首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.

Background  

Bcl-2 family proteins are key regulators of mitochondrial integrity and comprise both pro- and anti-apoptotic proteins. Bax a pro-apoptotic member localizes as monomers in the cytosol of healthy cells and accumulates as oligomers in mitochondria of apoptotic cells. The Bcl-2 homology-3 (BH3) domain regulates interactions within the family, but regions other than BH3 are also critical for Bax function. Thus, the N-terminus has been variously implicated in targeting to mitochondria, interactions with BH3-only proteins as well as conformational changes linked to Bax activation. The transmembrane (TM) domains (α5-α6 helices in the core and α9 helix in the C-terminus) in Bax are implicated in localization to mitochondria and triggering cytotoxicity. Here we have investigated N-terminus modulation of TM function in the context of regulation by the anti-apoptotic protein Bcl-xL.  相似文献   

2.
During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.  相似文献   

3.
Bax is a proapoptotic member of the Bcl-2 family of proteins which localizes to and uses mitochondria as its major site of action. Bax normally resides in the cytoplasm and translocates to mitochondria in response to apoptotic stimuli, and it promotes apoptosis in two ways: (i) by disrupting mitochondrial membrane barrier function by formation of ion-permeable pores in mitochondrial membranes and (ii) by binding to antiapoptotic Bcl-2 family proteins via its BH3 domain and inhibiting their functions. A hairpin pair of amphipathic alpha-helices (alpha5-alpha6) in Bax has been predicted to participate in membrane insertion and pore formation by Bax. We mutagenized several charged residues in the alpha5-alpha6 domain of Bax, changing them to alanine. These substitution mutants of Bax constitutively localized to mitochondria and displayed a gain-of-function phenotype when expressed in mammalian cells. Furthermore, substitution of 8 out of 10 charged residues in the alpha5-alpha6 domain of Bax resulted in a loss of cytotoxicity in yeast but a gain-of-function phenotype in mammalian cells. The enhanced function of this Bax mutant was correlated with increased binding to Bcl-X(L), through a BH3-independent mechanism. These observations reveal new functions for the alpha5-alpha6 hairpin loop of Bax: (i) regulation of mitochondrial targeting and (ii) modulation of binding to antiapoptotic Bcl-2 proteins.  相似文献   

4.
Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.  相似文献   

5.
The Bcl-2 homology (BH) 3-only pro-apoptotic Bcl-2 family protein Bim plays an essential role in the mitochondrial pathway of apoptosis through activation of the BH1-3 multidomain protein Bax or Bak. To further understand how the BH3-only protein activates Bax, we provide evidence here that BimEL induces Bax conformational change and apoptosis through a Bcl-XL-suppressible but heterodimerization-independent mechanism. Substitution of the conserved leucine residue in the BH3 domain of BimEL for alanine (M1) inhibits the interaction of BimEL with Bcl-XL but does not abolish the ability of BimEL to induce Bax conformational change and apoptosis. However, removal of the C-terminal hydrophobic region from the M1 mutant (M1DeltaC) abolishes its ability to activate Bax and to induce apoptosis, although deletion of the C-terminal domain (DeltaC) alone has little if any effect on the pro-apoptotic activity of BimEL. Subcellular fractionation experiments show that the Bim mutant M1DeltaC is localized in the cytosol, indicating that both the C-terminal hydrophobic region and the BH3 domain are required for the mitochondrial targeting and pro-apoptotic activity of BimEL. Moreover, the Bcl-XL mutant (mt1), which is unable to interact with Bax and BimEL, blocks Bax conformational change and cytochrome c release induced by BimEL in intact cells and isolated mitochondria. BimEL or Bak-BH3 peptide induces Bax conformational change in vitro only under the presence of mitochondria, and the outer mitochondrial membrane fraction is sufficient for induction of Bax conformational change. Interestingly, native Bax is attached loosely on the surface of isolated mitochondria, which undergoes conformational change and insertion into mitochondrial membrane upon stimulation by BimEL, Bak-BH3 peptide, or freeze/thaw damage. Taken together, these findings indicate that BimEL may activate Bax by damaging the mitochondrial membrane structure directly, in addition to its binding and antagonizing Bcl-2/Bcl-XL function.  相似文献   

