首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autoactivation of the proenzyme form of a subunit of the first component (C1r) was performed in the presence and absence of diisopropyl fluorophosphate (DFP). The time-course of autoactivation of zymogen C1r followed a sigmoidal curve and was accelerated by addition of the enzyme C1r and by increasing the concentration of C1r, suggesting that autoactivation of C1r consists of two intermolecular reactions, i.e. zymogen(C1r)- and enzyme(C1r)-catalyzed reactions. In the presence of 10 mM DFP, the enzyme-catalyzed autoactivation of C1r was completely inhibited, while the zymogen-catalyzed autoactivation still proceeded depending upon C1r concentration. These results suggested that the zymogen-catalyzed autoactivation of C1r is a DFP-insensitive second-order reaction and is mediated by an active site generated in a single chain C1r through a conformational change (Kassahara et al. (1982) FEBS lett. 141, 128-131). Based on these results, a possible reaction process of autoactivation of C1r was proposed, as follows: (formula; see text) where C1r represents a conformational isomer which catalyzes the autoactivation of C1r, and the rate constants, k2 and k3, are of second-order. Utilizing a computer, we simulated the autoactivation of C1r and found the above scheme to be a reasonable model of C1r autoactivation. Evidence which supports the formation of a conformational isomer of C1r, C1r, as an intermediate in its autoactivation was also obtained by a surface radiolabeling method.  相似文献   

2.
Functional model of subcomponent C1 of human complement   总被引:2,自引:0,他引:2  
The domain organization of the zymogen subunits of the first component of human complement C1s, C1r2 and the complex C1s-C1r2-C1s was studied by electron microscopy. In the absence of Ca2+, monomeric C1s was visualized as a dumb-bell-shaped molecule consisting of two globular domains (center-to-center distance 11 nm) connected by a rod. One of the globular domains is assigned to the light chain (B-chain) of the activated molecule, which is homologous to trypsin and other serine proteases. The second globular domain and the rod are assigned to the heavy chain (A-chain) of CIs. The subunit C1r is a stable dimer in the presence or absence of Ca2+. This dimer C1r2 was visualized as composed of two dumb-bells of dimensions similar to those observed for C1s. These are connected near the junctions between the rod and one of the globular domains. This leads to the structure of an asymmetrical X with two inner closely spaced globules (center-to-center distance 7 nm) and two outer globules at a larger distance (14 nm). By comparison with fragment C1rII2, in which part of the A-chain is removed, the inner globular domains were assigned to the catalytic B-chains. This characteristic structure of C1r2 is readily recognized in the central portion of the thread-like 54 nm long C1s-C1r2-C1s complex formed in the presence of Ca2+. By affinity-labeling of C1s with biotin and visualization of avidin-ferritin conjugates in the reconstituted complex, it was demonstrated that C1s forms the outer portion of the complex. A detailed model of C1s-C1r2-C1s is proposed, according to which two C1s monomers bind to the outer globes of C1r2 by contacts between their heavy chains and those of C1r. According to this model the catalytic domains of C1r are located in the center and those of C1s at the very tips of the C1s-C1r2-C1s complex. On the basis of the structure of C1s-C1r2-C1s, we derived a detailed model of the C1 complex (composed of C1q and the tetrameric complex) and we discuss this model with a view to finding a possible activation mechanism of C1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
1. Unreduced human subcomponent C1q was shown by electrophoresis on polyacrylamide gels run in the presence of sodium dodecyl sulphate to be composed of two types of non-covalently linked subunits of apparent mol.wts. 69 000 and 54 000. The ratio of the two subunits was markedly affected by the ionic strength of the applied sample. At a low ionic strength of applied sample, which gave the optimum value for the 54 000-apparent mol.wt. subunit, a ratio of 1.99:1.00 was obtained for the ratio of the 69 000-apparent mol.wt. subunit to the 5400-apparent-mol.wt. subunit. The amount of the 54 000-apparent-mol.wt. subunit detected in the expected position on the gel was found to be inversely proportional to increases in the ionic strength of the applled sample. 2. Human subcomponent C1q on reduction and alkylation, or oxidation, yields equimolar amounts of three chains designated A, B and C [Reid et al. (1972) Biochem. J. 130, 749-763]. The results obtained by Yonemasu & Stroud [(1972) Immunochemistry 9, 545-554], which showed that the 69 000-apparent-mol.wt. subunit was a disulphide-linked dimer of the A and B chains and that the 54 000-apparent-mol.wt. subunit was a disulphide-linked dimer of the C chain, were confirmed. 3. Gel filtration on Sephadex G-200 in 6.0M-guanidinium chloride showed that both types of unreduced subunit were eluted together as a single symmetrical peak of apparent mol.wt. 49 000-50 000 when globular proteins were used as markers. The molecular weights of the oxidized or reduced A, B and C chains have been shown previously to be very similar all being in the range 23 000-24 000 [Reid et al. (1972) Biochem. J. 130, 749-763; Reid (1974) Biochem. J. 141, 189-203]. 4. It is proposed that subcomponent C1q (mol.wt. 410000) is composed of nine non-covalently linked subunits, i.e. six A-B dimers and three C-C dimers. 5. A structure for subcomponent C1q is proposed and is based on the assumption that the collagen-like regions of 78 residues in each of the A, B and C chains are combined to form a triple-helical structure of the same type as is found in collagens.  相似文献   

