首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of streptokinase (SK) to plasminogen (Pg) conformationally activates the zymogen and converts both Pg and plasmin (Pm) into specific Pg activators. The interaction of SK with Pm and its relationship to the mechanism of Pg activation were evaluated in equilibrium binding studies with active site-labeled fluorescent Pm derivatives and in kinetic studies of SK-induced changes in the catalytic specificity of Pm. SK bound to fluorescein-labeled and native Pm with dissociation constants of 11 +/- 2 pm and 12 +/- 4 pm, which represented a 1,000-10,000-fold higher affinity than determined for Pg. Stoichiometric binding of SK to native Pm was followed by generation of a two-fragment form of SK cleaved at Lys(59) (SK'), which exhibited an indistinguishable affinity for labeled Pm, while a truncated, SK(55-414) species had a 120-360-fold reduced affinity. Binding of SK to native Pm was accompanied by a >50-fold enhancement in specificity for activation of Pg, which was paralleled by a surprising 2.6-10-fold loss of specificity of Pm for 8 of 11 tripeptide-pNA substrates. Further studies with Pm labeled at the active site with 2-anilinonaphthalene-6-sulfonic acid demonstrated directly that binding of SK to Pm resulted in expression of a new substrate binding exosite for Pg on the SK.Pm complex. It is concluded that SK activates Pg in part by preferential binding to the active zymogen conformation. High affinity binding of SK to Pm enhances Pg substrate specificity principally through emergence of a substrate recognition exosite.  相似文献   

2.
Zhai P  Wakeham N  Loy JA  Zhang XC 《Biochemistry》2003,42(1):114-120
The bacterial protein streptokinase (SK) activates human plasminogen (Pg) into the fibrinolytic protease plasmin (Pm). Roughly 40 residues from the SK C-terminal domain are mobile in the crystal structure of SK complexed with the catalytic domain of Pm, and the functions of this C-tail remain elusive. To better define its roles in Pg activation, we constructed and characterized three C-terminal truncation mutants containing SK residues 1-378, 1-386, and 1-401, respectively. They exhibit gradually reduced amidolytic activity and Pg-activator activity, as well as marginally decreased binding affinity toward Pg, as more of the C-terminus is deleted. As compared with full-length SK, the shortest construct, SK(1-378), exhibits an 80% decrease in amidolytic activity (k(cat)/K(M)), an 80% decrease in Pg-activator activity, and a 30% increase in the dissociation constant toward the Pg catalytic domain. The C-terminal truncation mutations did not attenuate the resistance of the SK-Pm complex to alpha(2)-antiplasmin. Attempts at using a purified C-tail peptide to rescue the activity loss of the truncation mutants failed, suggesting that the integrity of the SK C-terminal peptide is important for the full function of SK.  相似文献   

3.
Streptokinase (SK) activates human fibrinolysis by inducing non-proteolytic activation of the serine proteinase zymogen, plasminogen (Pg), in the SK.Pg* catalytic complex. SK.Pg* proteolytically activates Pg to plasmin (Pm). SK-induced Pg activation is enhanced by lysine-binding site (LBS) interactions with kringles on Pg and Pm, as evidenced by inhibition of the reactions by the lysine analogue, 6-aminohexanoic acid. Equilibrium binding analysis and [Lys]Pg activation kinetics with wild-type SK, carboxypeptidase B-treated SK, and a COOH-terminal Lys414 deletion mutant (SKDeltaK414) demonstrated a critical role for Lys414 in the enhancement of [Lys]Pg and [Lys]Pm binding and conformational [Lys]Pg activation. The LBS-independent affinity of SK for [Glu]Pg was unaffected by deletion of Lys414. By contrast, removal of SK Lys414 caused 19- and 14-fold decreases in SK affinity for [Lys]Pg and [Lys]Pm binding in the catalytic mode, respectively. In kinetic studies of the coupled conformational and proteolytic activation of [Lys]Pg, SKDeltaK414 exhibited a corresponding 17-fold affinity decrease for formation of the SKDeltaK414.[Lys]Pg* complex. SKDeltaK414 binding to [Lys]Pg and [Lys]Pm and conformational [Lys]Pg activation were LBS-independent, whereas [Lys]Pg substrate binding and proteolytic [Lys]Pm generation remained LBS-dependent. We conclude that binding of SK Lys414 to [Lys]Pg and [Lys]Pm kringles enhances SK.[Lys]Pg* and SK.[Lys]Pm catalytic complex formation. This interaction is distinct structurally and functionally from LBS-dependent Pg substrate recognition by these complexes.  相似文献   