6.
BNIP3 (formerly NIP3) is a pro-apoptotic, mitochondrial protein classified in the Bcl-2 family based on limited sequence homology to the Bcl-2 homology 3 (BH3) domain and COOH-terminal transmembrane (TM) domain. BNIP3 expressed in yeast and mammalian cells interacts with survival promoting proteins Bcl-2, Bcl-X(L), and CED-9. Typically, the BH3 domain of pro-apoptotic Bcl-2 homologues mediates Bcl-2/Bcl-X(L) heterodimerization and confers pro-apoptotic activity. Deletion mapping of BNIP3 excluded its BH3-like domain and identified the NH(2) terminus (residues 1-49) and TM domain as critical for Bcl-2 heterodimerization, and either region was sufficient for Bcl-X(L) interaction. Additionally, the removal of the BH3-like domain in BNIP3 did not diminish its killing activity. The TM domain of BNIP3 is critical for homodimerization, pro-apoptotic function, and mitochondrial targeting. Several TM domain mutants were found to disrupt SDS-resistant BNIP3 homodimerization but did not interfere with its killing activity or mitochondrial localization. Substitution of the BNIP3 TM domain with that of cytochrome b(5) directed protein expression to nonmitochondrial sites and still promoted apoptosis and heterodimerization with Bcl-2 and Bcl-X(L). We propose that BNIP3 represents a subfamily of Bcl-2-related proteins that functions without a typical BH3 domain to regulate apoptosis from both mitochondrial and nonmitochondrial sites by selective Bcl-2/Bcl-X(L) interactions.  相似文献   

7.
Mitochondrial outer membrane permeabilization is a watershed event in the process of apoptosis, which is tightly regulated by a series of pro- and anti-apoptotic proteins belonging to the BCL-2 family, each characteristically possessing a BCL-2 homology domain 3 (BH3). Here, we identify a yeast protein (Ybh3p) that interacts with BCL-X(L) and harbours a functional BH3 domain. Upon lethal insult, Ybh3p translocates to mitochondria and triggers BH3 domain-dependent apoptosis. Ybh3p induces cell death and disruption of the mitochondrial transmembrane potential via the mitochondrial phosphate carrier Mir1p. Deletion of Mir1p and depletion of its human orthologue (SLC25A3/PHC) abolish stress-induced mitochondrial targeting of Ybh3p in yeast and that of BAX in human cells, respectively. Yeast cells lacking YBH3 display prolonged chronological and replicative lifespans and resistance to apoptosis induction. Thus, the yeast genome encodes a functional BH3 domain that induces cell death through phylogenetically conserved mechanisms.  相似文献   

8.
Bcl-2 protects cells against mitochondrial oxidative stress and subsequent apoptosis. However, the mechanism underlying the antioxidant function of Bcl-2 is currently unknown. Recently, Bax and several Bcl-2 homology-3 domain (BH3)-only proteins (Bid, Puma, and Noxa) have been shown to induce a pro-oxidant state at mitochondria (1-4). Given the opposing effects of Bcl-2 and Bax/BH3-only proteins on the redox state of mitochondria, we hypothesized that the antioxidant function of Bcl-2 is antagonized by its interaction with the BH3 domains of pro-apoptotic family members. Here, we show that BH3 mimetics that bind to a hydrophobic surface (the BH3 groove) of Bcl-2 induce GSH-sensitive mitochondrial dysfunction and apoptosis in cerebellar granule neurons. BH3 mimetics displace a discrete mitochondrial GSH pool in neurons and suppress GSH transport into isolated rat brain mitochondria. Moreover, BH3 mimetics and the BH3-only protein, Bim, inhibit a novel interaction between Bcl-2 and GSH in vitro. These results suggest that Bcl-2 regulates an essential pool of mitochondrial GSH and that this regulation may depend upon Bcl-2 directly interacting with GSH via the BH3 groove. We conclude that this novel GSH binding property of Bcl-2 likely plays a central role in its antioxidant function at mitochondria.  相似文献   

9.
A hydrophobic cleft formed by the BH1, BH2 and BH3 domains of Bcl-xL is responsible for interactions between Bcl-xL and BH3-containing death agonists. Mutants were constructed which did not bind to Bax but retained anti-apoptotic activity. Since Bcl-xL can form an ion channel in synthetic lipid membranes, the possibility that this property has a role in heterodimerization-independent cell survival was tested by replacing amino acids within the predicted channel-forming domain with the corresponding amino acids from Bax. The resulting chimera showed a reduced ability to adopt an open conductance state over a wide range of membrane potentials. Although this construct retained the ability to heterodimerize with Bax and to inhibit apoptosis, when a mutation was introduced that rendered the chimera incapable of heterodimerization, the resulting protein failed to prevent both apoptosis in mammalian cells and Bax-mediated growth defect in yeast. Similar to mammalian cells undergoing apoptosis, yeast cells expressing Bax exhibited changes in mitochondrial properties that were inhibited by Bcl-xL through heterodimerization-dependent and -independent mechanisms. These data suggest that Bcl-xL regulates cell survival by at least two distinct mechanisms; one is associated with heterodimerization and the other with the ability to form a sustained ion channel.  相似文献   

