首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dextranase Activity in Oerskovia xanthineolytica   总被引:3,自引:2,他引:1  
Two isolates of a nocardioform bacterium capable of producing an extracellular hydrolase for high molecular weight dextran were isolated from soil by selection of active colonies on a blue dextran agar medium. Comparison with the type strains of Oerskovia turbata and O. xanthineolytica showed that these fresh isolates were closely similar to the latter species. Extracellular dextranase activity was not detected in the type strains of Oerskovia spp. or in 78 other Gram positive bacteria representing 58 species and 14 genera.  相似文献   

2.
Summary Two proteases have been purified to a high specific activity from Oerskovia xanthineolytica LL-G109 culture broth. Both showed banding on SDS PAGE corresponding to molecular weights in the range 11,000–23,000. One (protease IIa or III) had a pI of 6.5 while the other (protease IIb) had two components of pI = 7.1 and 7.8.  相似文献   

3.
A new sialidase-producing strain isolated from soil was identified as Oerskovia xanthineolytica YZ-2. Sialidase was produced when Oerskovia xanthineolytica YZ-2 was exposed to polysialogangliosides. The sialidase of Oerskovia xanthineolytica YZ-2 hydrolyzed sialic acid linkages in polysialogangliosides, and released monosialotetrahexosylganglioside (GM1). The sialidase had the capability of product specificity because it did not attack the sialic acid linkage in GM1. Therefore, Oerskovia xanthineolytica YZ-2 was used for GM1 production from polysialogangliosides. In flasks cultivation phase, it was proved that Oerskovia xanthineolytica YZ-2 could convert polysialogangliosides to GM1 efficiently. Scaling-up the bioprocess with 8% crude ganglioside, polysialogangliosides was converted to GM1 by Oerskovia xanthineolytica YZ-2 in 30 L bioreactor after 18 h. The relative content of GM1 increased from 16.3% in crude ganglioside to 83.7% after Oerskovia xanthineolytica YZ-2 conversion. Therefore, a simple, large-scale conversion process for GM1 production from polysialogangliosides was achieved using Oerskovia xanthineolytica YZ-2 as a biocatalyst.  相似文献   

4.
Summary A major lytic -1,3-glucanase with Mr = 31,000 has been purified to homogeneity from Oerskovia xanthineolytica LL-G109. This enzyme had a specific activity of 11.1 U/mg and a pI of 5.0.  相似文献   

5.
Alkaline protease from Oerskovia xanthineolytica TK-1 was purified to an electrophoretically homogeneous state by phenyl-Sepharose CL-4B and DEAE-Sephacel. The molecular mass of the enzyme was 20,000 Da by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 9.5–11.0 and 50°C. It was inhibited by inhibitors of serine protease. The enzyme preferentially hydrolyzed the ester of phenylalanine among N-CBZ amino acid p-nitrophenol esters. These results indicate that the protease can be classified as an alkaline serine protease.  相似文献   

6.
The 8-hydroxy derivative of adenine (6-amino-1,7-dihydro-8H-purin-8-one) is produced from adenine by two Oerskovia xanthineolytica strains. This transformation by a microorganism has not been reported previously. No novel products of dissimilation of xanthine (3,7-dihydro-1H-purine-2,6-dione) or hypoxanthine (1,7-dihydro-6H-purin-6-one) were found. Xanthine was oxidized to uric acid, but intermediates in the breakdown of hypoxanthine could not be demonstrated.  相似文献   

7.
The present study reports the economic production of thermostable chitinase production from Oerskovia xanthineolytica NCIM 2839 by solid-state fermentation (SSF) technique and its application in fungal protoplasts formation. The Oerskovia xanthineolytica NCIM 2839 was found to produce thermostable chitinase 148 U g−1 of solid substrate in SSF using wheat bran with colloidal chitin as base. Protoplasts of A. niger were formed by using crude chitinase produced in SSF and formed protoplasts were confirmed by using scanning electron microscopy. This is the simple and economical method for protoplast formation which makes it possible applications in strain improvement of various fungi by protoplasts fusion in Biotechnological industries.  相似文献   