4.
The role of the streptokinase (SK) alpha-domain in plasminogen (Pg) and plasmin (Pm) interactions was investigated in quantitative binding studies employing active site fluorescein-labeled [Glu]Pg, [Lys]Pg, and [Lys]Pm, and the SK truncation mutants, SK-(55-414), SK-(70-414), and SK-(152-414). Lysine binding site (LBS)-dependent and -independent binding were resolved from the effects of the lysine analog, 6-aminohexanoic acid. The mutants bound indistinguishably, consistent with unfolding of the alpha-domain on deletion of SK-(1-54). The affinity of SK for [Glu]Pg was LBS-independent, and although [Lys]Pg affinity was enhanced 13-fold by LBS interactions, the LBS-independent free energy contributions were indistinguishable. alpha-Domain truncation reduced the affinity of SK for [Glu]Pg 2-7-fold and [Lys]Pg 相似文献   

5.
Dahiya M  Rajamohan G  Dikshit KL 《FEBS letters》2005,579(7):1565-1572
Presence of isolated beta or betagamma domains of streptokinase (SK) increased the catalytic activity of staphylokinase (SAK)-plasmin (Pm) complex up to 60%. In contrast, fusion of SK beta or betagamma domains with the C-terminal end of SAK drastically reduced the catalytic activity of the activator complex. The enhancement effect mediated by beta or betagamma domain on Pg activator activity of SAK-Pm complex was reduced greatly (45%) in the presence of isolated kringles of Pg, whereas, kringles did not change cofactor activity of SAK fusion proteins (carrying beta or betagamma domains) significantly. When catalytic activity of SAK-microPm (catalytic domain of Pm lacking kringle domains) complex was examined in the presence of isolated beta and betagamma domains, no enhancement effect on Pg activation was observed, whereas, enzyme complex formed between microplasmin and SAK fusion proteins (SAKbeta and SAKbetagamma) displayed 50-70% reduction in their catalytic activity. The present study, thus, suggests that the exogenously present beta and betagamma interact with Pg/Pm via kringle domains and elevate catalytic activity of SAK-Pm activator complex resulting in enhanced substrate Pg activation. Fusion of beta or betagamma domains with SAK might alter these intermolecular interactions resulting in attenuated functional activity of SAK.  相似文献   

6.
The mechanism of action of plasminogen (Pg) activators may affect their therapeutic properties in humans. Streptokinase (SK) is a robust Pg activator in physiologic fluids in the absence of fibrin. Deletion of a "catalytic switch" (SK residues 1-59), alters the conformation of the SK alpha domain and converts SKDelta59 into a fibrin-dependent Pg activator through unknown mechanisms. We show that the SK alpha domain binds avidly to the Pg kringle domains that maintain Glu-Pg in a tightly folded conformation. By virtue of deletion of SK residues 1-59, SKDelta59 loses the ability to unfold Glu-Pg during complex formation and becomes incapable of nonproteolytic active site formation. In this manner, SKDelta59 behaves more like staphylokinase than like SK; it requires plasmin to form a functional activator complex, and in this complex SKDelta59 does not protect plasmin from inhibition by alpha(2)-antiplasmin. At the same time, SKDelta59 is unlike staphylokinase or SK and is more like tissue Pg activator, because it is a poor activator of the tightly folded form of Glu-Pg in physiologic solutions. SKDelta59 can only activate Glu-Pg when it was unfolded by fibrin interactions or by Cl(-)-deficient buffers. Taken together, these studies indicate that an intact alpha domain confers on SK the ability to nonproteolytically activate Glu-Pg, to unfold and process Glu-Pg substrate in physiologic solutions, and to alter the substrate-inhibitor interactions of plasmin in the activator complex. The loss of an intact alpha domain makes SKDelta59 activate Pg through classical "fibrin-dependent mechanisms" (akin to both staphylokinase and tissue Pg activator) that include: 1) a marked preference for a fibrin-bound or unfolded Glu-Pg substrate, 2) a requirement for plasmin in the activator complex, and 3) the creation of an activator complex with plasmin that is readily inhibited by alpha(2)-antiplasmin.  相似文献   

7.
Cleavage of Arg(561)-Val(562) in plasminogen (Pg) generates plasmin (Pm) through a classical activation mechanism triggered by an insertion of the new amino terminus into a binding pocket in the Pg catalytic domain. Streptokinase (SK) circumvents this process and activates Pg through a unique nonproteolytic mechanism postulated to be initiated by the intrusion of Ile(1) of SK in place of Val(562). This hypothesis was evaluated in equilibrium binding and kinetic studies of Pg activation with an SK mutant lacking Ile(1) (SK(2--414)). SK(2--414) retained the affinity of native SK for fluorescein-labeled [Lys]Pg and [Lys]Pm but induced no detectable conformational activation of Pg. The activity of SK(2--414) was partially restored by the peptides SK(1--2), SK(1--5), SK(1--10), and SK(1--15), whereas Pg(562--569) peptides were much less effective. Active site-specific fluorescence labeling demonstrated directly that the active catalytic site was formed on the Pg zymogen by the combination of SK(1--10) and SK(2--414), whereas sequence-scrambled SK(1-10) was inactive. The characterization of SK(1--10) containing single Ala substitutions demonstrated the sequence specificity of the interaction. SK(1--10) did not restore activity to the further truncated mutant SK(55-414), which was correlated with the loss of binding affinity of SK(55--414) for labeled [Lys]Pm but not for [Lys]Pg. The studies support a mechanism for conformational activation in which the insertion of Ile(1) of SK into the Pg amino-terminal binding cleft occurs through sequence-specific interactions of the first 10 SK residues. This event and the preferentially higher affinity of SK(2--414) for the activated proteinase domain of Pm are thought to function cooperatively to trigger the conformational change and stabilize the active zymogen conformation.  相似文献   

