lac phenotype and segregated Lac revertants. Sequence analyses showed that the revertant was formed by a deletion that eliminated the inserted pBR322 DNA and one copy of the duplicated segments. The frequency of lac revertant formation was independent of recA function, was increased by oxolinic acid, an inhibitor of DNA gyrase, but was not increased in a lysogen of a nalidixic acid-resistant derivative. The reversion frequencies of temperature sensitive mutants of gyrA gene are 10 to 100 times lower than that of the wild-type strain. These results indicate that the DNA gyrase of E. coli participated in the in vivo deletion formation resulting from the direct repeats.  相似文献   

4.
Summary We determined the effect of various Bacillus subtilis dna(Ts) mutations on pUB110 and chromosomal replication. Leading strand DNA synthesis of pUB110, starting by a nick at the plasmid replication origin (oriU), is performed by DNA polymerase III, since replication is blocked at non-permissive temperature in thermosensitive mutants dnaD, dnaF, dnaH and dnaN known to cause thermosensitivity of the various subunits of DNA polymerase III. When the lagging strand origin (oriL) is exposed, the DnaG protein (DNA primase) alone, or in association with unknown protein(s) binds asymmetrically to oriL to form a primer that is also extended by DNA polymerase III. In oriL - plasmids like pBT32, leading and lagging strand DNA syntheses are decoupled from each other. The DnaB protein, that is not required for pUB110 replication, may be associated with priming at a second unidentified lagging strand origin on pBT32. At non-permissive temperature, the dnaC30 and dnaI2 mutations affect both pUB110 and chromosomal DNA synthesis.  相似文献   

5.
Summary Escherichia coli rnh mutants deficient in ribonuclease H (RNase H) are capable of DNA replication in the absence of protein synthesis. This constitutive stable DNA replication (SDR) is dependent upon the recA + gene product. The requirement of SDR for recA + can be suppressed by rin mutations (for recA+-independent), or by lexA(Def) mutations which inactivate the LexA repressor. Thus, there are at least three genetically distinct types of SDR in rnh mutants: recA +-dependent SDR seen in rnh - rin+ lexA+ strains, recA +-independent in rnh - rin- lexA+, and recA +-independent in rnh - rin+ lexA(Def). The expression of SDR in rin - and lexA(Def) mutants demonstrated a requirement for RNA synthesis and for the absence of RNase H. The suppression of the recA + requirement by rin mutations was shown to depend on some new function of the recF + gene product. In contrast, the suppression by lexA-(Def) mutations was not dependent on recF +. The lexA3 mutation inhibited recA +-dependent SDR via reducing the amount of recA + activity available, and was suppressed by the recAo254 mutation. The SDR in rnh - rin- cells was also inhibited by the lexA3 mutation, but the inhibition was not reversed by the recAo254 mutation, indicating a requirement for some other lexA +-regulated gene product in the recA +-independent SDR process. A model is presented for the regulation of the expression of these three types of SDR by the products of the lexA +, rin+ and recF + genes.  相似文献   

6.
The replication of the 11 kb conjugative multicopy Streptomyces plasmid pSN22 was analyzed. Mutation and complementation analyses indicated that the minimal region essential for plasmid replication was located on a 1.9 kb fragment of pSN22, containing a trans-acting element encoding a replication protein and a cis-acting sequence acting as a replication origin. Southern hybridization showed that minimal replicon plasmids accumulated much more single-stranded plasmid molecules than did wild-type pSN22. Only one strand was accumulated. A 500 by fragment from the pSN22 transfer region was identified which reduced the relative amount of single-stranded DNA, when added in the native orientation to minimal replicon plasmids. This 500 by DNA sequence may be an origin for second-strand synthesis. It had no effect on the efficiency of co-transformation, plasmid incompatibility, or stability. The results indicate that pSN22 replicates via single-stranded intermediates by a rolling circle mechanism.  相似文献   

7.
Summary Conjugational recombination in Escherichia coli was investigated by monitoring synthesis of the lacZ + product, -galactosidase, in crosses between lacZ mutants. We report here that mutation of recB and any combination of recF, recJ, or recO reduces enzyme production by a factor of between 10- and 25-fold whereas mutation of only one of these genes or any combination of recF, recJ, or recO has no more than a 2-fold effect. Mutation of recN has no effect either alone or in combination with the other mutations. We suggest that the products of recF, recJ, and recO may provide an efficient alternative to the RecBCD enzyme for the initiation of recombination in conjugational crosses but that RecBCD activity is needed in this case to produce a viable recombinant product.  相似文献   