8.
A 2.7-kilobase fragment of DNA from Oerskovia xanthineolytica containing the gene for a beta-1,3-glucanase has been isolated and its complete nucleotide sequence determined. The sequence was found to contain two large open reading frames. Purification of the mature native enzyme and subsequent amino-terminal sequencing defined the glucanase gene in one reading frame which potentially encodes a protein of 548 amino acids. We have expressed this glucanase gene in Escherichia coli under control of the lacUV5 promoter and found the product to be secreted into the periplasm as a mature enzyme of about the same molecular weight as that of the native protein. The recombinant enzyme was purified to near homogeneity by a single step of high performance liquid chromatography. The ability of the recombinant enzyme to digest beta-glucan substrates and to lyse viable yeast cells was found to be indistinguishable from that of the native protein. Deletion of the cysteine-rich carboxyl-terminal 117 amino acids of the enzyme, which also contain two duplicated segments, abolished the lytic activity but did not significantly affect the glucanase function of the protein. The possible involvement of this domain in interaction with the yeast cell wall is discussed.  相似文献   

9.
Determination of the primary structure of the peptidoglycan of 15 strains of Oerskovia showed that three different peptidoglycan types occur. Oerskovia xanthineolytica strains contain the l-Lys-d-Ser--d-Asp type, whereas Oerskovia turbata strains show the new peptidoglycan types l-Lys-l-Thr--d-Asp or l-Lys-l-Thr--d-Glu, respectively. Research on the cytochromes of Oerskovia revealed the presence of a, b and c types. O. turbata can be clearly distinguished from O. xanthineolytica by the occurrence of cytochrome a 1 in cells, isolated from the stationary phase. The following conclusions were made: O. turbata and O. xanthineolytica can be clearly separated on the basis of different peptidoglycan types and cytochrome patterns. This distinction is in perfect correlation with the classical separation method of O. turbata and O. xanthineolytica on the basis of xanthine degradation. l-Lys-d-Ser--d-Asp peptidoglycan type does not only occur in O. xanthineolytica but also in some coryneform bacteria such as Corynebacterium manihot (Fiedler et al. 1970), Cellulomonas cartae (Stackebrandt et al. 1978; Stackebrandt and Kandler 1980), Brevibacterium fermentans and Nocardia cellulans.This paper is respectively dedicated to Professor Dr. O. Kandler, on the occasion of his 60th birthday  相似文献   

10.
Four kinds of thermostable chitinase were isolated from the cell-free culture broth of Bacillus licheniformis X-7u by successive column chromatographies on Butyl-Toyopearl, Q-Sepharose, and Sephacryl S-200. We named the enzymes chitinases I(89 kDa), II(76 kDa), III(66 kDa) and IV(59 kDa). Chitinases II, III and IV possessed extremely high optimum temperatures (70-80 degrees C), showing remarkable heat stability. Chitinases II, III and IV produced (GlcNAc)2 and GlcNAc from colloidal chitin and chitinase I predominantly produced (GlcNAc)2. The action pattern of chitinase I on PN-(GlcNAc)4 also showed a stronger propensity to cleave off the (GlcNAc)2 unit from the non-reducing end than the other three chitinases. Chitinases II, III and IV catalyzed a transglycosylation reaction that converted (GlcNAc)4 into (GlcNAc)6.  相似文献   

11.
This article describes the synthesis and regulation of beta(1-3)glucanase and protease enzymes from the cell lytic system of Oerskovia xanthineolytica LL-G109 in continuous culture using different concentrations of carbon source (glucose) and inducer (glucan). These two enzyme activities are the main components of a lytic system capable of lysing and disrupting whole yeast cells; it is subject to catabolite repression by glucose and is induced by yeast glucan. Peaks of beta(1-3)glucanase and protease activity are obtained at dilution rates of between 0.05 and 0.15 h(-1). The glucanase-protease ratio is very high compared to other strains. At dilution rates above 0.15 h(-1) all activities are similar to those obtained in batch culture. The lytic enzyme system appears to contain several beta(1-3)glucanase enzymes. In continuous culture both productivity and enzyme concentrations are greatly in creased when compared to batch culture, 11- and 4.4-fold, respectively.  相似文献   