8.
Our previously hypothesized mechanism for the pathway of plasminogen (Pg) activation by streptokinase (SK) was tested by the use of full time course kinetics. Three discontinuous chromogenic substrate initial rate assays were developed with different quenching conditions that enabled quantitation of the time courses of Pg depletion, plasmin (Pm) formation, transient formation of the conformationally activated SK·Pg* catalytic complex intermediate, formation of the SK·Pm catalytic complex, and the free concentrations of Pg, Pm, and SK. Analysis of full time courses of Pg activation by five concentrations of SK along with activity-based titrations of SK·Pg* and SK·Pm formation yielded rate and dissociation constants within 2-fold of those determined previously by continuous measurement of parabolic chromogenic substrate hydrolysis and fluorescence-based equilibrium binding. The results obtained with orthogonal assays provide independent support for a mechanism in which the conformationally activated SK·Pg* complex catalyzes an initial cycle of Pg proteolytic conversion to Pm that acts as a trigger. Higher affinity binding of the formed Pm to SK outcompetes Pg binding, terminating the trigger cycle and initiating the bullet catalytic cycle by the SK·Pm complex that converts the residual Pg into Pm. The new assays can be adapted to quantitate SK-Pg activation in the context of SK- or Pg-directed inhibitors, effectors, and SK allelic variants. To support this, we show for the first time with an assay specific for SK·Pg* that fibrinogen forms a ternary SK·Pg*·fibrinogen complex, which assembles with 200-fold enhanced SK·Pg* affinity, signaled by a perturbation of the SK·Pg* active site.  相似文献   

9.
Rapid kinetics demonstrate a three-step pathway of streptokinase (SK) binding to plasminogen (Pg), the zymogen of plasmin (Pm). Formation of a fluorescently silent encounter complex is followed by two conformational tightening steps reported by fluorescence quenches. Forward reactions were defined by time courses of biphasic quenching during complex formation between SK or its COOH-terminal Lys414 deletion mutant (SKΔK414) and active site-labeled [Lys]Pg ([5-(acetamido)fluorescein]-d-Phe-Phe-Arg-[Lys]Pg ([5F]FFR-[Lys]Pg)) and by the SK dependences of the quench rates. Active site-blocked Pm rapidly displaced [5F]FFR-[Lys]Pg from the complex. The encounter and final SK·[5F]FFR-[Lys]Pg complexes were weakened similarly by SK Lys414 deletion and blocking of lysine-binding sites (LBSs) on Pg kringles with 6-aminohexanoic acid or benzamidine. Forward and reverse rates for both tightening steps were unaffected by 6-aminohexanoic acid, whereas benzamidine released constraints on the first conformational tightening. This indicated that binding of SK Lys414 to Pg kringle 4 plays a role in recognition of Pg by SK. The substantially lower affinity of the final SK·Pg complex compared with SK·Pm is characterized by a ∼25-fold weaker encounter complex and ∼40-fold faster off-rates for the second conformational step. The results suggest that effective Pg encounter requires SK Lys414 engagement and significant non-LBS interactions with the protease domain, whereas Pm binding additionally requires contributions of other lysines. This difference may be responsible for the lower affinity of the SK·Pg complex and the expression of a weaker “pro”-exosite for binding of a second Pg in the substrate mode compared with SK·Pm.  相似文献   

10.
Streptokinase (SK) binds to plasminogen (Pg) to form a complex that converts substrate Pg to plasmin. Residues 1-59 of SK regulate its capacity to induce an active site in bound Pg by a nonproteolytic mechanism and to activate substrate Pg in a fibrin-independent manner. We analyzed 24 SK mutants to better define the functional properties of SK-(1-59). Mutations within the alphabeta1 strand (residues 17-26) of SK completely prevented nonproteolytic active site induction in bound Pg and rendered SK incapable of protecting plasmin from inhibition by alpha2-antiplasmin. However, when fibrin-bound, the activities of alphabeta1 strand mutants were similar to that of wild-type (WT) SK and resistant to alpha2-antiplasmin. Mutation of Ile1 of SK also prevented nonproteolytic active site induction in bound Pg. However, unlike alphabeta1 strand mutants, the functional defect of Ile1 mutants was not relieved by fibrin, and complexes of Ile1 mutants and plasmin were resistant to alpha2-antiplasmin. Plasmin enhanced the activities of alphabeta1 strand and Ile1 mutants, suggesting that SK-plasmin complexes activated mutant SK.Pg complexes by hydrolyzing the Pg Arg561-Val562 bond. Mutational analysis of Glu39 of SK suggested that a salt bridge between Glu39 and Arg719 of Pg is important, but not essential, for nonproteolytic active site induction in Pg. Deleting residues 1-59 rendered SK dependent on plasmin and fibrin to generate plasminogen activator (PA) activity. However, the PA activity of SK-(60-414) in the presence of fibrin was markedly reduced compared with WT SK. Despite its reduced PA activity, the fibrinolytic potency of SK-(60-414) was greater than that of WT SK at higher (but not lower) SK concentrations due to its capacity to deplete plasma Pg. These studies define mechanisms by which the SK alpha domain regulates rapid active site induction in bound Pg, contributes to the resistance of the SK-plasmin complex to alpha2-antiplasmin, and controls fibrin-independent Pg activation.  相似文献   