5.
1. Human C1q, a subcomponent of the first component of complement, contains 67 disaccharides (glucosylgalactose) and 2.4 monosaccharides (galactose) linked to hydroxylysine in one molecule. It was found that 82.6% of the hydroxylsine residues were glycosylated. The suggestion of the possible existence of glucosylgalactosylhydroxylysine reported previously [Yonemasu, Stroud, Niedermeir & Butler (1971) Biochem. Biophys. Res. Commun. 43, 1388--1394] was confirmed. 2. The hydroxylysine-glycosides are not detected in the C-terminal, non-collagen-like, globular regions, but only in the collagen-like regions in the subcomponent C1q molecule. 3. Alpha 1(I) and alpha 2 in pig skin, alpha 1(II) in bovine cartilage and alpha 1(III) in bovine skin collagens contain 2.0, 2.2, 13.2 and 2.0 residues of hydroxylysine-glycosides per molecule, respectively. The percentage of hydroxylysine residues glycosylated in each of these chains is relatively low (on average 38%). 4. Neither the high percentage of hydroxylysine residues glycosylated nor the high values for the ratios of disaccharides to monosaccharides in the subcomponent C1q resembles that in alpha 1(I), alpha 2, alpha 1(II) and alpha 1(III). 5. Similarities between the extent of glycosylation of hydroxylysine residues in collagen-like regions in the subcomponent C1q molecule and that of the collagenous constituents of human glomerular basement membranes, aortic intima, skin A- and B-chains and of bovine anterior lens capsule are discussed.  相似文献   

6.
7.
Models for the structures of subcomponent C1q of first component C1 of human complement and its complex with subunit C1r2C1s2 are compared with experimental neutron-scattering curves. The length of the C1q collagenous arm is closer to 14.5 nm than to 11.5 nm proposed from electron microscopy, and this is consistent with the primary sequence of C1q. The mean C1q base-arm angle is 40-45 degrees and C1q is found to be flexible: the base-arm angle can vary up to 30 degrees from equilibrium at any moment. The complex of C1r2C1s2 and C1q requires a large shape change in C1r2C1s2. Ring-like models for C1r2C1s2 are not as successful at rationalizing the scattering data as are models that involve C1r2C1s2 binding to one side of C1q. Hydrodynamic calculations of the sedimentation coefficients for C1q and C1 are generally consistent with these neutron models.  相似文献   

8.
The catalytic properties of C1r, the protease that mediates activation of the C1 complex of complement, are mediated by its C-terminal region, comprising two complement control protein (CCP) modules followed by a serine protease (SP) domain. Baculovirus-mediated expression was used to produce fragments containing the SP domain and either 2 CCP modules (CCP1/2-SP) or only the second CCP module (CCP2-SP). In each case, the wild-type species and two mutants stabilized in the proenzyme form by mutations at the cleavage site (R446Q) or at the active site serine residue (S637A), were produced. Both wild-type fragments were recovered as two-chain, activated proteases, whereas all mutants retained a single-chain, proenzyme structure, providing the first experimental evidence that C1r activation is an autolytic process. As shown by sedimentation velocity analysis, all CCP1/2-SP fragments were dimers (5.5-5.6 S), and all CCP2-SP fragments were monomers (3.2-3.4 S). Thus, CCP1 is essential to the assembly of the dimer, but formation of a stable dimer is not a prerequisite for self-activation. Activation of the R446Q mutants could be achieved by extrinsic cleavage by thermolysin, which cleaved the CCP2-SP species more efficiently than the CCP1/2-SP species and yielded enzymes with C1s-cleaving activities similar to their active wild-type counterparts. C1r and its activated fragments all cleaved C1s, with relative efficiencies in the order C1r < CCP1/2-SP < CCP2-SP, indicating that CCP1 is not involved in C1s recognition.  相似文献   

