首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circular dichroism and NMR spectroscopy have been used to determine the structure of the low-density lipoprotein (LDL) receptor-binding peptide, comprising residues 130-152, of the human apolipoprotein E. This peptide has little persistent three-dimensional structure in solution, but when bound to micelles of dodecylphosphocholine (DPC) it adopts a predominantly alpha-helical structure. The three-dimensional structure of the DPC-bound peptide has been determined by using 1H-NMR spectroscopy: the structure derived from NOE-based distance constraints and restrained molecular dynamics is largely helical. The derived phi and psi angle order parameters show that the helical structure is well defined but with some flexibility that causes the structures not to be superimposable over the full peptide length. Deuterium exchange experiments suggest that many peptide amide groups are readily accessible to the solvent, but those associated with hydrophobic residues exchange more slowly, and this helix is thus likely to be positioned on the surface of the DPC micelles. In this conformation the peptide has one hydrophobic face and two that are rich in basic amino acid side chains. The solvent-exposed face of the peptide contains residues previously shown to be involved in binding to the LDL receptor.  相似文献   

2.
The extracellular domains of the thromboxane A2 receptor (TP receptor) were found to be involved in the specific ligand recognition. Determination of the three-dimensional (3D) structure of the extracellular loops would help to explain the mechanism of the ligand binding to its receptor with regard to the tertiary structure. Based on our previous studies on the extracellular loop of the human TP receptor, the synthetic loop peptides, whose termini are constrained to 10 to 14-A separations, are more likely to mimic the native structure of the extracellular loops. In this study, a peptide with the sequence of the third extracellular loop (eLP3, residues 271-289) of the TP receptor was synthesized, and its termini were constrained by the formation of a disulfide bond between the additional homocysteines located at both ends. Fluorescence spectroscopic studies showed that the fluorescence intensity of this constrained loop peptide could be increased by the addition of SQ29,548, a TP receptor antagonist, which indicated the interaction between the peptide and the ligand. The structure of this peptide was then studied by two-dimensional 1H nuclear magnetic resonance (NMR) spectroscopy. 1H NMR assignments of the peptide were obtained and structure constraints were derived from nuclear Overhauser effects and J-coupling constants. The solution structure of the peptide was then calculated based on these constraints. The overall structure shows a beta turn from residues 278 to 281. It also shows a distance of 9.45A between the ends of the N and C termini of the peptide, which agrees with the distance between the two residues at the ends of the transmembrane helices connecting the eLP3 on the TP receptor working model generated using molecular modeling, based on the crystal structure of bovine rhodopsin. These results provide valuable information for the characterization of the complete 3D structure of the extracellular domains of the human TP receptor.  相似文献   

3.
The three-dimensional solution structure is reported for omega-conotoxin GVIA, which is a potent inhibitor of presynaptic calcium channels in vertebrate neuromuscular junctions. Structures were generated by a hybrid distance geometry and restrained molecular dynamics approach using interproton distance, torsion angle, and hydrogen-bonding constraints derived from 1H NMR data. Conformations of GVIA with low constraint violations converged to a common peptide fold. The secondary structure in the peptide is an antiparallel triple-stranded beta-sheet containing a beta-hairpin and three tight turns. The NMR data are consistent with the region of the peptide from residues S9 to C16 being more dynamic than the rest of the peptide. The peptide has an amphiphilic structure with a positively charged hydrophilic side and an opposite side that contains a small hydrophobic region. Residues that are thought to be important in binding and function are located on the hydrophilic face of the peptide.  相似文献   

4.
Gao GH  Liu W  Dai JX  Wang JF  Hu Z  Zhang Y  Wang DC 《Biochemistry》2001,40(37):10973-10978
The three-dimensional solution structure of PAFP-S, an antifungal peptide extracted from the seeds of Phytolacca americana, was determined using 1H NMR spectroscopy. This cationic peptide contains 38 amino acid residues. Its structure was determined from 302 distance restraints and 36 dihedral restraints derived from NOEs and coupling constants. The peptide has six cysteines involved in three disulfide bonds. The previously unassigned parings have now been determined from NMR data. The solution structure of PAFP-S is presented as a set of 20 structures using ab initio dynamic simulated annealing, with an average RMS deviation of 1.68 A for the backbone heavy atoms and 2.19 A for all heavy atoms, respectively. For the well-defined triple-stranded beta-sheet involving residues 8-10, 23-27, and 32-36, the corresponding values were 0.39 and 1.25 A. The global fold involves a cystine-knotted three-stranded antiparallel beta-sheet (residues 8-10, 23-27, 32-36), a flexible loop (residues 14-19), and four beta-reverse turns (residues 4-8, 11-14, 19-22, 28-32). This structure features all the characteristics of the knottin fold. It is the first structural model of an antifungal peptide that adopts a knottin-type structure. PAFP-S has an extended hydrophobic surface comprised of residues Tyr23, Phe25, Ile27, Tyr32, and Val34. The side chains of these residues are well-defined in the NMR structure. Several hydrophilic and positively charged residues (Arg9, Arg38, and Lys36) surround the hydrophobic surface, giving PAFP-S an amphiphilic character which would be the main structural basis of its biological function.  相似文献   