11.
Domain interactions between streptokinase and human plasminogen.   总被引:3,自引:0,他引:3  
J A Loy  X Lin  M Schenone  F J Castellino  X C Zhang  J Tang 《Biochemistry》2001,40(48):14686-14695
Plasmin (Pm), the main fibrinolytic protease in the plasma, is derived from its zymogen plasminogen (Plg) by cleavage of a peptide bond at Arg(561)-Val(562). Streptokinase (SK), a widely used thrombolytic agent, is an efficient activator of human Plg. Both are multiple-domain proteins that form a tight 1:1 complex. The Plg moiety gains catalytic activity, without peptide bond cleavage, allowing the complex to activate other Plg molecules to Pm by conventional proteolysis. We report here studies on the interactions between individual domains of the two proteins and their roles in Plg activation. Individually, all three SK domains activated native Plg. While the SK alpha domain was the most active, its activity was uniquely dependent on the presence of Pm. The SK gamma domain also induced the formation of an active site in Plg(R561A), a mutant that resists proteolytic activation. The alpha and gamma domains together yielded synergistic activity, both in Plg activation and in Plg(R561A) active site formation. However, the synergistic activity of the latter was dependent on the correct N-terminal isoleucine in the alpha domain. Binding studies using surface plasmon resonance indicated that all three domains of SK interact with the Plg catalytic domain and that the beta domain additionally interacts with Plg kringle 5. These results suggest mechanistic steps in SK-mediated Plg activation. In the case of free Plg, complex formation is initiated by the rapid and obligatory interaction between the SK beta domain and Plg kringle 5. After binding of all SK domains to the catalytic domain of Plg, the SK alpha and gamma domains cooperatively induce the formation of an active site within the Plg moiety of the activator complex. Substrate Plg is then recognized by the activator complex through interactions predominately mediated by the SK alpha domain.  相似文献   

12.
Streptokinase (SK) activates plasminogen (Pg) by specific binding and nonproteolytic expression of the Pg catalytic site, initiating Pg proteolysis to form the fibrinolytic proteinase, plasmin (Pm). The SK-induced conformational activation mechanism was investigated in quantitative kinetic and equilibrium binding studies. Progress curves of Pg activation by SK monitored by chromogenic substrate hydrolysis were parabolic, with initial rates (v(1)) that indicated no transient species and subsequent rate increases (v(2)). The v(1) dependence on SK concentration for [Glu]Pg and [Lys]Pg was hyperbolic with dissociation constants corresponding to those determined in fluorescence-based binding studies for the native Pg species, identifying v(1) as rapid SK binding and conformational activation. Comparison of [Glu]Pg and [Lys]Pg activation showed an approximately 12-fold higher affinity of SK for [Lys]Pg that was lysine-binding site dependent and no such dependence for [Glu]Pg. Stopped-flow kinetics of SK binding to fluorescently labeled Pg demonstrated at least two fast steps in the conformational activation pathway. Characterization of the specificity of the conformationally activated SK.[Lys]Pg* complex for tripeptide-p-nitroanilide substrates demonstrated 5-18- and 10-130-fold reduced specificity (k(cat)/K(m)) compared with SK.Pm and Pm, respectively, with differences in K(m) and k(cat) dependent on the P1 residue. The results support a kinetic mechanism in which SK binding and reversible conformational activation occur in a rapid equilibrium, multistep process.  相似文献   