9.
G J Arlaud  J Gagnon 《Biochemistry》1983,22(8):1758-1764
The amino acid sequence of human C1-r b chain hs been determined, from sequence analysis performed on fragments obtained by CNBr cleavage, dilute acid hydrolysis, tryptic cleavage of the succinylated protein, and subcleavages by staphylococcal protease. The polypeptide chain contains 242 amino acids (Mr 27 096), and the sequence shows strong homology with other mammalian serine proteases. The histidine, aspartic acid, and serine residues of the active site (His-57, Asp-102, and Ser-195 in bovine chymotrypsinogen) are located at positions 39, 94, and 191, respectively. The chain which lacks the "histidine-loop" disulfide bridge, contains five half-cystine residues, of which four (positions 157-176 and 187-217) are homologous to residues involved in disulfide bonds generally conserved in serine proteases, whereas the half-cystine residue at position 114 is likely to be involved in the single disulfide bridge connecting the catalytic b chain to the n-terminal a chain. Two carbohydrate moieties are attached to the polypeptide chain, both via asparagine residues at positions 51 and 118.  相似文献   

10.
The heptose-less mutant of Escherichia coli, D31m4, bound complement subcomponent C1q and its collagen-like fragments (C1qCLF) with Ka values of 1.4 x 10(8) and 2.0 x 10(8) M-1 respectively. This binding was suppressed by chemical modification of C1q and C1qCLF using diethyl pyrocarbonate (DEPC). To investigate the role of lipopolysaccharides (LPS) in this binding, biosynthetically labelled [14C]LPS were purified from E. coli D31m4 and incorporated into liposomes prepared from phosphatidylcholine (PC) and phosphatidylethanolamine (PE) [PC/PE/LPS, 2:2:1, by wt.]. Binding of C1q or its collagen-like fragments to the liposomes was estimated via a flotation test. These liposomes bound C1q and C1qCLF with Ka values of 8.0 x 10(7) and 2.0 x 10(7) M-1; this binding was totally inhibited after chemical modification of C1q and C1qCLF by DEPC. Liposomes containing LPS purified from the wild-strain E. coli K-12 S also bound C1q and C1qCLF, whereas direct binding of C1q or C1qCLF to the bacteria was negligible. Diamines at concentrations which dissociate C1 into C1q and (C1r, C1s)2, strongly inhibited the interaction of C1q or C1qCLF with LPS. Removal of 3-deoxy-D-manno-octulosonic acid (2-keto-3-deoxyoctonic acid; KDO) from E. coli D31m4 LPS decreases the binding of C1qCLF to the bacteria by 65%. When this purified and modified LPS was incorporated into liposomes, the C1qCLF binding was completely abolished. These results show: (i) the essential role of the collagen-like moiety and probably its histidine residues in the interaction between C1q and the mutant D31m4; (ii) the contribution of LPS, particularly the anionic charges of KDO, to this interaction.  相似文献   

11.
A procedure for preparation of the receptor for complement subcomponent Clq from human tonsil lymphocytes and the monocytic cell line U937 was developed. The procedure is suitable for isolation of several hundred micrograms of the receptor, Clq-R, and has yielded sufficient material for chemical and hydrodynamic characterization. Clq-R from tonsil lymphocytes behaves identically with that from U937 cells. Clq-R has a monomer Mr of 56,000, and is an acidic glycoprotein containing about 17% carbohydrate. The polypeptide chain length is estimated to be 416-448 amino acid residues, with two or three sites for N-linked glycosylation. Detergent-solubilized Clq-R exists as an elongated dimer (f/fo = 1.8), and does not bind a significant weight of detergent. The radioiodinated isolated receptor binds specifically and saturably to solid-phase Clq, but not to collagen, IgG, bovine serum albumin or complement component C3.  相似文献   

12.
Clr was isolated from human serum by DEAE-cellulose column chromatography in the presence of EDTA. The isolated Clr did not hydrolyze N(alpha)-acetyl-L-arginine methyl ester, unless activated by brief treatment with trypsin [EC 3.4.21.4]. On thecolumn, the C1 esterase inhibitor activity was found to coincide with Clr but not C1s (another subcomponent of the first component) C1r was isolated from the euglobulin fraction of human serum by DEAE-cellulose column chromatograph. On Sephadex G-200 column chromatography, Clr was eluted in the void volume, whereas Clr was eluted in a position corresponding to a molecular weight of 140,000-160,000. The results indicated that, on activation, Clr was converted to an enzyme of lower molecular weight...  相似文献   

