首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of cortisol at concentrations above 300 nM selectively inhibited the synthesis of alpha-lactalbumin and the accumulation of its mRNA in the mouse mammary gland cultured in the presence of insulin and prolactin, whereas the same treatment augmented casein synthesis and the accumulation of casein mRNA. Prostaglandin E2 or F2 alpha reversed the inhibitory effects of cortisol in a dose-dependent manner, without affecting casein production. The levels of prostaglandin E2 or F2 alpha in tissue explants cultured with insulin and prolactin increased about 2.6-fold over those in uncultured tissue, and the addition of cortisol decreased these levels approximately 2-fold. These results indicate the ability of prostaglandins to counteract the inhibitory effect of cortisol on the alpha-lactalbumin gene expression in the mouse mammary gland.  相似文献   

2.
The effect of progesterone on the synthesis of milk proteins, casein and alpha-lactalbumin was investigated by culturing mammary explants from mid-pregnant mice in serum-free medium. The addition of progesterone at concentrations above 10 ng/ml inhibited both the casein and alpha-lactalbumin accumulation that were induced by the synergistic actions of insulin, prolactin and cortisol. The maximal inhibition was attained at a progesterone concentration of 100 ng/ml. The maximal level of inhibition of the alpha-lactalbumin accumulation was about 90% in the presence of insulin and prolactin or insulin, prolactin and 0.01 microgram/ml of cortisol. The inhibition of the casein accumulation by progesterone was about 80% in the presence of insulin and prolactin, and about 40% in the presence of insulin, prolactin and 1 microgram/ml of cortisol, indicating that cortisol partially antagonized the action of progesterone on the casein synthesis. When the inhibitory effect of progesterone on the accumulation of both alpha-lactalbumin and casein was examined in cultured mammary tissues from virgin, early pregnant, mid-pregnant and late pregnant mice, the degree of inhibition was markedly reduced in tissue from late pregnant mice. This indicates that the susceptibility of mammary gland to the inhibitory action of progesterone varies with the developmental stage of the tissue.  相似文献   

3.
J W Perry  T Oka 《In vitro》1984,20(1):59-65
The organ culture of the mammary gland of lactating mice was used to examine the response of the differentiated gland to lactogenic stimuli, insulin, cortisol, and prolactin. Time course studies showed that casein synthesis in cultured tissue decreased rapidly during the first 2 d despite the presence of the three hormones, but on the 3rd d tissue cultured with either insulin and prolactin or all three hormones regained the ability to synthesize milk proteins, casein, and alpha-lactalbumin: a greater increase occurred in the three hormone system. The delayed addition of prolactin on Day 2 to the culture system containing insulin and cortisol also stimulated casein synthesis. The addition of cytarabine, which inhibited insulin-dependent cell proliferation in cultured explants, did not block the rebound of milk protein synthesis. These results indicate that in the presence of insulin, cortisol, and prolactin mammary epithelial cells in culture first lose and then regain the ability of synthesizing milk protein without requiring the formation of new daughter cells.  相似文献   

4.
Cortisol 21-mesylate, an alkylating derivatives of cortisol, was previously shown to exert an anti-glucocorticoid action in rat hepatoma cell culture (Simons, Thompson and Johnson 1980). In this study the effect of cortisol 21-mesylate on milk protein synthesis induced in cultured mouse mammary gland by glucocorticoid, insulin, and prolactin was investigated. Addition of cortisol 21-mesylate at concentrations ranging from 10(-8) M to 10(-6) M produced no inhibition of casein synthesis that was induced by glucocorticoid, insulin and prolactin in mammary explants from midpregnant mice. On the other hand, cortisol 21-mesylate in combination with insulin and prolactin stimulated casein synthesis in cultured tissue. The potency of cortisol mesylate was about 1/10 to 1/30th of that of cortisol. Cortisol 21-mesylate, like cortisol, also augmented the accumulation of alpha-lactalbumin in midpregnant rat mammary tissue cultured in the presence of insulin and prolactin. A cell-free competition study of glucocorticoid receptors using cytoplasmic extracts from mouse mammary tissue showed that cortisol 21-mesylate competitively inhibited the binding of dexamethasone on glucocorticoid receptors. The apparent affinity of cortisol 21-mesylate for glucocorticoid receptors is about 1/10th of that of cortisol. These results indicate that cortisol 21-mesylate acts as a glucocorticoid but not as an antiglucocorticoid in the mammary gland.  相似文献   