5.
Magainin2 is a 23-residue antibiotic peptide that disrupts the ionic gradient across certain cellmembranes. Two-dimensional 1H NMR spectroscopy was used to investigate the structure ofthe peptide in three of the membrane environments most commonly employed in biophysicalstudies. Sequence-specific resonance assignments were determined for the peptide inperdeuterated dodecylphosphocholine (DPC) and sodium dodecylsulfate micelles andconfirmed for the peptide in 2,2,2-trifluoroethanol solution. The secondary structure is shownto be helical in all of the solvent systems. The NMR data were used as a set of restraints fora simulated annealing protocol that generated a family of three-dimensional structures of thepeptide in DPC micelles, which superimposed best between residues 4 and 20. For theseresidues, the mean pairwise rms difference for the backbone atoms is 0.47 ± 0.10Å from the average structure. The calculated peptide structures appear to be curved,with the bend centered at residues Phe12 and Gly13.  相似文献   

6.
The conformation in solution of porcine brain natriuretic peptide was determined by combined use of NMR spectroscopy and distance geometry. A set of 157 inter-proton-distance constraints was derived from the two-dimensional NOE spectra, and further a set of three hydrogen bond constraints was obtained from analysis of the temperature dependence of labile protons. The five structures with minimal violations were selected after performing distance-geometry calculations starting from 40 random initial conformations. The distance-geometry structures were further refined by the use of restrained energy minimization and restrained molecular dynamics. This structure shows a compact conformation with the carboxy-terminal region, Asn21-Tyr26, folded back to the disulfide-linked loop region, Cys4-Cys20. The characteristics of the conformation determined are as follows: conformations of the three segments interposed by glycine residues, which are Arg7-Ile12, Ser14-Leu18 and Cys20-Arg25, were well defined and the segments Arg7-Ile12 and Cys20-Arg25 are rather close to each other and nearly parallel. The biological significance of these local conformations is discussed on the basis of comparisons with those of atrial natriuretic peptide reported by Kobayashi et al.  相似文献   

7.
NMR studies of lantibiotics. The structure of nisin in aqueous solution.   总被引:8,自引:0,他引:8  
Nisin is a posttranslationally modified protein of 34 amino acids, and is a member of the class of bacteriocidal polypeptides known as lantibiotics, that contain the unusual amino acid lanthionine. Its structure in aqueous solution has been determined on the basis of NMR data, i.e. interproton distance constraints derived from nuclear Overhauser enhancement spectroscopy and torsion angle constraints derived from double-quantum-filtered correlated spectroscopy. Translation of the NMR constraints into a three-dimensional structure was carried out with the distance-geometry program DISMAN, followed by restrained energy minimization using CHARMm. The internal mobility of the peptide chain prohibited the determination of a precise overall folding of the molecule, but parts of the structure could be obtained, albeit sometimes with low resolution. The structure of nisin can best be defined as follows. The outermost N-terminal and C-terminal regions of nisin appear quite flexible, the remainder of the molecule consists of an amphiphilic N-terminal fragment (residues 3-19), joined by a flexible 'hinge' region to a rigid double-ring fragment formed by residues 23-28. The latter fragment has the appearance of a somewhat overwound alpha-helix. It is suggested, by assuming the presence of a (transient) alpha-helical structure in this part of prenisin, that the coupling between residues 23 and 26, as well as between 25 and 28, by thioether bridges, and the inversion of the C alpha chiralities at positions 23 and 25, can be rationalized.  相似文献   