8.
Using pBR322- and pUC-derived plasmid vectors, a homologous (Escherichia coli native esterase) and three heterologous proteins (human interleukin-2, human interleukin-6, and Zymomonas levansucrase) were synthesized in E. coli IC2015(recA::lacZ) and GY4786 (sfiA::lacZ) strains. Via time-course measurement of beta-galactosidase activity in each recombinant culture, the SOS induction was estimated in detail and the results were systematically compared. In recombinant E. coli, the SOS response did not happen either with the recombinant insert-negative plasmid backbone alone or the expression vectors containing the homologous gene. Irrespective of gene expression level and toxic activity of synthesized foreign proteins, the SOS response was induced only when the heterologous genes were expressed using a particular plasmid vector, indicating strong dependence on the recombinant gene clone and the selection of a plasmid vector system. It is suggested that in recombinant E. coli the SOS response (i.e., activation of recA expression and initial sfiA expression) may be related neither to metabolic burden nor toxic cellular event(s) by synthesized heterologous protein, but may be provoked by foreign gene-specific interaction between a foreign gene and a plasmid vector. Unlike in E. coli XL1-blue(recA(-)) strains used, all expression vectors encoding each of the three heterologous proteins were multimerized in E. coli IC2015 strains in the course of cultivation, whereas the expression vectors containing the homologous gene never formed the plasmid multimers. The extent of multimerization was also dependent on a foreign gene insert in the expression vector. As a dominant effect of the SOS induction, recombinant plasmid vectors used for heterologous protein expression appear to significantly form various multimers in the recA(+) E. coli host.  相似文献   

9.
Summary Plasmid pTSO118 containing the Escherichia coli origin of replication, oriC, initiated replication simultaneously with the chromosome when temperature-sensitive host cells were synchronized by temperature shifts. Replicating intermediates of the plasmid as well as of the chromosome were isolated from the outer membrane fraction of the cell. Plasmid DNA with eye structures was enriched when cytosine-1--arabinofuranoside was introduced into the culture during replication. Electron microscopy of the replicating molecules, after digestion with restriction endonucleases, showed that the replication fork proceeds exclusively counter-clockwise towards the unc operon. We conclude that the replication of the oriC plasmid is unidirectional or, if bidirectional, is highly asymmetric.  相似文献   

10.
11.
Escherichia coli minichromosomes are plasmids replicating exclusively from a cloned copy of oriC, the chromosomal origin of replication. They are therefore subject to the same types of replication control as imposed on the chromosome. Unlike natural plasmid replicons, minichromosomes do not adjust their replication rate to the cellular copy number and they do not contain information for active partitioning at cell division. Analysis of mutant strains where minichromosomes cannot be established suggest that their mere existence is dependent on the factors that ensure timely once per cell cycle initiation of replication. These observations indicate that replication initiation in E. coli is normally controlled in such a way that all copies of oriC contained within the cell, chromosomal and minichromosomal, are initiated within a fairly short time interval of the cell cycle. Furthermore, both replication and segregation of the bacterial chromosome seem to be controlled by sequences outside the origin itself.  相似文献   

12.
Summary We show that a DNA fragment that contains the uvp1 gene of the plasmid pR directs the synthesis in Escherichia coli minicells of a protein of apparent molecular weight 20 kDa. Inspection of the nucleotide sequence of the region reveals an open reading frame that has the capacity to encode a protein of 198 amino acids. The uvp1 gene product has been found, in two different systems, to enhance the recombination activity of E. coli cells. We have also observed a striking similarity to resolvase and invertase proteins. The significance of this finding for the function of the uvp1 gene product requires further investigation. We conclude that the uvp1 gene encodes a 20 kDa protein which appears to be responsible for enhancement of both UV survival and recominational activity in E. coli.  相似文献   