5.
Casein turnover in rabbit mammary explants in organ culture   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Explants of mammary gland from mid-pregnant rabbits were cultured in medium 199 containing insulin, prolactin and cortisol, and specific anti-casein immunoglobulin G was used to measure the amount, rate of synthesis and rate of degradation of casein in the explants in the presence of hormones and after removal of hormones from previously stimulated tissue. 2. The amount of casein in particle-free supernatants prepared from mammary explants was measured by ;rocket' immunoelectrophoresis. 3. The rate of incorporation of l-[4,5-(3)H]leucine into casein was measured after isolation of the casein by immunoadsorbent chromatography and polyacrylamide-gel electrophoresis in the presence of urea and sodium dodecyl sulphate. 4. Casein accumulates in mammary explants in the presence of insulin, prolactin and cortisol, but not in the absence of hormones. Removal of hormones after 24h in culture results in a decrease in the rate of accumulation of casein in the explants. 5. Casein-synthetic rate increases in mammary explants in the presence of insulin, prolactin and cortisol, but not in the absence of hormones. Removal of hormones after 24h in culture results in continued casein synthesis at approx. 30% of the rate in the presence of hormones. The synthetic rate does not decrease to values observed in explants cultured throughout in the absence of hormones. 6. Casein is not degraded in mammary explants during a phase of rapid casein accumulation (36-72h) in the presence of hormones. Furthermore casein is not degraded when hormones are removed from the tissue after between 36 and 72h in culture. 7. Casein is glycosylated in mammary explants; the extent of glycosylation parallels the rate of synthesis. The glycosylated protein is rapidly secreted from the tissue. 8. The results are consistent with the notion that after hormonal stimulation mammary explants from mid-pregnant rabbits synthesize, glycosylate and rapidly secrete casein. Removal of hormones decreases the synthetic rate of casein, but does not cause the accumulation of a pool of degradable casein in the lobuloalveolar cells.  相似文献   

6.
The addition of 5 micrograms/ml of both insulin and prolactin, 3 microM cortisol and 5% fetal bovine serum stimulated casein synthesis during a 5 day culture of mammary epithelium from lactating mice using a floating collagen gel as a culture substratum. Omission of any of the three hormones or serum decreased casein synthesis substantially. The use of 10% serum or the attached gel culture system also decreased casein synthesis. Cells cultured with the combination of the three hormones and 5% serum contained a low level of casein mRNA on day 2, but it increased to much higher levels on day 4 and 5, amounting to over 30% of total mRNA on day 5. In contrast to casein synthesis, the maximal increase in alpha-lactalbumin synthesis required the presence of 0.03 microM cortisol. The combination of insulin, prolactin and 3 microM cortisol or insulin and prolactin elicited smaller increases. The translatable mRNA for alpha-lactalbumin in cells cultured with insulin, cortisol and prolactin for 5 days was detected, but not in cells with insulin and cortisol. Both a high and low concentration of cortisol in combination with insulin increased prolactin binding capacity of cultured cells to the same extent, whereas cells cultured with insulin alone contained much lower levels of prolactin binding. The difference in the capacity of prolactin binding between cells cultured with insulin alone and those cultured with insulin and cortisol correlated well with their ability to synthesize casein in response to prolactin.  相似文献   

7.
Summary The organ culture of the mammary gland of lactating mice was used to examine the response of the differentiated gland to lactogenic stimuli, insulin, cortisol, and prolactin. Time course studies showed that casein synthesis in cultured tissue decreased rapidly during the first 2 d despite the presence of the three hormones, but on the 3rd d tissue cultured with either insulin and prolactin or all three hormones regained the ability to synthesize milk proteins, casein, and α-lactalbumin: a greater increase occurred in the three hormone system. The delayed addition of prolactin on Day 2 to the culture system containing insulin and cortisol also stimulated casein synthesis. The addition of cytarabine, which inhibited insulin-dependent cell proliferation in cultured explants, did not block the rebound of milk protein synthesis. The results indicate that in the presence of insulin, cortisol, and prolactin mammary epithelial cells in culture first lose and then regain the ability of synthesizing milk protein without requiring the formation of new daughter cells.  相似文献   