10.
Cytochrome c release from mitochondria is a key event in apoptosis signaling that is regulated by Bcl-2 family proteins. Cleavage of the BH3-only protein Bid by multiple proteases leads to the formation of truncated Bid (tBid), which, in turn, promotes the oligomerization/insertion of Bax into the mitochondrial outer membrane and the resultant release of proteins residing in the intermembrane space. Bax, a monomeric protein in the cytosol, is targeted by a yet unknown mechanism to the mitochondria. Several hypotheses have been put forward to explain this targeting specificity. Using mitochondria isolated from different mutants of the yeast Saccharomyces cerevisiae and recombinant proteins, we have now investigated components of the mitochondrial outer membrane that might be required for tBid/Bax-induced cytochrome c release. Here, we show that the protein translocase of the outer mitochondrial membrane is required for Bax insertion and cytochrome c release.  相似文献   

11.
Apoptosis is a genetically determined cell suicide program. Mitochondria play a central role in this process and various molecules have been shown to regulate apoptosis in this organelle. In the present study, we firstly identified that protein tyrosine phosphatase interacting protein 51 (PTPIP51) is a novel mitochondrial protein, which may induce apoptosis in HEK293T and HeLa cell lines. PTPIP51 transfection resulted in the externalization of phosphatidylserine (PS), activation of caspase-3, cleavage of PARP, and condensation of nuclear DNA. Further investigation revealed that PTPIP51 over-expression caused a decrease in mitochondrial membrane potential and release of cytochrome c, suggesting that it may be involved in a mitochondria/cytochrome c mediated apoptosis pathway. We also found that a putative TM domain near the N terminus of PTPIP51 is required for its targeting to mitochondria, as evidenced by the finding that deletion of the PTPIP51 TM domain prevented the protein's mitochondiral localization. Furthermore, this deletion significantly influenced the ability of PTPIP51 to induce apoptosis. Taken together, the results of the present study suggest that PTPIP51 is a mitochondrial protein with apoptosis-inducing function and that the N-terminal TM domain is required for both the correct targeting of the protein to mitochondria and its apoptotic functions.  相似文献   

12.
Bax, a proapoptotic member of the Bcl-2 family of proteins, resides in the cytosol and translocates to the mitochondrial membrane upon induction of apoptosis. It has been proposed that Bax does not translocate to mitochondria under normal physiological conditions, due to interaction between amino (ART) and carboxy (TM) terminal domains. Here, we report the physiological consequences of introducing a matrix targeting mitochondrial signal sequence (Su9) at the amino terminus of Bax and its mutants lacking ART, TM, or both segments. In vitro mitochondrial protein import assays of the fusion proteins suggests localization to the mitochondrial matrix. When expressed in Cos-1 cells, Su9 could target Bax to mitochondria in the absence of an apoptotic stimulus. However, mitochondrial localization did not result in apoptosis. When ART, TM, or both segments of Bax were deleted, expression of fusion proteins containing Su9 resulted in apoptosis via cytochrome c release. Cell death was inhibited by the pan-caspase inhibitor zVAD-fmk. We thus demonstrate that an effective mitochondrial matrix targeting signal can override the inhibition of import of Bax to the organelle, presumed to arise as a result of interaction between ART and TM segments, in the absence of apoptotic stimulus. We also demonstrate the ability of truncated variants of Bax to cause apoptosis when targeted to mitochondria by cytochrome c release from an ectopic environment.  相似文献   

13.

Background

The pro-apoptotic effector Bid induces mitochondrial apoptosis in synergy with Bax and Bak. In response to death receptors activation, Bid is cleaved by caspase-8 into its active form, tBid (truncated Bid), which then translocates to the mitochondria to trigger cytochrome c release and subsequent apoptosis. Accumulating evidence now indicate that the binding of tBid initiates an ordered sequences of events that prime mitochondria from the action of Bax and Bak: (1) tBid interacts with mitochondria via a specific binding to cardiolipin (CL) and immediately disturbs mitochondrial structure and function idependently of its BH3 domain; (2) Then, tBid activates through its BH3 domain Bax and/or Bak and induces their subsequent oligomerization in mitochondrial membranes. To date, the underlying mechanism responsible for targeting tBid to mitochondria and disrupting mitochondrial bioenergetics has yet be elucidated.