13.
Four classes of Escherichia coli mutants deficient in either or both of their anaerobic selenium-containing formate dehydrogenases (FDH) were isolated. A class I mutant devoid of FDHH activity specifically linked to benzyl viologen (BV) produced a small amount of the FDHH 80,000 dalton selenopeptide. Three class II mutants were deficient in FDHN activity specifically linked to phenazine methosulfate (PMS) and exhibited a selenopeptide doublet rather than the FDHN 110,000 dalton selenosubunit. Three class III mutants were selenium incorporation deficient and did not exhibit either FDH activity or 75Selabeled selenopolymers. A class IV mutant was devoid of PMS-linked FDHN activity; neither its FDHN 110,000 dalton selenosubunit nor its BV-linked FDHH activity was fully regulated by nitrate.Abbreviations FDH formate dehydrogenase - BV benzyl viologen - MV methyl viologen - PMS phenazine methosulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

14.
15.
Summary Temperature-sensitive mutants that filamented at the non-permissive temperature were isolated by specific mutagenesis of the terminus region of the Escherichia coli chromosome. Two of them, mapping at about 35 min, failed to divide due to inhibition of DNA replication. Further characterization indicated that these mutants are temperature-sensitive for DNA chain elongation.  相似文献   

16.
Summary Irradiation of Escherichia coli with UV light causes a transient inhibition of DNA replication. This effect is generally thought to be accounted for by blockage of the elongation of DNA replication by UV-induced lesions in the DNA (a cis effect). However, by introducing an unirradiated E. coli origin (oriC)-dependent replicon into UV-irradiated cells, we have been able to show that the environment of a UV-irradiated cell inhibits initiation of replication from oriC on a dimer-free replicon. We therefore conclude that UV-irradiation of E. coli leads to a trans-acting inhibition of initiation of replication. The inhibition is transient and does not appear to be an SOS function.  相似文献   

17.
Song JY  Park SG  Kang HL  Lee WK  Cho MJ  Park JU  Baik SC  Youn HS  Ko GH  Rhee KH 《Plasmid》2003,50(3):236-241
We have analyzed a Helicobacter pylori plasmid, pHP489. The 1222-bp nucleotide sequence had one open reading frame, a DnaA-binding site, one direct repeat, and three inverted repeats. The (G+C) content of pHP489 was 33.3%. Although the nucleic acid sequence and deduced amino acid sequence were homologous to those of other bacterial plasmid Rep proteins, the degree of similarity was very low. A deletion analysis showed that the Rep protein was not required for the replication of pHP489 in its H. pylori host, but the host replication machinery was needed.  相似文献   

18.
Summary A linear DNA plasmid (pSCL) has been isolated from Streptomyces clavuligerus by a method employing high concentrations of protease. Rate-zonal sedimentation on sucrose gradients was used to purify the plasmid. The plasmid is 12 kb in length and appears to be linked to protein at its 5 termini. A restriction endonuclease map of the plasmid for ten enzymes has been determined. Evidence for terminally repeated sequences is provided by cross-hybridization analysis.  相似文献   

19.
Deletion of a region of the promiscuous plasmid pLS1 encompassing the initiation signals for the synthesis of the plasmid lagging strand led to plasmid instability in Streptococcus pneumoniae and Bacillus subtilis. This defect could not be alleviated by increasing the number of copies (measured as double-stranded plasmid DNA) to levels similar to those of the wild-type plasmid pLS1. Our results indicate that in the vicinity of, or associated with the single-stranded origin region of pLS1 there is a plasmid component involved in its stable inheritance. Homology was found between the DNA gyrase binding site within the par region of plasmid pSC101 and the pLS1 specific recombination site RSR.  相似文献   

20.
Summary The lkyB gene of Escherichia coli K12 has been cloned from the Clarke and Carbon colony bank by selecting a ColE1 plasmid conferring cholic acid resistance to lkyB mutants. The lkyB gene was localized on hybrid plasmid pJC778 by analysis of mutated plasmids generated by Tn5 insertions. Restriction analysis and complementation studies indicated that plasmid pJC778 carried genes nadA, lkyB and sucA which mapped at min 16.5; the lkyB + allele was dominant over the lkyB207 mutant allele. Analysis of cell envelope proteins from strains carrying plasmids pJC778 (lkyB +), pJC2578 or pJC2579 (lkyB::Tn5), as well as plasmid-coded proteins in a maxicell system, made it likely that the lkyB gene product was a membrane protein of molecular weight 42,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号