8.
Masayoshi Ono  Takami Oka 《Cell》1980,19(2):473-480
The dose-response relationship between cortisol and the accumulation of the two milk proteins, casein and α-lactalbumin, was studied in organ culture of mammary gland from midpregnant mice. The accumulation of casein was low in culture with insulin but was enhanced by the further addition of prolactin. Further increases in casein were effected by the addition of cortisol in increasing concentrations up to 3 × 10?6 M, which was optimal for the accumulation of this protein. The content of α-lactalbumin in explants was similarly low in culture with insulin alone, but, in contrast, was increased to a maximal level by the addition of insulin and prolactin. The addition of cortisol up to 3 × 10?8 M with insulin and prolactin did not further increase the level of α-lactalbumin; in fact, at concentrations above 3 × 10?7 M the steroid caused progressive inhibition of the accumulation of this protein in cultured explants. Studies of the appearance of casein and α-lactalbumin in incubation medium during organ culture revealed the presence of substantial amounts of these milk proteins. During the first 2 days of culture with insulin, prolactin and 3 × 10?6 M cortisol, the amount of α-lactalbumin in culture medium was almost equal to the level found in tissue, whereas in the presence of 3 × 10?8 M cortisol, or in the absence of exogenous steroid, over 70% of total α-lactalbumin was retained in tissue. The observed difference in the amount of α-lactalbumin in culture medium can, however, only partially account for the inhibitory effect of high doses of cortisol on the accumulation of α-lactalbumin in cultured mammary explants. In contrast to α-lactalbumin, the relative amount of casein in culture medium containing insulin and prolactin was smaller—19% of total casein synthesized—and was further reduced to 16% and 11% of the total in the presence of 3 × 10?8 M and 3 × 10?6 M cortisol, respectively. The above results indicate that cortisol exerts dose-dependent differential actions on the accumulation of casein and α-lactalbumin in mouse mammary epithelium in vitro.  相似文献   

9.
1. The level of beta-lactoglobulin mRNA increased maximally in mammary explants from late pregnant tammars cultured for 3 days in media containing either prolactin or insulin, cortisol and prolactin. 2. The same level of accumulation occurred when explants were first cultured for 4 days in a chemically defined medium with no exogenous hormones, serum or growth factors, suggesting that the tissue remains viable and hormone-responsive during the initial incubation. 3. Mammary explants cultured for 4 days in medium with no hormones demonstrated a progressive increase in the rate of RNA and DNA synthesis suggesting that the tissue is under a positive autocrine/paracrine stimulus.  相似文献   

10.
The effects of insulin, cortisol, prolactin, 3,3',5-triiodo-L-thyronine (L-T3) and progesterone on the synthesis of total protein and casein in mammary explants from pregnant goats were studied. In the absence of hormones and in the presence of insulin plus cortisol the rate of incorporation of 14C-leucine into proteins that were precipitated with the anti-casein antibody decreased during culture. The addition of prolactin to hormonal combination of insulin and cortisol caused large stimulation of rates of casein synthesis. Maximum incorporation of leucine was attained between 3 and 5 days of culture in the presence of 0.5 microgram ml-1 of prolactin. Prolactin stimulated-casein and total protein synthesis were not consistently affected by the addition of L-T3 or progesterone. The inhibition of DNA synthesis by hydroxyurea or cytosine-arabinofuranoside had no effect on casein synthesis in mammary explants from pregnant goats.  相似文献   

