首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant genetic resources often constitute the foundation of successful breeding programs. Pepper (Capsicum annuum L.) is one of the most economically important and diversely utilized Solanaceous crop species worldwide, but less studied compared to tomato and potato. We developed and used molecular markers based on two copia-type retrotransposons, Tnt1 and T135, in a set of Capsicum species and wild relatives from diverse geographical origins. Results showed that Tnt1 and T135 insertion polymorphisms are very useful for studying genetic diversity and relationships within and among pepper species. Clusters of accessions correspond to cultivar types based on fruit shape, pungency, geographic origin and pedigree. Genetic diversity values, normally reflective of past transposition activity and population dynamics, showed positive correlation with the average number of insertions per accession. Similar evolutionary relationships are observed to that inferred by previous karyosystematics studies. These observations support the possibility that retrotransposons have contributed to genome inflation during Capsicum evolution.  相似文献   

2.
Transposable elements can generate considerable genetic diversity. Here we examine the distribution of the Tnt1 retrotransposon family in representative species of the genus Nicotiana . We show that multiple Tnt1 insertions are found in all Nicotiana species. However, Tnt1 insertions are too polymorphic to reveal species relationships. This indicates that Tnt1 has amplified rapidly and independently after Nicotiana speciation. We compare patterns of Tnt1 insertion in allotetraploid tobacco ( N. tabacum ) with those in the diploid species that are most closely related to the progenitors of tobacco, N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). We found no evidence for Tnt1 insertion sites of N. otophora origin in tobacco. Nicotiana sylvestris has a higher Tnt1 content than N. tomentosiformis and the elements are distributed more uniformly across the genome. This is reflected in tobacco where there is a higher Tnt1 content in S-genome chromosomes. However, the total Tnt1 content of tobacco is not the sum of the two modern-day parental species. We also observed tobacco-specific Tnt1 insertions and an absence of tobacco Tnt1 insertion sites in the diploid relatives. These data indicate Tnt1 evolution subsequent to allopolyploidy. We explore the possibility that fast evolution of Tnt1 is associated with 'genomic-shock' arising out of interspecific hybridization and allopolyploidy.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 639–649.  相似文献   

3.
Distribution dynamics of the Tnt1 retrotransposon in tobacco   总被引:1,自引:0,他引:1  
Retrotransposons contribute significantly to the size, organization and genetic diversity of plant genomes. Although many retrotransposon families have been reported in plants, to this day, the tobacco Tnt1 retrotransposon remains one of the few elements for which active transposition has been shown. Demonstration that Tnt1 activation can be induced by stress has lent support to the hypothesis that, under adverse conditions, transposition can be an important source of genetic variability. Here, we compared the insertion site preference of a collection of newly transposed and pre-existing Tnt1 copies identified in plants regenerated from protoplasts or tissue culture. We find that newly transposed Tnt1 copies are targeted within or close to host gene coding sequences and that the distribution of pre-existing insertions does not vary significantly from this trend. Therefore, in spite of their potential to disrupt neighboring genes, insertions within or near CDS are not preferentially removed with age. Elimination of Tnt1 insertions within or near coding sequences may be relaxed due to the polyploid nature of the tobacco genome. Tnt1 insertions within or near CDS are thus better tolerated and can putatively contribute to the diversification of tobacco gene function. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
6.
The tobacco (Nicotiana tabacum) element Tnt1 is one of the few identified active retrotransposons in plants. These elements possess unique properties that make them ideal genetic tools for gene tagging. Here, we demonstrate the feasibility of gene tagging using the retrotransposon Tnt1 in lettuce (Lactuca sativa), which is the largest genome tested for retrotransposon mutagenesis so far. Of 10 different transgenic bushes carrying a complete Tnt1 containing T-DNA, eight contained multiple transposed copies of Tnt1. The number of transposed copies of the element per plant was particularly high, the smallest number being 28. Tnt1 transposition in lettuce can be induced by a very simple in vitro culture protocol. Tnt1 insertions were stable in the progeny of the primary transformants and could be segregated genetically. Characterization of the sequences flanking some insertion sites revealed that Tnt1 often inserted into genes. The progeny of some primary transformants showed phenotypic alterations due to recessive mutations. One of these mutations was due to Tnt1 insertion in the gibberellin 3beta-hydroxylase gene. Taken together, these results indicate that Tnt1 is a powerful tool for insertion mutagenesis especially in plants with a large genome.  相似文献   