12.
Oerskovia sp. produces inducible extracellular enzymes which degrade the walls of various yeasts. Yeast spheroplasts are formed from both log- and stationary-phase cells.  相似文献   

13.
Degenerate PCR primers corresponding to conserved domains of fungal chitinases were designed, and PCR was performed on genomic DNA of the entomogenous fungus Verticillium lecanii (Zimmermann) Viegas. Two distinct PCR fragments, chf1 and chf2, were isolated and used to identify two DNA contigs. Analyses of these two contigs revealed that we had obtained the full-length DNA sequence including the promoter, 5' untranslated region, open reading frame (ORF), and 3' untranslated regions for two distinct chitinase-like genes. These two genomic DNA sequences exhibited 51% identity at the amino acid (aa) level and were designed as acidic (chi1) and basic (chi2) chitinase-like genes. The isolated cDNA for chi1 gene is 1110 bp with a predicted protein of 370 aa and molecular mass of 40.93 kDa, and its ORF was uninterrupted in its corresponding genomic DNA sequence. The cDNA for the chi2 gene is 1269 bp, a predicted ORF of 423 aa and molecular mass of 45.95 kDa. In contrast, the ORF was interrupted by three introns in its corresponding genomic DNA. The basic chitinase gene (chi2) was successfully expressed in the Pichia pastoris system; optimum enzymatic activity was observed at 22 degrees C and at pH 7.5. CHI1 and CHI2 were clustered into two different phylogenetic groups according to their sequence alignments with 28 other fungal chitinases. A chitin-binding domain, comprising two sub-domains that exhibit similarities at the aa level to chitin binding domains in bacteria, was identified in 30 fungal chitinase sequences examined.  相似文献   

14.
A laccase requiring optimum temperature 60 °C, pH 4.0 for the activity and having apparent molecular weight 43,000 Da was purified from Pseudomonas desmolyticum NCIM 2112 by three steps, including heating, anion exchange, and molecular sieve chromatography. The purification fold and yield of laccase obtained through Biogel P100 were 45.75 and 19%, respectively. Staining of native gel with L-dopa showed dark brown color band indicating the presence of laccase. In relation to hydroquinone, the substrate specificity of laccase was in the following order: DAB > o-tolidine > ABTS > L-dopa. The absence of monophenolase activity in eluted fractions conformed that the purified protein is laccase. This laccase showed substrate dependent optimum pH character. Effect of inhibitor and metal ion on enzyme activity was analyzed. UV–vis analysis showed the decolorization of Direct Blue-6, Green HE4B and Red HE7B in the presence of laccase. The FTIR spectral comparison between the control dye sample and the metabolites extracted after decolorization by purified laccase have confirmed degradation of these dyes. This study contributes for the structural requirement of a dye to be degradable by P. desmolyticum laccase and is important in order to optimize potential bioremediation systems for industrial textile process water treatment.  相似文献   

15.
Two distinct cDNA clones, PcCHI1 and PcCHI2, with high sequence similarity to plant chitinases were isolated from parsley (Petroselinum crispum), expressed in Escherichia coli, and the encoded proteins functionally identified as endochitinases. Different expression patterns of the corresponding mRNAs and proteins in infected and uninfected parsley plants indicated distinct roles of the two isoforms in both pathogen defense and plant development. Infection of parsley leaf buds with Phytophthora sojae resulted in the rapid, transient and highly localized accumulation of PcCHI1 mRNA and protein around infection sites, whereas PcCHI2 mRNA and protein were systemically induced at later infection stages. Similar differences in the timing of induction were observed in elicitor-treated, suspension-cultured parsley cells. In uninfected plants, PcCHI1 mRNA was particularly abundant in the transmitting tract of healthy flowers, suggesting a role in the constitutive protection of susceptible transmitting tissue of the style against pathogen ingress and/or in the fertilization process, possibly by affecting pollen tube growth. Localization of PcCHI2 mRNA and protein in the parenchymatic collenchyme of young pedicels may indicate a function in the constitutive protection of this tissue. In addition to such distinct roles of PcCHI1 and PcCHI2 in preformed and induced pathogen defense, both chitinases may have endogenous regulatory functions in plant development.  相似文献   