13.
Boxrud PD  Bock PE 《Biochemistry》2000,39(45):13974-13981
Binding of streptokinase (SK) to plasminogen (Pg) activates the zymogen conformationally and initiates its conversion into the fibrinolytic proteinase, plasmin (Pm). Equilibrium binding studies of SK interactions with a homologous series of catalytic site-labeled fluorescent Pg and Pm analogues were performed to resolve the contributions of lysine binding site interactions, associated changes between extended and compact conformations of Pg, and activation of the proteinase domain to the affinity for SK. SK bound to fluorescein-labeled [Glu]Pg(1) and [Lys]Pg(1) with dissociation constants of 624 +/- 112 and 38 +/- 5 nM, respectively, whereas labeled [Lys]Pm(1) bound with a 57000-fold tighter dissociation constant of 11 +/- 2 pM. Saturation of lysine binding sites with 6-aminohexanoic acid had no effect on SK binding to labeled [Glu]Pg(1), but weakened binding to labeled [Lys]Pg(1) and [Lys]Pm(1) 31- and 20-fold, respectively. At low Cl(-) concentrations, where [Glu]Pg assumes the extended conformation without occupation of lysine binding sites, a 23-fold increase in the affinity of SK for labeled [Glu]Pg(1) was observed, which was quantitatively accounted for by expression of new lysine binding site interactions. The results support the conclusion that the SK affinity for the fluorescent Pg and Pm analogues is enhanced 13-16-fold by conversion of labeled [Glu]Pg to the extended conformation of the [Lys]Pg derivative as a result of lysine binding site interactions, and is enhanced 3100-3500-fold further by the increased affinity of SK for the activated proteinase domain. The results imply that binding of SK to [Glu]Pg results in transition of [Glu]Pg to an extended conformation in an early event in the SK activation mechanism.  相似文献   