Principal Findings

The present study investigates the mechanism by which tBid interacts with mitochondria issued from mouse hepatocytes and perturbs mitochondrial function. We show here that the helix αH6 is responsible for targeting tBid to mitochondrial CL and disrupting mitochondrial bioenergetics. In particular, αH6 interacts with mitochondria through electrostatic interactions involving the lysines 157 and 158 and induces an inhibition of state-3 respiration and an uncoupling of state-4 respiration. These changes may represent a key event that primes mitochondria for the action of Bax and Bak. In addition, we also demonstrate that tBid required its helix αH6 to efficiently induce cytochrome c release and apoptosis.

Conclusions

Our findings provide new insights into the mechanism of action of tBid, and particularly emphasize the importance of the interaction of the helix αH6 with CL for both mitochondrial targeting and pro-apoptotic activity of tBid. These support the notion that tBid acts as a bifunctional molecule: first, it binds to mitochondrial CL via its helix αH6 and destabilizes mitochondrial structure and function, and then it promotes through its BH3 domain the activation and oligomerization of Bax and/or Bak, leading to cytochrome c release and execution of apoptosis. Our findings also imply an active role of the membrane in modulating the interactions between Bcl-2 proteins that has so far been underestimated.  相似文献   

14.
Bax mediates cytochrome c release and apoptosis during neurodevelopment. Brain mitochondria that were isolated from 8-day, 17-day, and adult rats displayed decreasing levels of mitochondrial Bax. The amount of cytochrome c released from brain mitochondria by a peptide containing the BH3 cell death domain decreased with increasing age. However, approximately 60% of cytochrome c in adult brain mitochondria could be released by the BH3 peptide in the presence of exogenous human recombinant Bax. Mitochondrial Bax was downregulated in PC12S neural cells differentiated with nerve growth factor, and mitochondria isolated from these cells demonstrated decreased sensitivity to BH3-peptide-induced cytochrome c release. These results demonstrate that immature brain mitochondria and mitochondria from undifferentiated neural cells are particularly sensitive to cytochrome c release mediated by endogenous Bax and a BH3 death domain peptide. Postnatal developmental changes in mitochondrial Bax levels may contribute to the increased susceptibility of neurons to pathological apoptosis in immature animals.  相似文献   

15.
Manna SK  Aggarwal BB 《FEBS letters》2000,471(1):113-118
The effect of the expression of murine Bax protein on growth and vitality was examined in Saccharomyces cerevisiae and compared with the effect of Bax in mutant cells lacking functional mitochondria. The cytotoxic effect of Bax on yeast does not require functional oxidative phosphorylation, respiration, or mitochondrial proteins (ADP/ATP carriers) implicated in the formation of the permeability transition pore in mammalian mitochondria. In the wild type S. cerevisiae the expression of Bax does not result in a severe effect on mitochondrial membrane potential and respiration. On the basis of Bax induced differences in the fluorescence of green fluorescent protein fused to mitochondrial proteins, it is proposed that Bax may interfere with one essential cellular process in yeast: the mitochondrial protein import pathway that is specific for the proteins of the mitochondrial carrier family.  相似文献   

16.
Overexpression of the mammalian proapoptotic protein Bax induces cell death in plant and yeast cells. The Bax inihibitor-1 (BI-1) gene rescues yeast and plant from Bax-mediated lethality. Using the Arabidopsis BI-1 (AtBI-1) gene controlled by the GAL1 promoter as a cell death suppressor in yeast, Cdf1 (cell growth defect factor-1) was isolated from Arabidopsis cDNA library. Overexpression of Cdf1 caused cell death in yeast, whereas such an effect was suppressed by co-expression of AtBI-1. The Cdf1 protein fused with a green fluorescent protein was localized in the mitochondria and resulted in the loss of mitochondrial membrane potential in yeast. The Bax-resistant mutant BRM1 demonstrated tolerance against Cdf1-mediated lethality, whereas the Deltaatp4 strain was sensitive to Cdf1. Our results suggest that Cdf1 and Bax cause mitochondria-mediated yeast lethality through partially overlapped pathways.  相似文献   