7.
The wild nightshades Solanum lycopersicoides and Solanum sitiens are closely affiliated with the tomatoes (Lycopersicon spp.). Intergeneric hybridization with cultivated tomato (Lycopersicon esculentum) is impeded by strong reproductive barriers including hybrid sterility and suppressed recombination. Conservation of genome structure between these nightshades and tomato was studied by construction of a genetic map from F2 S. sitiens x S. lycopersicoides and comparison with existing maps of tomato. Owing to self-incompatibility of the F1, two hybrid plants were crossed to obtain a population of 82 F2 individuals. Using 166 previously mapped RFLP markers and 5 restriction enzymes, 101 loci polymorphic in the S. sitiens x S. lycopersicoides population were identified. Analysis of linkage between the markers resulted in a map with 12 linkage groups covering 1192 cM and one unlinked marker. Recombination rates were similar to those observed in tomato; however, significant segregation distortion was observed for markers on 7 out of the 12 chromosomes. All chromosomes were colinear with the tomato map, except for chromosome 10, where a paracentric inversion on the long arm was detected. In this region, S. sitiens and S. lycopersicoides share the same chromosomal configuration previously reported for potato (S. tuberosum) and pepper (Capsicum), suggesting that of tomato is derived. The 10L inversion explains the lack of recombination detected among homeologous chromosomes of intergeneric hybrids in this region. On this basis, we recognize two principle genomes, designated L for the Lycopersicon spp., and S for S. lycopersicoides and S. sitiens, the first examples of structural differentiation between tomato and its cross-compatible wild relatives.  相似文献   

8.
Medicago truncatula is a fast-emerging model for the study of legume functional biology. We used the tobacco retrotransposon Tnt1 to tag the Medicago genome and generated over 7600 independent lines representing an estimated 190 000 insertion events. Tnt1 inserted on average at 25 different locations per genome during tissue culture, and insertions were stable during subsequent generations in soil. Analysis of 2461 Tnt1 flanking sequence tags (FSTs) revealed that Tnt1 appears to prefer gene-rich regions. The proportion of Tnt1 insertion in coding sequences was 34.1%, compared to the expected 15.9% if random insertions were to occur. However, Tnt1 showed neither unique target site specificity nor strong insertion hot spots, although some genes were more frequently tagged than others. Forward-genetic screening of 3237 R1 lines resulted in identification of visible mutant phenotypes in approximately 30% of the regenerated lines. Tagging efficiency appears to be high, as all of the 20 mutants examined so far were found to be tagged. Taking the properties of Tnt1 into account and assuming 1.7 kb for the average M. truncatula gene size, we estimate that approximately 14 000–16 000 lines would be sufficient for 90% gene tagging coverage in M. truncatula . This is in contrast to more than 500 000 lines required to achieve the same saturation level using T-DNA tagging. Our data demonstrate that Tnt1 is an efficient insertional mutagen in M. truncatula , and could be a primary choice for other plant species with large genomes.  相似文献   

9.
10.
11.
Moyle LC  Graham EB 《Genetics》2005,169(1):355-373
We examined the genetics of hybrid incompatibility between two closely related diploid hermaphroditic plant species. Using a set of near-isogenic lines (NILs) representing 85% of the genome of the wild species Lycopersicon hirsutum (Solanum habrochaites) in the genetic background of the cultivated tomato L. esculentum (S. lycopersicum), we found that hybrid pollen and seed infertility are each based on 5-11 QTL that individually reduce hybrid fitness by 36-90%. Seed infertility QTL act additively or recessively, consistent with findings in other systems where incompatibility loci have largely been recessive. Genetic lengths of introgressed chromosomal segments explain little of the variation for hybrid incompatibility among NILs, arguing against an infinitesimal model of hybrid incompatibility and reinforcing our inference of a limited number of discrete incompatibility factors between these species. In addition, male (pollen) and other (seed) incompatibility factors are roughly comparable in number. The latter two findings contrast strongly with data from Drosophila where hybrid incompatibility can be highly polygenic and complex, and male sterility evolves substantially faster than female sterility or hybrid inviability. The observed differences between Lycopersicon and Drosophila might be due to differences in sex determination system, reproductive and mating biology, and/or the prevalence of sexual interactions such as sexual selection.  相似文献   

12.
13.
The tobacco element, Tnt1, is one of the few active retrotransposons in plants. Its transposition is activated during protoplast culture in tobacco and tissue culture in the heterologous host Arabidopsis thaliana. Here, we report its transposition in the R108 line of Medicago truncatula during the early steps of the in vitro transformation-regeneration process. Two hundred and twenty-five primary transformants containing Tnt1 were obtained. Among them, 11.2% contained only transposed copies of the element, indicating that Tnt1 transposed very early and efficiently during the in vitro transformation process, possibly even before the T-DNA integration. The average number of insertions per transgenic line was estimated to be about 15. These insertions were stable in the progeny and could be separated by segregation. Inspection of the sequences flanking the insertion sites revealed that Tnt1 had no insertion site specificity and often inserted in genes (one out of three insertions). Thus, our work demonstrates the functioning of an efficient transposable element in leguminous plants. These results indicate that Tnt1 can be used as a powerful tool for insertion mutagenesis in M. truncatula.  相似文献   