8.
We hereby report on a mutational analysis of a novel natriuretic peptide (PNP), recently isolated by us from the Iranian snake venom. The PNP variant (mutPNP) with four substitutions (G16T, K18S, R21S, G23R) and a disulfide bonded ring shortened by 3 residues. mutPNP peptide was expressed in pET32 and purified by affinity separation on nickel resin followed by RP-HPLC chromatography. The conformation of mutPNP was characterized in solution by 1H nuclear magnetic resonance spectroscopy, where it was found that the 14-residue disulfide bonded ring, like the 17-residue ring in PNP, retains a high degree of conformational flexibility. The conformation of mutPNP bound to NPR-C receptor was predicted by homology protein structure modeling. When injected intravenously into rats, mutPNP, in contrast to PNP had no physiological effect on blood pressure or on diuresis. The loss of physiological activity is explained in terms of the modeled bound conformation and the ensemble of solution conformations obtained using the NMR constraints.  相似文献   

9.
The structure and dynamics of a 37-residue antimicrobial peptide gaegurin 4 (GGN4) isolated from the skin of the native Korean frog, Rana rugosa, was determined in SDS micelles by NMR spectroscopy. The solution structure of the peptide in SDS micelles was determined from 352 NOE-derived distance constraints and 22 backbone torsion angle constraints. Dynamic properties for the amide backbone were characterized by (1)H-(15)N heteronuclear NOE experiments. The structural study revealed two amphipathic helices spanning residues 2-10 and 16-32 and that the helices were connected by a flexible loop. An intraresidue disulfide bridge was formed between residues Cys31 and Cys37 near the C-terminus. The loop region (11-15) connecting the two helices are were slightly more flexible than these helices themselves. From the fact that since there is no contact NOEs between two helices, it is implied that the GGN4 peptide shows an independent motion of both helices which has an angle of about 60 degrees -120 degrees from each other.  相似文献   

10.
Lee DL  Hodges RS 《Biopolymers》2003,71(1):28-48
The cyclic beta-sheet structure possessed by the 10-residue antibiotic peptide gramicidin S was taken as the structural framework for the de novo design of biologically active peptides with membrane-active properties. We have shown from previous studies that gramicidin S is a broad-spectrum antibiotic effective against Gram-positive bacteria, Gram-negative bacteria, and fungi, but is toxic to human red blood cells. We tested the effect of ring size on antimicrobial activity and hemolytic activity on peptides varying from 4 to 16 residues. Interestingly, we were able to dissociate hemolytic activity and antimicrobial activity by increasing the ring size of the peptide to 14 residues (peptide GS14). Furthermore, we increased specificity for microbial membranes while decreasing toxicity to red blood cells by substituting enantiomers (D-amino acids for L-amino acids and vice versa) into the GS14 sequence. The enantiomeric substitutions all disrupted beta-sheet structure in benign medium and decreased peptide amphipathicity. The least amphipathic peptide, produced by substituting a D-Lys at position 4 of GS14 (peptide GS14K4), also had the highest therapeutic index, i.e., highest degree of specificity for microbial cells over human cells. Solution structures of GS14 analogs solved by NMR spectroscopy showed that the D-amino acid side chain was located on the nonpolar face of GS14K4. Another analog, a beta-sheet peptide with reduced amphipathicity (peptide GS14 K3L4), also had a lysine (lysine 3) on the nonpolar face as determined by the NMR structure. Both GS14K4 and GS14 K3L4 had reduced amphipathicity relative to GS14 and much higher therapeutic indices. Finally, the alteration of the nonpolar face hydrophobicity of GS14K4 analogs provided a range of activities and specificities, where the peptides with the intermediate hydrophobicities among the series had the highest therapeutic indices. The optimal peptide hydrophobicities varied depending on the microorganism being tested, with higher hydrophobicity requirements against Gram-positive bacteria and yeast compared with Gram-negative microorganisms. The net result of these studies suggests that it is possible to rationally design a cyclic membrane-active antimicrobial peptide with high specificity towards prokaryotic (bacterial and fungal) membranes and minimal toxicity to eukaryotic (e.g., mammalian) membranes.  相似文献   

11.
The NMR structure of the pheromone Er-2 from the ciliated protozoan Euplotes raikovi has been determined in aqueous solution. The structure of this 40-residue protein was calculated with the distance geometry program DIANA from 621 distance constraints and 89 dihedral angle constraints; the program OPAL was employed for the energy minimization. For a group of 20 conformers used to characterize the solution structure, the average pairwise RMS deviation from the mean structure calculated for the backbone heavy atoms N, C alpha, and C' of residues 3-37 was 0.31 A. The molecular architecture is dominated by an up-down-up bundle of 3 short helices of residues 5-11, 14-20, and 23-33, which is similar to the structures of the homologous pheromones Er-1 and Er-10. Novel structural features include a well-defined N-cap on the first helix, a 1-residue deletion in the second helix resulting in the formation of a 3(10)-helix rather than an alpha-helix as found in Er-1 and Er-10, and the simultaneous presence of 2 different conformations for the C-terminal tetrapeptide segment, i.e., a major conformation with the Leu 39-Pro 40 peptide bond in the trans form and a minor conformation with this peptide bond in the cis form.  相似文献   