14.
Streptokinase (SK) conformationally activates the central zymogen of the fibrinolytic system, plasminogen (Pg). The SK·Pg* catalytic complex binds Pg as a specific substrate and cleaves it into plasmin (Pm), which binds SK to form the SK·Pm complex that propagates Pm generation. Catalytic complex formation is dependent on lysine-binding site (LBS) interactions between a Pg/Pm kringle and the SK COOH-terminal Lys414. Pg substrate recognition is also LBS-dependent, but the kringle and SK structural element(s) responsible have not been identified. SK mutants lacking Lys414 with Ala substitutions of charged residues in the SK β-domain 250-loop were evaluated in kinetic studies that resolved conformational and proteolytic Pg activation. Activation of [Lys]Pg and mini-Pg (containing only kringle 5 of Pg) by SK with Ala substitutions of Arg253, Lys256, and Lys257 showed decreases in the bimolecular rate constant for Pm generation, with nearly total inhibition for the SK Lys256/Lys257 double mutant. Binding of bovine Pg (BPg) to the SK·Pm complex containing fluorescently labeled Pm demonstrated LBS-dependent assembly of a SK·labeled Pm·BPg ternary complex, whereas BPg did not bind to the complex containing the SK Lys256/Lys257 mutant. BPg was activated by SK·Pm with a Km indistinguishable from the KD for BPg binding to form the ternary complex, whereas the SK Lys256/Lys257 mutant did not support BPg activation. We conclude that SK residues Arg253, Lys256, and Lys257 mediate Pg substrate recognition through kringle 5 of the [Lys]Pg and mini-Pg substrates. A molecular model of the SK·kringle 5 complex identifies the putative interactions involved in LBS-dependent Pg substrate recognition.Streptokinase (SK)6 activates the human fibrinolytic system by activating plasminogen (Pg) through a unique mechanism that is responsible for the use of SK as a thrombolytic drug and its role as a key pathogenicity factor in Group A streptococcal infection (1, 2). The crystal structure of SK bound to the catalytic domain of plasmin (μPm) shows that SK consists of three β-grasp, tightly folded domains, α, β, and γ, linked by flexible segments (3). In solution, SK is highly flexible and behaves hydrodynamically like three beads on a string (4). When bound to μPm, SK assumes a highly ordered structure resembling a three-sided crater surrounding the catalytic site that provides an exosite(s) for binding the catalytic domain of Pg as a substrate (3, 5). In the first step of the SK-mediated Pg activation pathway, SK binds the catalytic domain of the Pg zymogen in a rapid equilibrium process and inserts its NH2-terminal Ile1 residue into the NH2-terminal binding cleft of Pg, activating the catalytic site nonproteolytically (610). Although structural proof is lacking, SK Ile1 presumably forms a critical salt bridge with Asp740(194) (plasminogen numbering; chymotrypsinogen numbering is in parentheses) that initiates conformational activation of the substrate binding site and oxyanion hole required for proteolytic activity (6, 810). The activated SK·Pg* complex binds a second molecule of Pg as a specific substrate and cleaves it at Arg561(15)-Val562(16) to form the fibrin-degrading proteinase, plasmin (Pm) (1014). Proteolytic generation of Pm is propagated by formation of a high affinity SK·Pm complex that converts the remaining free Pg into Pm (5, 11).[Glu]Pg, the full-length form of Pg circulating in blood, consists of an NH2-terminal PAN (Pg/Apple/Nematode (15, 16)) module, followed by five kringle domains (K1–K5), and the trypsin-like serine proteinase catalytic domain (17). Formation of the SK·Pg* and SK·Pm catalytic complexes and Pg substrate binding are inhibited by the lysine analog, 6-aminohexanoic acid (6-AHA), which binds to lysine-binding sites (LBS) located primarily in kringles K1, K4, and K5 of Pg and Pm (10, 11, 1823). Cleavage of the Lys77-Lys78 peptide bond in [Glu]Pg by Pm releases the PAN module and generates the truncated form, [Lys]Pg. Formation of [Lys]Pg is accompanied by a conformational change of [Glu]Pg from a compact, closed α-conformation to a partially extended β-conformation with expression of higher affinity LBS for 6-AHA (24, 25). The fourth kringle module mediates a second conformational change, from the β-conformation to the extended γ-conformation (25).Binding of SK to [Glu]Pg is independent of LBS, with a dissociation constant of 100–150 nm, whereas formation of SK·[Lys]Pg is LBS-dependent with a 13–20-fold higher affinity that is reduced to that of [Glu]Pg by saturating concentrations of 6-AHA (10, 21). Activation of the catalytic domain in [Lys]Pm increases affinity for SK about 830-fold, which is reduced 11–20-fold by 6-AHA (5, 21). Interaction of the COOH-terminal Lys414 residue of SK with a Pg/Pm kringle domain is responsible for the LBS-dependent enhancement of the affinity of SK·[Lys]Pg* and SK·Pm catalytic complex formation (22). Recent rapid reaction kinetic studies of the SK·Pm binding pathway demonstrated that interaction of Lys414 with a Pm kringle enhances formation of an initial rapid equilibrium SK·Pm encounter complex, succeeded by two sequential, tightening conformational changes, to achieve an overall dissociation constant of ∼12 pm (26). The Pg/Pm kringle domain responsible for the enhancement of SK·Pg* and SK·Pm complex formation is not known. Productive interaction of Pg as a substrate of the SK·Pg*/Pm complexes is also greatly inhibited by saturating 6-AHA (11). Kinetic and equilibrium binding studies of SK-mediated Pm formation resolved the conformational activation process from the coupled proteolytic generation of Pm (10, 11). The kinetic approach demonstrated that Lys414 deletion reduced the affinity of formation of the SK·Pg* catalytic complex specifically, whereas the subsequent LBS-dependent proteolytic formation of Pm was unaffected, indicating that Pg substrate recognition is mediated by a structurally distinct region of SK and an unknown kringle (22).Previous structure-function studies have yielded diverse interpretations and conclusions regarding the structural basis of LBS-dependent Pg substrate recognition (23, 2734). Each of the three domains of SK has been implicated in this regard (29, 30, 35, 36), and binding of two Pg molecules to the residue 1–59 sequence of the α-domain has been reported (36). In particular, segments 16–36, 41–48, 48–59, and 88–97 of the SK α-domain have been concluded to play a role in Pg substrate recognition (32, 33, 37, 38). For several SK mutants, a complex mixture of functional effects on their binding to [Glu]Pg and its conformational and proteolytic activation has been reported (28, 31, 33). Some of these effects may result from the inherent flexibility of SK when bound to Pg or Pm (39), and others may be due to the use of kinetic approaches that do not clearly discriminate between conformational and proteolytic activation.Some observations implicate a protruding hairpin loop called the 250-loop (residues Ala251–Ile264) in the SK β-domain in Pg substrate recognition (27, 28, 31, 34). This loop is disordered in the structure of the SK·μPm complex but is ordered in the structure of the isolated β-domain (3, 40). Deletion of the 250-loop, Ala substitution of Lys256 and Lys257 at the apex of the loop, and substitution of multiple residues near and within the loop resulted in disparate effects on Km and kcat for [Glu]Pg activation (27, 28, 31). The conclusions of these studies were that Lys256 and Lys257 are involved in SK binding and conformational activation of [Glu]Pg in addition to proteolytic processing of Pg as a substrate. Some of these studies are problematic because the natural NH2-terminal Ile1 residue necessary for conformational activation is preceded either by an additional methionine (27, 31) or maltose-binding protein (28) in the recombinant SK species used.Because of the diverse conclusions regarding the functional properties of the 250-loop mutations and the possibility of other potential Pg substrate binding sites, the present studies were undertaken to resolve the function of residues in the 250-loop in LBS-dependent Pg substrate recognition by the SK·Pg* complex. The kringle domain of Pg involved in Pg substrate recognition has not been clearly identified but has been suggested to be K5 (27) on the basis that the isolated β-domain bound Pg (30) and K5 (29) in an LBS-dependent manner. Given the general specificity of Pg kringles for COOH-terminal Lys residues and zwitterionic ligands, such as 6-AHA, and the internal sequence of the 250-loop, it appeared possible that a pseudolysine motif on SK was involved. In the binding of a 30-residue peptide from plasminogen binding Group A streptococcal M-like protein (PAM), VEK-30, to K2 of Pg, Castellino and co-workers (41, 42) showed by crystallography and mutagenesis that residues with cationic (Arg and His) and anionic side chains (Glu) arranged spatially on a helix constituted a pseudolysine structure similar to 6-AHA that binds specifically to the LBS of K2. Additional evidence for pseudolysine structures in Pg binding comes from studies of α-enolase from Streptococcus pneumoniae, which has a 9-residue internal binding site for Pg containing essential basic (two Lys residues) and acidic (Asp and Glu residues) located on a surface loop (43, 44).To determine whether a similar SK structure is involved in [Lys]Pg substrate recognition, anionic and cationic residues in the 250-loop were substituted with Ala and characterized in kinetic studies using methods that resolve conformational and proteolytic activation. Studies with [Lys]Pg and mini-Pg, which contains only K5 and the catalytic domain, showed that Arg253, Lys256, and Lys257 facilitate LBS-dependent substrate recognition through interactions with K5. The absence of evidence for a pseudolysine structure in the 250-loop is compatible with the established atypical specificity of K5 for cationic ligands, such as benzamidine, Nα-acetyl-Lys-methyl ester, 6-aminohexane, and 5-aminopentane, in addition to zwitterionic ligands (19, 4547). The studies resolve for the first time the structural features of SK that mediate the LBS-dependent interactions that enhance affinity of SK·Pg* and SK·Pm catalytic complex formation and those that facilitate binding of Pg as a substrate of these complexes.  相似文献   