14.
Insertion mutant collections are powerful tools for genetic studies in plants. Although large-scale insertional mutagenesis using T-DNA is not feasible in legumes, the Tnt1 tobacco retrotransposon can be used as a very efficient mutagen in the Medicago truncatula R108 genotype. In this article, we show that Tnt1 can also be exploited to create insertional mutants via transformation and/or regeneration in the reference cultivar Jemalong. Tnt1 insertional mutagenesis in Jemalong following Agrobacterium tumefaciens-mediated transformation was found to be very efficient, with an average of greater than 15 insertions/line. In contrast, regeneration using low-copy transgenic starter lines resulted in a highly variable rate of new Tnt1 insertions. With the goal of increasing the number of additional Tnt1 insertions during regeneration of starter lines, we have compared the insertion frequencies for a number of different regeneration protocols. In addition, we have been able to show that sucrose-mediated osmotic shock preceding regeneration significantly increases the transposition frequency. Under optimal conditions, 95% of the regenerated Jemalong plants possess new insertions.  相似文献   

15.
T Areshchenkova  M W Ganal 《Génome》1999,42(3):536-544
Microsatellites as genetic markers are used in many crop plants. Major criteria for their usability as molecular markers include that they are highly polymorphic and evenly spread throughout a genome. In tomato, it has been reported that long arrays of tetranucleotide microsatellites containing the motif GATA are highly clustered around the centromeres of all chromosomes. In this study, we have isolated tomato microsatellites containing long arrays (> 20 repeats) of the dinucleotide motifs GA, GT, AT, as well as GATA, assessed their variability within Lycopersicon esculentum varieties and mapped them onto a genetic map of tomato. The investigated microsatellite markers exhibited between 1 and 5 alleles in a diverse set of L. esculentum lines. Mapping of the microsatellites onto the genetic map of tomato demonstrates that, as previously shown, GATA microsatellites are highly clustered in the regions of the tomato centromeres. Interestingly, the same centromeric location was now found for long dinucleotide microsatellite markers. Because of this uneven distribution, genetic mapping of the entire tomato genome using long dinucleotide microsatellites will be very difficult to achieve and microsatellite markers with shorter arrays of microsatellites could be more suitable for mapping experiments albeit their lower level of polymorphism. Some microsatellite markers described in this study might provide a useful tool to study the molecular structure of tomato centromeric regions and for variety identification.  相似文献   

16.
The level of genetic diversity and genetic structure in the Perigord black truffle (Tuber melanosporum Vittad.) has been debated for several years, mainly due to the lack of appropriate genetic markers. Microsatellites or simple sequence repeats (SSRs) are important for the genome organisation, phenotypic diversity and are one of the most popular molecular markers. In this study, we surveyed the T. melanosporum genome (1) to characterise its SSR pattern; (2) to compare it with SSR patterns found in 48 other fungal and three oomycetes genomes and (3) to identify new polymorphic SSR markers for population genetics. The T. melanosporum genome is rich in SSRs with 22,425 SSRs with mono-nucleotides being the most frequent motifs. SSRs were found in all genomic regions although they are more frequent in non-coding regions (introns and intergenic regions). Sixty out of 135 PCR-amplified mono-, di-, tri-, tetra, penta, and hexa-nucleotides were polymorphic (44%) within black truffle populations and 27 were randomly selected and analysed on 139 T. melanosporum isolates from France, Italy and Spain. The number of alleles varied from 2 to 18 and the expected heterozygosity from 0.124 to 0.815. One hundred and thirty-two different multilocus genotypes out of the 139 T. melanosporum isolates were identified and the genotypic diversity was high (0.999). Polymorphic SSRs were found in UTR regulatory regions of fruiting bodies and ectomycorrhiza regulated genes, suggesting that they may play a role in phenotypic variation. In conclusion, SSRs developed in this study were highly polymorphic and our results showed that T. melanosporum is a species with an important genetic diversity, which is in agreement with its recently uncovered heterothallic mating system.  相似文献   

17.
The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with F(ST) > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species.  相似文献   

18.
19.
20.
The plant group Solanum section Lycopersicon (the clade containing the domesticated tomato and its wild relatives) is ideal for integrating genomic tools and approaches into ecological and evolutionary research. Wild species within Lycopersicon span broad morphological, physiological, life history, mating system, and biochemical variation, and are separated by substantial, but incomplete postmating reproductive barriers, making this an ideal system for genetic analyses of these traits. This ecological and evolutionary diversity is matched by many logistical advantages, including extensive historical occurrence records for all species in the group, publicly available germplasm for hundreds of known wild accessions, demonstrated experimental tractability, and extensive genetic, genomic, and functional tools and information from the tomato research community. Here I introduce the numerous advantages of this system for Ecological and Evolutionary Functional Genomics (EEFG), and outline several ecological and evolutionary phenotypes and questions that can be fruitfully tackled in this system. These include biotic and abiotic adaptation, reproductive trait evolution, and the genetic basis of speciation. With the modest enhancement of some research strengths, this system is poised to join the best of our currently available model EEFG systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号