12.
The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel.  相似文献   

13.
Paralytic peptide 1 (PP1) from a moth, Manduca sexta, is a 23-residue peptide (Glu-Asn-Phe-Ala-Gly-Gly-Cys-Ala-Thr-Gly-Tyr-Leu-Arg-Thr-Ala-Asp-Gly-Arg -Cys-Lys-Pro-Thr-Phe) that was first found to have paralytic activity when injected into M. sexta larvae. Recent studies demonstrated that PP1 also stimulated the spreading and aggregation of a blood cell type called plasmatocytes and inhibited bleeding from wounds. We determined the solution structure of PP1 by two-dimensional 1H NMR spectroscopy to begin to understand structural-functional relationships of this peptide. PP1 has an ordered structure, which is composed of a short antiparallel beta-sheet at residues Tyr11-Thr14 and Arg18-Pro21, three beta turns at residues Phe3-Gly6, Ala8-Tyr11 and Thr14-Gly17, and a half turn at the carboxyl-terminus (residues Lys20-Phe23). The well-defined secondary and tertiary structure was stabilized by hydrogen bonding and side-chain hydrophobic interactions. In comparison with two related insect peptides, whose structures have been solved recently, the amino-terminal region of PP1 is substantially more ordered. The short antiparallel beta-sheet of PP1 has a folding pattern similar to the carboxyl-terminal subdomain of epidermal growth factor (EGF). Therefore, PP1 may interact with EGF receptor-like molecules to trigger its different biological activities.  相似文献   

14.
The 17-residue peptide FKLGGRDSRSGSPMARR derived from myelin basic protein, containing an epitope encephalitogenic in rhesus monkey, has been studied in aqueous solution by high-resolution one- and two-dimensional carbon and proton nuclear magnetic resonance spectroscopy. The resonances of the spectra from both nuclei were assigned with the aid of two-dimensional correlated spectroscopy, pH and solvent titrations, and one-dimensional spin-decoupling techniques and by comparison of the spectra of the heptadecapeptide with those of a phosphorylated form of the peptide, the pentadecapeptide FKLGGRDSRSGSPMA, and the nonapeptide FKLGGRDSR. Amide proton temperature coefficients, coupling constants, 13C- spin-lattice relaxation times, and nuclear Overhauser effect data suggest the existence of three structured regions comprising residues 3-6, 7-12, and 12-14 in the solution conformations of the encephalitogenic heptadecapeptide.  相似文献   

15.
Daly NL  Hoffmann R  Otvos L  Craik DJ 《Biochemistry》2000,39(30):9039-9046
A series of peptides corresponding to isolated regions of Tau (tau) protein have been synthesized and their conformations determined by (1)H NMR spectroscopy. Immunodominant peptides corresponding to tau(224-240) and a bisphosphorylated derivative in which a single Thr and a single Ser are phosphorylated at positions 231 and 235 respectively, and which are recognized by an Alzheimer's disease-specific monoclonal antibody, were the main focus of the study. The nonphosphorylated peptide adopts essentially a random coil conformation in aqueous solution, but becomes slightly more ordered into beta-type structure as the hydrophobicity of the solvent is increased by adding up to 50% trifluoroethanol (TFE). Similar trends are observed for the bisphosphorylated peptide, with a somewhat stronger tendency to form an extended structure. There is tentative NMR evidence for a small population of species containing a turn at residues 229-231 in the phosphorylated peptide, and this is strongly supported by CD spectroscopy. A proposal that the selection of a bioactive conformation from a disordered solution ensemble may be an important step (in either tubulin binding or in the formation of PHF) is supported by kinetic data on Pro isomerization. A recent study showed that Thr231 phosphorylation affected the rate of prolyl isomerization and abolished tubulin binding. This binding was restored by the action of the prolyl isomerase Pin1. In the current study, we find evidence for the existence of both trans and cis forms of tau peptides in solution but no difference in the equilibrium distribution of cis-trans isomers upon phosphorylation. Increasing hydrophobicity decreases the prevalence of cis forms and increases the major trans conformation of each of the prolines present in these molecules. We also synthesized mutant peptides containing Tyr substitutions preceding the Pro residues and found that phosphorylation of Tyr appears to have an effect on the equilibrium ratio of cis-trans isomerization and decreases the cis content.  相似文献   