15.
Binding of streptokinase (SK) to plasminogen (Pg) induces conformational activation of the zymogen and initiates its proteolytic conversion to plasmin (Pm). The mechanism of coupling between conformational activation and Pm formation was investigated in kinetic studies. Parabolic time courses of Pg activation by SK monitored by chromogenic substrate hydrolysis had initial rates (v(1)) representing conformational activation and subsequent rates of activity increase (v(2)) corresponding to the rate of Pm generation determined by a specific discontinuous assay. The v(2) dependence on SK concentration for [Lys]Pg showed a maximum rate at a Pg to SK ratio of approximately 2:1, with inhibition at high SK concentrations. [Glu]Pg and [Lys]Pg activation showed similar kinetic behavior but much slower activation of [Glu]Pg, due to an approximately 12-fold lower affinity for SK and an approximately 20-fold lower k(cat)/K(m). Blocking lysine-binding sites on Pg inhibited SK.Pg* cleavage of [Lys]Pg to a rate comparable with that of [Glu]Pg, whereas [Glu]Pg activation was not significantly affected. The results support a kinetic mechanism in which SK activates Pg conformationally by rapid equilibrium formation of the SK.Pg* complex, followed by intermolecular cleavage of Pg to Pm by SK.Pg* and subsequent cleavage of Pg by SK.Pm. A unified model of SK-induced Pg activation suggests that generation of initial Pm by SK.Pg* acts as a self-limiting triggering mechanism to initiate production of one SK equivalent of SK.Pm, which then converts the remaining free Pg to Pm.  相似文献   

16.
We previously demonstrated that streptokinase (SK) can be used to generate active site-labeled fluorescent analogs of plasminogen (Pg) by virtue of its nonproteolytic activation of the zymogen. The method is versatile and allows stoichiometric and active site-specific incorporation of any one of many molecular probes. The limitation of the labeling approach is that it is both time-consuming and low yield. Here we demonstrate an improved method for the preparation of labeled Pg analogs by the use of an engineered SK mutant fusion protein with both COOH- and NH2-terminal His6 tags. The NH2-terminal tag is followed by a tobacco etch virus proteinase cleavage site to ensure that the SK Ile1 residue, essential for conformational activation of Pg, is preserved. The SK COOH-terminal Lys414 residue and residues Arg253–Leu260 in the SK β-domain were deleted to prevent cleavage by plasmin (Pm) and to disable Pg substrate binding to the SK·Pg/Pm catalytic complexes, respectively. Near elimination of Pm generation with the SKΔ(R253–L260)ΔK414–His6 mutant increased the yield of labeled Pg 2.6-fold and reduced the time required more than 2-fold. The versatility of the labeling method was extended to the application of Pg labeled with a near-infrared probe to quantitate Pg receptors on immune cells by flow cytometry.  相似文献   

17.
Ubiquitin-specific protease 8 (USP8) hydrolyzes mono and polyubiquitylated targets such as epidermal growth factor receptors and is involved in clathrin-mediated internalization. In 1182 residues, USP8 contains multiple domains, including coiled-coil, rhodanese, and catalytic domains. We report the first high-resolution crystal structures of these domains and discuss their implications for USP8 function. The amino-terminal domain is a homodimer with a novel fold. It is composed of two five-helix bundles, where the first helices are swapped, and carboxyl-terminal helices are extended in an antiparallel fashion. The structure of the rhodanese domain, determined in complex with the E3 ligase NRDP1, reveals the canonical rhodanese fold but with a distorted primordial active site. The USP8 recognition domain of NRDP1 has a novel protein fold that interacts with a conserved peptide loop of the rhodanese domain. A consensus sequence of this loop is found in other NRDP1 targets, suggesting a common mode of interaction. The structure of the carboxyl-terminal catalytic domain of USP8 exhibits the conserved tripartite architecture but shows unique traits. Notably, the active site, including the ubiquitin binding pocket, is in a closed conformation, incompatible with substrate binding. The presence of a zinc ribbon subdomain near the ubiquitin binding site further suggests a polyubiquitin-specific binding site and a mechanism for substrate induced conformational changes.  相似文献   