11.
The role of glucocorticoid in the prolactin-induced accumulation of casein mRNA in mammary explants from midpregnant mice has been studied after an initial 4-day incubation to allow the level of messenger to decline to undetectable levels. Subsequent culture for 3 days: 1) with insulin and glucocorticoid did not result in detectable accumulation of messenger; 2) with insulin and prolactin resulted in a very small accumulation; 3) with insulin, glucocorticoid and prolactin elicited a 20-fold greater accumulation of casein mRNA than the system with only insulin and prolactin. Therefore, although glucocorticoids are not an absolute requirement for casein gene expression in mouse mammary tissue, they are necessary for massive accumulation of casein mRNA induced by prolactin. It appears that this dependence is not a result of either mRNA stabilization or alteration in prolactin receptors. By contrast, stimulation of total epithelial RNA synthesis by prolactin does not have this glucocorticoid dependency.  相似文献   

12.
The anatomical and physiological characteristics of thoracic and abdominal mammary glands were investigated in order to understand why the incidence of mammary tumors is higher in the former. Epithelium in explants from both sets of glands required DNA synthesis, insulin, cortisol, and prolactin for full differentiation as measured by alpha-lactalbumin accumulation. The temporal pattern and magnitude of response were the same with respect to both DNA synthesis and differentiation; however, the epithelium in explants from the thoracic glands required concentrations of hormones for alpha-lactalbumin accumulation only one-half to one-third those from abdominal glands. Tumor distribution did not appear to correlate with mammary gland histology, size, or epithelial content.  相似文献   

13.
When mammary gland explants from mid-pregnant rats were incubated with insulin (5 μg/ml) and [3H]cortisol (5 μg/ml) for one day, the tissue accumulated 1.69 μg cortisol/g wet tissue. During a second incubation with insulin and prolactin (5 μg/ml), only 20% of the steroid was lost per day. Such retention of glucocorticoid had an important biological consequence: the tissue exposed for one day to insulin and cortisol showed a transient stimulation of casein synthesis during a subsequent, five-day incubation with insulin and prolactin. No casein synthesis was detected, if the first culture medium contained only insulin. In conclusion, mammary gland explants from mid-pregnant rats require a glucocorticoid for casein synthesis, but this requirement may be obscured if the explants are initially incubated in medium containing cortisol, since they are capable of accumulating and retaining this steroid. Similar interpretative difficulties may arise in studies on other steroid-tissue relationships.  相似文献   

14.
Summary Cortisol was previously shown to elicit a concentration-dependent inhibition of α-lactalbumin accumulation in midpregnant mouse mammary gland cultured in medium containing optimal concentrations of 5 μg/ml prolactin and insulin. In contrast, casein accumulation under these conditions was progressively stimulated by addition of increasing amounts of cortisol (Ono, M.; Oka, T. Cell 19: 473–480; 1980). In the present study we found that in the presence of a suboptimal concentration of 0.5 μg/ml prolactin, 2.8×10−9 M to 2.8×10−7 M cortisol stimulated α-lactalbumin accumulation. Furthermore, higher concentrations of cortisol produced a smaller inhibition of α-lactalbumin accumulation as compared to that obtained in cultures containing 5 μg/ml prolactin. The maximal increase in α-lactalbumin accumulation attained in the presence of 1.4×10−8 M cortisol, 0.5 μg/ml prolactin, and insulin was comparable to that observed in culture containing 5 μg/ml prolactin and insulin. Similar results were obtained in a cortisol concentration-response study of α-lactalbumin accumulation in cultures containing a suboptimal concentration of 0.5 μg/ml human placental lactogen. Measurement of the rate of α-lactalbumin synthesis in cultured tissue indicated that the opposing effects of low and high concentrations of cortisol on α-lactalbumin accumulation involved an alteration in the rate of synthesis of the milk protein. In contrast to α-lactalbumin, the synthesis of casein was stimulated in a concentration-dependent manner by addition of cortisol that acted synergistically with either 0.5 μg/ml or 5 μg/ml prolactin. The maximal increases were obtained in the presence of 2.8×10−6 M cortisol. These results indicated that the action of cortisol on α-lactalbumin accumulation can be modulated by the concentration, of prolactin and suggest that the interplay between cortisol and prolactin in regulation of α-lactalbumin synthesis may be different from that involved in casein synthesis.  相似文献   