16.
The solution conformation of a 21-residue vasoconstrictor peptide endothelin-1 (ET-1) in water-ethylene glycol has been determined by two-dimensional 1H-NMR spectroscopy and constrained molecular dynamics simulations. The N-terminus (residues 1-4) appears to undergo conformational averaging and no single structure consistent with the NMR constraints could be found for this region. Residues 5-8 form a turn, and residues 9-16 exist in a helical conformation. A flexible 'hinge' between residues 8-9 allows various orientations of the turn relative to the helix. Another 'hinge' at residue 17 connects the extended C-terminus to the bicyclic core region (residues 1-15). Residues important for binding and biological activity form a contiguous surface on one side of the helix, with the two disulfides extending from the other side of the helix.  相似文献   

17.
The three-dimensional solution structure of a 51-residue synthetic peptide comprising the dihydrolipoamide dehydrogenase (E3)-binding domain of the dihydrolipoamide succinyltransferase (E2) core of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli has been determined by nuclear magnetic resonance spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure is based on 630 approximate interproton distance and 101 torsion angle (phi, psi, chi 1) restraints. A total of 56 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions for residues 12-48 of the synthetic peptide is 1.24 A for the backbone atoms, 1.68 A for all atoms, and 1.33 A for all atoms excluding the six side chains which are disordered at chi 1 and the seven which are disordered at chi 2; when the irregular partially disordered loop from residues 31 to 39 is excluded, the rms distribution drops to 0.77 A for the backbone atoms, 1.55 A for all atoms, and 0.89 A for ordered side chains. Although proton resonance assignments for the N-terminal 11 residues and the C-terminal 3 residues were obtained, these two segments of the polypeptide are disordered in solution as evidenced by the absence of nonsequential nuclear Overhauser effects. The solution structure of the E3-binding domain consists of two parallel helices (residues 14-23 and 40-48), a short extended strand (24-26), a five-residue helical-like turn, and an irregular (and more disordered) loop (residues 31-39). This report presents the first structure of an E3-binding domain from a 2-oxo acid dehydrogenase complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Schein CH  Oezguen N  Volk DE  Garimella R  Paul A  Braun W 《Peptides》2006,27(7):1676-1684
VPgs are essential for replication of picornaviruses, which cause diseases such as poliomyelitis, foot and mouth disease, and the common cold. VPg in infected cells is covalently linked to the 5' end of the viral RNA, or, in a uridylylated form, free in the cytoplasm. We show here the first solution structure for a picornaviral VPg, that of the 22-residue peptide from poliovirus serotype 1. VPg in buffer is inherently flexible, but a single conformer was obtained by adding trimethylamine N-oxide (TMAO). TMAO had only minor effects on the TOCSY spectrum. However, it increased the amount of structured peptide, as indicated by more peaks in the NOESY spectrum and an up to 300% increase in the ratio of normalized NOE cross peak intensities to that in buffer. The data for VPg in TMAO yielded a well defined structure bundle with 0.6 A RMSD (versus 6.6 A in buffer alone), with 10-30 unambiguous constraints per residue. The structure consists of a large loop region from residues 1 to 14, from which the reactive tyrosinate projects outward, and a C-terminal helix from residues 18 to 21 that aligns the sidechains of conserved residues on one face. The structure has a stable docking position at an area on the poliovirus polymerase crystal structure identified as a VPg binding site by mutagenesis studies. Further, UTP and ATP dock in a base-specific manner to the reactive face of VPg, held in place by residues conserved in all picornavirus VPgs.  相似文献   

19.
Gallidermin: a new lanthionine-containing polypeptide antibiotic   总被引:27,自引:0,他引:27  
Gallidermin is a new member of the class of lanthionine-containing peptide antibiotics, which are summarized under the common name lantibiotics. The lantibiotic gallidermin is produced by Staphylococcus gallinarum (F16/P57) Tü3928, and it exhibits activities against the Propionibacteria, involved in acne disease. Gallidermin differs from the recently discovered tetracyclic 21-residue peptide antibiotic epidermin only in a Leu/Ile exchange in position 6. The isolation procedures for gallidermin included adsorption directly from the culture broth, ion-exchange chromatography of the amphiphilic and basic polypeptide followed by desalting, and final purification by reversed-phase HPLC. The structural elucidation of the polypeptide containing four thioether bridges involved mainly a combination of automated gas-phase sequencing, thermospray liquid chromatography/mass spectrometry and fast-atom-bombardment mass spectrometry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号