13.
1. The a- and b-chains of reduced and alkylated human complement subcomponent C1r were separated by high-pressure gel-permeation chromatography and isolated in good yield and in pure form. 2. CNBr cleavage of C1r b-chain yielded eight major peptides, which were purified by gel filtration and high-pressure reversed-phase chromatography. As determined from the sum of their amino acid compositions, these peptides accounted for a minimum molecular weight of 28 000, close to the value 29 100 calculated from the whole b-chain. 3. N-Terminal sequence determinations of C1r b-chain and its CNBr-cleavage peptides allowed the identification of about two-thirds of the amino acids of C1r b-chain. From our results, and on the basis of homology with other serine proteinases, an alignment of the eight CNBr-cleavage peptides from C1r b-chain is proposed. 4. The residues forming the 'charge-relay' system of the active site of serine proteinases (His-57, Asp-102 and Ser-195 in the chymotrypsinogen numbering) are found in the corresponding regions of C1r b-chain, and the amino acid sequence around these residues has been determined. 5. The N-terminal sequence of C1r b-chain has been extended to residue 60 and reveals that C1r b-chain lacks the 'histidine loop', a disulphide bond that is present in all other known serine proteinases.  相似文献   

14.
Photosynthetic membranes contain considerable regions of high surface curvature, notably at their margins, where the average radius of curvature is about 10 nm. The proportion of total membrane lipid in the outer and inner thylakoid margin monolayers is estimated at 21% and 13%, respectively. The major thylakoid lipid, monogalactosyldiacylglycerol, is roughly cone-shaped and will not form complete lamellar bilayer phases, even in combination with other thylakoid lipids. It is proposed that this galactolipid plays a role in: (a) stabilising regions of concave curvature in thylakoids; and (b) packaging hydrophobic proteins in planar bilayer regions by means of inverted micelles. This model predicts substantial asymmetries in the distribution of lipids both across and along the thylakoid bilayer plane.  相似文献   

15.
The esterase activity of the C1r subcomponent of the first component of complement has been investigated. C1r was found to hydrolyze two amino acid methyl esters; N-acetyl-L-arginine methyl ester and N-acetyl-glycyl-L-lysine methyl ester, and two amino acid p-nitrophenyl esters, N-carbobenzyloxy-L-tyrosine-p-nitrophenyl ester and N alpha-carbobenzyloxy-L-lysine-p-nitrophenyl ester. A detailed kinetic analysis of the hydrolysis of N-Z-L-Tyr-ONp by C1r revealed that the enzymatic activity per microgram of protein decreased as the C1r concentration was increased. The loss of activity suggested that above 0.5 micron C1r was undergoing aggregation with a loss of active sites. Similarly, when C1r was titrated with the active site titrant p-nitrophenyl-P'-guanidinobenzoate the number of titratable sites per milligram of protein decreased with increasing protein concentration. The hydrolysis of N-Z-L-Tyr-ONp by C1r was inhibited by several synthetic inhibitors including phenylmethanesulfonylfluoride, p-amidinophenylmethanesulfonylfluoride, diisopropylfluorophosphate, and p-tosyl-L-lysine-chloromethyl ketone. However, the peptide esterase inhibitors Trasylol, hirudin, leupeptin, and C1 esterase inhibitor had no effect on the esterase activity of C1r.  相似文献   

16.
We have investigated the effect of plasma kallikrein digestion upon hydrolytic activities of human C1s. Incubation of C1s (85 kDa) with plasma kallikrein led to progressive cleavages on the heavy chain to yield C1s-K1 (70 kDa) then C1s-K2 (53 kDa). Although these cleavages caused little change in the C2 hydrolytic and esterase activities of C1s, a marked loss in the C4 hydrolytic activity was observed. C1s-K1 and C1s-K2 were purified by DE-52 chromatography and it was found that the proteolysis of C1s into C1s-K1 was accompanied with a decrease in the C4 hydrolytic activity. Although the turnover numbers for the hydrolysis of C4 by C1s-K1 and C1s-K2 were almost the same as that of intact C1s, the Kms for C4 of C1s-K1 and C1s-K2 were found to be increased to 10 times that of intact C1s. This result suggests that the apparent decrease in the C4 hydrolytic activity upon plasma kallikrein digestion of C1s is not due to disruption in the active site but is due to decrease in the affinity between C4 and the C1s derivatives. In support of this assumption, C1s-K1 was found to be devoid of the ability to bind C4b-Sepharose. C1s is capable of forming a dimer through the C1s-binding domain in the N-terminal side of the heavy chain. Although C1s-K1 is still capable of forming a dimer, C1s-K2 fails to form a dimer, suggesting that the N-terminal C1s-binding site is released during cleavage of C1s-K1 into C1s-K2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The rotational dynamics of rabbit immunoglobulin G (IgG) anti-dansyl antibodies bound to the C1q subcomponent of human complement were studied by nanosecond fluorescence spectroscopy. Deconvoluted anisotropy decays of IgG-C1q mixtures were fitted to a two-exponential expression and were corrected for the effects of unbound IgG, which was determined with an analytical ultracentrifuge. Compared with the anisotropy parameters for free IgG, the pre-exponential weighting factors and the short correlation time of the C1q-bound antibody were nearly unchanged, and the long correlation time increased by only about 45 nanoseconds. These results, together with rotational diffusion calculations, indicate that the Fab arms of the C1q-bound antibody exhibited considerable flexibility. This finding may have biological relevance because it suggests that C1q can bind to the Fc segments of IgG molecules anchored in an immune complex, even though the angles between the two Fab arms of the different antibodies may vary. The results of this study also support our earlier interpretation that both the short and long correlation times of IgG principally represent flexible motions of the Fab segments.  相似文献   