15.
1. Explants of mammary gland from mid-pregnant rabbits were cultured in Medium 199 containing combinations of insulin, prolactin and cortisol. With hormone combinations which included prolactin, a sustained increase in the apparent rate of synthesis and in the amount of fatty acid synthetase was measurable immunologically. Maximum increase was produced with insulin, prolactin and cortisol present together. 2. With prolactin present alone, synthetase activity in the explants decreased to undetectable values after 1 day in culture, whereas the incorporation of l-[U-(14)C]leucine into immunodetectable material increased. Prolactin may therefore direct the synthesis of immunologically cross-reactive precursors of fatty acid synthetase which are enzymically inactive. 3. Culture with dibutyryl cyclic AMP plus theophylline in the presence of insulin, prolactin and cortisol delayed the increase in the rate of synthesis and accumulation of the synthetase. These compounds may also prevent the apparent decrease in the rate of degradation of the synthetase which occurs on day 2 of culture. 4. A large decrease in the apparent rate of degradation of the synthetase on day 2 of culture occurs during culture with hormone combinations which include prolactin. The protein obtained by centrifugation of explant homogenates for 6min at 14000g(av.) is degraded continuously throughout the culture period. 5. This decrease in the apparent rate of degradation of the synthetase was measured by radio-immunological precipitation. It is probably part of a regulated programme of enzyme degradation and not a reflexion of the reutilization of radioactive amino acids for the following reasons. (a) The calculated increase in the amount of the synthetase in explants on day 2 of culture with insulin, prolactin and cortisol was approximately equal to the measured increase of the enzyme complex which accumulates in the explants. This suggests little or no enzyme degradation has occurred. (b) Explants were cultured for 24h with insulin, prolactin and cortisol. They were then incubated with l-[U-(14)C]leucine, washed and incubated again for up to 4(1/2)h. l-[U-(14)C]Leucine rapidly equilibrated with the intracellular amino acid pool. Within 10min of incubation after washing explants to remove endogenous l-[U-(14)C]leucine the previously linear incorporation of l-[U-(14)C]-leucine into total explant protein ceased. This suggests that protein is synthesized from an amino acid pool which rapidly equilibrates with amino acids in the culture medium. (c) Explants were cultured for 24h as described in (b) but after washing they were cultured with insulin, prolactin and cortisol for 24h. Approx. 90% of the radioactivity lost from the ;free' intracellular amino acid pool and from amino acids derived from the degradation of explant protein in this period was detected in the culture medium. This suggests that the ;free' intracellular amino acids and amino acids derived from protein degradation can equilibrate with amino acids in the medium. A residual ;free' radioactive amino acid pool was present in the tissue. (d) Casein represents approx. 20% of the protein synthesized after 1 day in culture with insulin, prolactin and cortisol. Histological evidence suggests that on day 2 of culture, casein is unlikely to be degraded in the tissue. No increase in the radioactivity incorporated into casein can be measured in the 23h after incubation of explants with l-[U-(14)C]leucine as described in (b). This suggests that the incorporation of radioactivity into proteins during culture after incubation with l-[U-(14)C]leucine is minimal. (e) Inhibition of protein synthesis in explants by cycloheximide after incubation with l-[U-(14)C]leucine does not reveal a latent continuous degradation of fatty acid synthetase on day 2 of culture which might have been masked by the high rates of protein synthesis and therefore the accumulation of the enzyme. 6. The conclusion is discussed that there is a real decrease (or even cessation) in the rate of degradation of fatty acid synthetase during the period when the enzyme accumulates in explants cultured with hormone combinations which contain prolactin.  相似文献   

16.
A number of growth factors can maintain hormonally-responsive epithelium in murine mammary explants as well as insulin, but only insulin can promote the synthesis of casein and alpha-lactalbumin, in the presence of glucocorticoid and prolactin. Anti-insulin receptor serum can elicit these effects of insulin on milk protein gene expression. The anti-serum is unique in its ability to mimic the developmental role of insulin in murine mammary epithelium.  相似文献   