18.
Streptococcus equisimilis streptokinase (SK) is a bacterial protein of unknown tertiary structure and domain organization that is used extensively to treat acute myocardial infarction following coronary thrombosis. Six fragments of SK were generated by limited proteolysis with chymotrypsin and purified. NMR and CD experiments have shown that the secondary and tertiary structure present in the native molecule is preserved within all fragments, except the N-terminal fragment SK7. NMR spectra demonstrate the presence in SK of three structurally autonomous domains and a less structured C-terminal "tail." Cleavage within the N-terminal domain generates an N-terminal fragment, SK7, which remains noncovalently associated with the remainder of the molecule; in isolation, SK7 adopts an unfolded conformation. The abilities of these fragments to induce active site formation within human plasminogen upon formation of their heterodimeric complex were assayed. The lowest mass SK fragment exhibiting Plg-dependent activator activity was shown to be SK27 (mass 27,000, residues 147-380), which contains both central and C-terminal domains, although this activity was reduced approximately 6,000-fold relative to that of full-length SK. The activity of a 36,000 mass fragment, SK36 (residues 64-380), which differs from SK27 in possessing a portion of the N-terminal domain, was reduced to 0.1-1.0% of that of SK. Other fragments (masses 7,000, 11,000, 16,000, 17,000, 25,000, and 26,000), representing either single domains or single domains extended by portions of other domains, were inactive. However, SK7 (residues 1-63), at a 100-fold molar excess concentration, greatly potentiated the activities of SK27 and SK36, by up to 50- and > 130-fold, respectively. These findings demonstrate that all of SK's three domains are essential for native-like SK activity. The central and C-terminal domains mediate plasminogen-binding and active site-generating functions, whereas the N-terminal domain mediates an activity-potentiating function.  相似文献   

19.
Antiplasminogen monoclonal antibody IV-1c (IV-1c) binds to Val 709-Gly 718 site of plasminogen (Pg) protease domain, which is far removed from the active site. Pg-IV-1c complex formation induces catalytic activity in proenzymes active site. Influence of IV-1c binding to plasmin (Pm) on Pm catalytic properties has not been investigated yet. Data on catalytic properties of Pm in equimolar Pm-IV-1c complex are presented. It was found that Pm and mini-Pm amidolytic and caseinolytic activity was twice as high as in Pm-IV-1c and mini-Pm-IV-1c complexes. 20 mM 6-AHA and 100 mM arginine did not influence this rise. The increase of amidolytic activity is connected with reduction of K(m) of S 2251 hydrolysis reaction for Pm and mini-Pm from 0.125 and 0.43 to 0.05 and 0.23 mM, correspondingly. Kcat remains almost the same. Fibrinolytic and fibrinogenolytic activity of Pm in Pm-IV-1c complex decreased to 20% of initial value alpha 2-Antiplasmin inhibited Pm activity in complex Pm-IV-1c by 80%. Pm-IV-1c complex did not activate free Pg, but activated equimolar Pg-IV-1c complex. Affinity of IV-1c to Pm and Pg was the same as C50 approximately 1.5 nM. Binding of Pm with IV-1c in a complex: a) leads to increase of Pm active site affinity to LMW substrates; b) causes steric hindrances for fibrin/fibrinogen access to Pm active site; c) proceeds with the same affinity for Pm and Pg, that indicates to invariable Val 709-Gly 718 site conformation after Pg transition in Pm.  相似文献   

20.
Streptokinase may be less effective at saving lives in patients with heart attacks because it explosively generates plasmin in the bloodstream at sites distant from fibrin clots. We hypothesized that this rapid plasmin generation is due to SK's singular capacity to nonproteolytically generate the active protease SK x Pg*, and we examined whether the kringle domains regulate this process. An SK mutant lacking Ile-1 (deltaIle1-SK) does not form SK x Pg*, although it will form complexes with plasmin that can activate plasminogen. When compared to SK, deltaIle1-SK diminished the generation of plasmin in plasma by more than 30-fold, demonstrating that the formation of SK x Pg* plays an important role in SK activity in the blood. The rate of SK x Pg* formation (measured by an active site titrant) was much slower in Glu-Pg, which contains five kringle domains, than in Pg forms containing one kringle (mini-Pg) or no kringles (micro-Pg). In a similar manner, Streptococcus uberis Pg activator (SUPA), an SK-like molecule, generated SUPA x Pg* much slower with bovine Pg than bovine micro-Pg. The velocity of SK x Pg* formation was regulated by agents that influence the conformation of Pg through interactions with the kringle domains. Chloride ions, which maintain the compact Pg conformation, hindered SK x Pg* formation. In contrast, epsilon-aminocaproic acid, fibrin, and fibrinogen, which induce an extended Pg conformation, accelerated the formation of SK x Pg*. In summary, the explosive generation of plasmin in blood or plasma, which diminishes SK's therapeutic effects, is attributable to the formation of SK x Pg*, and this process is governed by kringle domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号