17.
Bcl-2 homology domain-3 (BH3) peptides are potent cancer therapeutic reagents that target regulators of apoptotic cell death in cancer cells. However, their cytotoxic effects are affected by different expression levels of Bcl-2 family proteins. We recently found that the amphipathic tail-anchoring peptide (ATAP) from Bfl-1, a bifunctional Bcl-2 family member, produced strong pro-apoptotic activity by permeabilizing the mitochondrial outer membrane. Here, we test whether the activity of ATAP requires other cellular factors and whether ATAP has an advantage over the BH3 peptides in targeting cancer cells. Confocal microscopic imaging illustrates specific targeting of ATAP to mitochondria, whereas BH3 peptides show diffuse patterns of cytosolic distribution. Although the pro-apoptotic activities of BH3 peptides are largely inhibited by either overexpression of anti-apoptotic Bcl-2 or Bcl-xL or nullification of pro-apoptotic Bax and Bak in cells, the pro-apoptotic function of ATAP is not affected by these cellular factors. Reconstitution of synthetic ATAP into liposomal membranes results in release of fluorescent molecules of the size of cytochrome c from the liposomes, suggesting that the membrane permeabilizing activity of ATAP does not require additional protein factors. Because ATAP can target to the mitochondrial membrane and its pro-apoptotic activity does not depend on the content of Bcl-2 family proteins, it represents a promising candidate for anti-cancer drugs that can potentially overcome the intrinsic apoptosis-resistant nature of cancer cells.  相似文献   

18.
The pro-apoptotic activity of the Bcl-2 family member Bax has been shown to be facilitated by homodimerization. However, it is unknown whether Bcl-2 or Bcl-x(L) have to homodimerize to protect cells from apoptosis. Here we show by co-immunoprecipitation and FPLC analyses that while Bax multimerizes and forms heterodimers with Bcl-2, there is no evidence for Bcl-2 homodimerization, even in conditions under which Bcl-2 protects cells from apoptosis. Immunofluorescence studies confirmed that Bax can attract active, soluble Bcl-2 to mitochondrial membranes, but that nuclear/ER membrane-bound Bcl-2 was incapable of dislocating soluble Bcl-2. The failure of Bcl-2 to homodimerize is due to structural constraints as versions of Bcl-2 deleted or mutated in the BH1 and BH2 domains effectively dimerized with wild-type Bcl-2 and were dislocated by Bcl-2 inside cells. These data indicate that naturally occurring Bcl-2 does not expose protein domains that mediate homodimerization and therefore most likely acts as a monomer to protect cells from apoptosis.  相似文献   

19.
During apoptotic cell death, Bax and Bak change conformation and homo-oligomerize to permeabilize mitochondria. We recently reported that Bak homodimerizes via an interaction between the BH3 domain and hydrophobic surface groove, that this BH3:groove interaction is symmetric, and that symmetric dimers can be linked via the α6-helices to form the high order oligomers thought responsible for pore formation. We now show that Bax also dimerizes via a BH3:groove interaction after apoptotic signaling in cells and in mitochondrial fractions. BH3:groove dimers of Bax were symmetric as dimers but not higher order oligomers could be linked by cysteine residues placed in both the BH3 and groove. The BH3:groove interaction was evident in the majority of mitochondrial Bax after apoptotic signaling, and correlated strongly with cytochrome c release, supporting its central role in Bax function. A second interface between the Bax α6-helices was implicated by cysteine linkage studies, and could link dimers to higher order oligomers. We also found that a population of Bax:Bak heterodimers generated during apoptosis formed via a BH3:groove interaction, further demonstrating that Bax and Bak oligomerize via similar mechanisms. These findings highlight the importance of BH3:groove interactions in apoptosis regulation by the Bcl-2 protein family.  相似文献   

20.
Tissue transglutaminase is a multifunctional BH3-only protein   总被引:4,自引:0,他引:4  
Tissue transglutaminase (TG2) protein accumulates to high levels in cells during early stages of apoptosis both in vivo and in vitro. The analysis of the TG2 primary sequence showed the presence of an eight amino acid domain, sharing 70% identity with the Bcl-2 family BH3 domain. Cell-permeable peptides, mimicking the domain sequence, were able to induce Bax conformational change and translocation to mitochondria, mitochondrial depolarization, release of cytochrome c, and cell death. Moreover, we found that the TG2-BH3 peptides as well as TG2 itself were able to interact with the pro-apoptotic Bcl-2 family member Bax, but not with anti-apoptotic members Bcl-2 and Bcl-X(L). Mutants in the TG2-BH3 domain failed to sensitize cells toward apoptosis. In TG2-overexpressing cells about half of the protein is localized on the outer mitochondrial membrane where, upon cell death induction, it cross-links many protein substrates including Bax. TG2 is the first member of a new subgroup of multifunctional BH3-only proteins showing a large mass size (80 kDa) and enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号