17.
Depletion of proline from insulin, hydrocortisone, and prolactin-containing medium prior to incubating virgin mouse mammary explants prevents both DNA synthesis and functional differentiation in the mammary epithelial cells; however, DNA synthesis in the mammary stroma and total incorporation of radioactive amino acids into total protein appears to continue without hindrance. Removal of glycine instead of proline had no deleterious effect on either DNA replication in the hormone-stimulated epithelium or in its functional differentiation. Functional differentiation was determined by the induction of casein and alpha-lactalbumin synthesis in the insulin, hydrocortisone, and prolactin (IFPrl)-treated explant cultures. As a control, the induction of mouse mammary tumor virus (MMTV) gene expression, a corticosteroid-regulated function, was also measured. Neither the absence of proline or glycine prevented the glucocorticoid stimulation of MMTV gene expression. In contrast to mammary tissue from virgin mice, explants from nonpregnant primiparous mice responded fully to IFPrl stimulation with respect to DNA, casein, and alpha-lactalbumin synthesis in medium depleted of proline. These data suggest that the uncommitted epithelium of virgin mouse mammary glands requires the presence of exogenous proline in order to respond to lactogenic hormonal signals. We have demonstrated earlier that DNA synthesis is a prerequisite of functional differentiation in virgin mouse mammary explants (Smith and Vonderhaar, 1981, Dev. Biol., 88:167-179; Vonderhaar and Smith, 1982, J. Cell Sci, 53:97-114), although cytological differentiation proceeded unencumbered in explants prevented from synthesizing DNA. Here, without proline, neither cytological nor functional differentiation can be induced; this suggests that proline provides an essential metabolic interlock in the acquisition of lactogenic hormone responsiveness in uncommitted mouse mammary tissue.  相似文献   

18.
Amiloride, an inhibitor of Na+/H+ exchange, was added at various concentrations to the culture medium of rabbit mammary explants. In the concentration range 100-250 microM, amiloride progessively inhibited 14C-thymidine incorporation induced by insulin, EGF or prolactin. Up to 250 microM, amiloride, which did not inhibit basal protein synthesis, was not cytotoxic, but it reduced basal DNA synthesis at the highest concentration. Addition of amiloride to the culture medium of mammary explants also strongly inhibited the induction of casein synthesis and casein mRNA accumulation by prolactin. The inhibition by amiloride is therefore not specific of the mitogenic action of prolactin since this drug also prevented its lactogenic action. The data reported here describe a new inhibitory action of amiloride on the transmission of the lactogenic signals.  相似文献   

19.
Mammary explants from pregnant rats can be induced in regard to casein synthesis and alpha-lactalbumin activity when cultured in the presence of hydrocortisone, prolactin and levels of insulin approaching physiological concentrations. No detectable induction occurs in the absence of insulin. Although epidermal growth factor and multiplication stimulating activity, in the presence of hydrocortisone, can maintain the initial level of NADH-cytochrome c reductase as well as insulin, neither can substitute effectively for insulin in the induction of the milk proteins. Proinsulin, nerve growth factor, platelet-derived growth factor and fibroblast growth factor are also ineffective substitutes for insulin in this regard. Whereas prolonged tissue exposure to multiplication stimulating activity, hydrocortisone and prolactin does not result in induction of alpha-lactalbumin activity, subsequent addition of insulin leads to prompt response. The results suggest that the ability of insulin to function as a unique, essential factor in the induction of rat milk proteins is independent of its cell-maintenance activity. Thus, in addition to its well established functions in metabolic processes, insulin appears to play a vital role in certain developmental processes.  相似文献   

20.
Milk synthesis is initiated solely by prolactin in the pseudopregnant rabbit and glucocorticoids potentiate this action of prolactin. In organ culture, prolactin, in the presence or in the absence of insulin, enhances casein synthesis and cortisol (inactive alone) amplifies this action. Measurements of casein mRNA concentration in total cellular RNA, by hybridization with DNA complementary to casein mRNA, revealed that the stimulation of casein synthesis by the glucocorticoid is accompanied by an increase in the amount of casein mRNA. A systematic comparison of variations of these two parameters indicated that the major effect of glucocorticoids on lactogenesis in the rabbit at this stage of mammary gland development is mediated through an increase in the quantity of casein mRNA available for translation. No simultaneous control of casein mRNA translation by cortisol was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号