18.
The in vitro experiments on human plasma have shown that C1q addition in a concentration of 120 micrograms/ml led to a substantial shortening of coagulation time of test-plasma, as well as kaolin- and cephalin time. The effect is preserved in plasma deficient in factors V, X and VII. It is assumed that C1q has properties similar to those of thromboplastin.  相似文献   

19.
In contrast to the human serum protein which is approximately one-half erythro-beta-hydroxyasparagine at asparagine 134 [Theilens et al. (1990) Biochemistry 29, 3570-3578], recombinant C1s expressed by insect cells after infection with recombinant baculovirus entirely lacks posttranslational modification at asparagine 134. It is also incompletely glycosylated, lacking, at least, sialic acid. Site-directed mutagenesis of one of the two sites of carbohydrate attachment (Asn 159 to Gln 159) yields a faster migrating recombinant C1s still abundantly secreted. Furthermore, the mutated protein displays good hemolytic activity when reassembled with C1q and either human serum or recombinant C1r, demonstrating that these posttranslational modifications are not critical for any of the multiple interactions between C1s and C1q, C1r, C2, and C4 required for reassembly of the C1 complex, activation, and initiation of the classical complement pathway. The 4.0S recombinant C1s dimerizes to yield 5.6S C1s2 in the presence of Ca2+ and forms the 9.1S C1s-C1r-C1r-C1s tetramer upon the addition of human serum C1r and the 15.6S C1 complex upon the addition of C1q to the tetramer. The recombinant C1s and human serum C1s have identical N-terminal amino acid sequences, indicating proper recognition by the insect signal peptidase. The recombinant C1s is secreted and isolated as the unactivated zymogen, and it may be activated by human serum C1r which cleaves at Arg422-Ile423 to yield the characteristic heavy and light chains. A very tight complex is formed between C1-inhibitor and the light chain of recombinant C1s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Fluorescence polarization techniques were used to study the rotational dynamics of the C1q subcomponent of human complement. C1q was covalently labeled with dansyl (DNS) chloride. Digestion of either C1q-DNS4.0 or C1q-DNS1.8 conjugates with pepsin showed that about 75% of the DNS probes were attached to the C1q globular heads and that the remainder were on the collagen-like stalk (peptic fragment). C1q-DNS conjugates readily agglutinated IgG-coated latex beads and combined with C1r2C1s2 to form hemolytically active 16 S C1-DNS. Both C1q-DNS and C1-DNS samples displayed steady-state rotational correlation time and fluorescence lifetime transitions near 48 degrees C. Hydrodynamic studies showed that C1q formed soluble aggregates near the transition temperature. In contrast, stalk samples with a DNS probe apparently attached to the large central fibril showed no thermal transitions or aggregation even when heated above 50 degrees C. Nanosecond fluorescence depolarization measurements detected restricted flexible motions of the C1q heads with an associated rotational correlation time, phi s, of about 25 ns. The C1q anisotropy decay was dominated, however, by a long component, phi L, of perhaps 1000 ns. Except for probe wiggle, the stalk-DNS anisotropy profile was essentially flat. The rapid rotations associated with phi s could represent restricted twisting motions of the arm-head segments or wobbling motions of the heads themselves. Such motions may facilitate binding of the C1q heads to immune complexes. Straightforward diffusion calculations indicated that phi L could represent either global tumbling of the entire C1q molecule or wagging motions of the individual arm-head segments, as suggested by electron micrographs. Upon binding of the C1q heads to an activator, some of the C1q segments may be held in a slightly more open or more closed conformation, which in turn may trigger activation of the C1 proenzymes. In conclusion, we suggest a plausible triggering mechanism for C1 activation that is compatible with the flexible properties of its subcomponents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号