16.
The nucleotide sequence of the betaglIIA gene, encoding the extracellular beta-1,3-glucanase IIA (betaglIIA) of the yeast-lytic actinomycete Oerskovia xanthineolytica LL G109, was determined. Sequence comparison shows that the betaglIIA enzyme has over 80% identity to the betaglII isoenzyme, an endo-beta-1,3-glucanase having low yeast-lytic activity secreted by the same bacterium. The betaglIIA enzyme lacks a glucan- or mannan-binding domain, such as those observed in beta-1,3-glucanases and proteases having high yeast/fungus-lytic activity. It can be included in the glycosyl hydrolase family 16. Gene fusion expression in Bacillus subtilis DN1885 followed by preliminary characterization of the recombinant gene product indicates that betaglIIA has a pI of 3.8 to 4.0 and is active on both laminarin and curdlan, having an acid optimum pH activity (ca. 4.0).  相似文献   

17.
Oerskovia sp. CK produced three types of yeast glucan hydrolases, one of them, F-L lysing viable yeast cells had proteolytic activity and considerable difference was observed between lytic and proteolytic activities in thermal stability. F-L was considered to be a single protein from following results. Both activities were influenced in parallel by acid treatment and inhibitors. The reaction rates of two substrates being added to the enzyme system were less than the sum of the rates of reactions measured separately. Both activities were detected in the same fraction by isoelectric focusing.

On the evidence that F-L lost lytic activity by the heat treatment at 60°C for 15 min, we speculated that the enzyme underwent autolysis during heat treatment and binding site for polysaccharide was released, subsequently lost the lytic activity, since active site of F-L remained unaffectedly. These speculations were based on the following results. Difference in specific activity between native and treated F-L was not observed. The specific activity of heat treated F-L purified by gel filtration was 1.6 times more active than that of native F-L. Native F-L had a affinity for dextran but treated F-L lost it. F-L being treated in the presence of DFP was eluted at the same fraction where native F-L was eluted. Based on these results, a model for the yeast cell wall was proposed.  相似文献   

18.
An extracellular lipase from Aspergillus niger NCIM 1207 has been purified to homogeneity using ammonium sulfate precipitation followed by phenyl sepharose and Sephacryl-100 gel chromatography. This protocol resulted in 149 fold purification with 54% final recovery. The purified enzyme showed a prominent single band on SDS-PAGE. The purified enzyme is a monomeric protein of 32.2 kDa molecular weight and exhibits optimal activity at 50 degrees C. One interesting feature of this enzyme is its highly acidic pH optimum. The isoelectric point (pI) of lipase was 8.5. The purified lipase appears to be unique since it cleaved triolein at only 3-position releasing 1,2-diolein. Chemical modification studies revealed that His, Ser, Carboxylate and Trp are involved in catalysis.  相似文献   

19.
Review of fungal chitinases   总被引:15,自引:0,他引:15  
Duo-Chuan L 《Mycopathologia》2006,161(6):345-360
Chitin is the second most abundant organic and renewable source in nature, after cellulose. Chitinases are chitin-degrading enzymes. Chitinases have important biophysiological functions and immense potential applications. In recent years, researches on fungal chitinases have made fast progress, especially in molecular levels. Therefore, the present review will focus on recent advances of fungal chitinases, containing their nomenclature and assays, purification and characterization, molecular cloning and expression, family and structure, regulation, and function and application.  相似文献   

20.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号