首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Satellite cells, liberated from pectoral muscle of juvenile dystrophic chickens by sequential treatment with collagenase, hyaluronidase, and trypsin and preplated to remove fibroblasts and cultured on gelatin proliferated rapidly, fused and formed confluent muscle cultures within 6 d in vitro with minimal contamination by fibroblasts. When identical isolation and culturing techniques were applied to muscle from age-mateched normal chickens proliferation and differentiation were slower, contamination with fibroblasts was much greater, and only a small number of myotubes were formed. After injection of the myotoxic anesthetic marcaine into normal pectoral muscle for 5 consecutive days, myotube formation was accelerated in satellite cell cultures, but the rate of differentiation was not as rapid as that occurring in cells from dystrophic muscle. This research was supported by a grant from the Muscular Dystrophy Association of Canada.  相似文献   

2.
Analysis of fibronectin expression during human muscle differentiation   总被引:4,自引:0,他引:4  
Fibronectin expression during human muscle differentiation was investigated by determining its distribution in foetal, normal adult and dystrophic muscle and in foetal, normal adult and dystrophic muscle cultures during myogenesis. Muscle sections and muscle cultures were studied by indirect immunofluorescence staining using polyclonal and monoclonal anti-human antibodies. Mass and clonal muscle cultures were prepared from foetal, adult and dystrophic muscle tissue. Immunofluorescence staining detected fibronectin on the epimysium, perimysium and endomysium of transverse sections of normal adult muscle, while sarcoplasm was devoid of this glycoprotein. In foetal muscle, some fibers showed a prominent ring of fibronectin. In mass and clonal cultures, myoblasts were found to synthesize and accumulate fibronectin while myotubes did not. No difference in fibronectin distribution was observed between Duchenne Muscular Dystrophy (DMD) and control myotubes. An enzyme-linked immunoassay (ELISA), performed on homogenated muscle, sonicated fibroblasts and muscle cells, showed a high fibronectin level in fibroblasts when compared with the other samples tested.  相似文献   

3.
Myofibrillar protein degradation was measured in 4-week-old normal (line 412) and genetically muscular-dystrophic (line 413) New Hampshire chickens by monitoring the rates of 3-methylhistidine excretion in vivo and in vitro. A method of perfusing breast and wing muscles was developed and the rate of 3-methylhistidine release in vitro was measured between 30 and 90min of perfusion. During this perfusion period, 3-methylhistidine release from the muscle preparation was linear, indicating that changes in 3-methylhistidine concentration of the perfusate were the result of myofibrillar protein degradation. Furthermore, the viability of the perfused muscle was maintained during this interval. After 60min of perfusion, ATP, ADP and creatine phosphate concentrations in pectoral muscle were similar to muscle freeze-clamped in vivo. Rates of glucose uptake and lactate production were constant during the perfusion. In dystrophic-muscle preparations, the rate of 3-methylhistidine release in vitro (nmol/h per g of dried muscle) was elevated 2-fold when compared with that in normal muscle. From these data the fractional degradation rates of myofibrillar protein in normal and dystrophic pectoral muscle were calculated to be 12 and 24% respectively. Daily 3-methylhistidine excretion (nmol/day per g body wt.) in vivo was elevated 1.35-fold in dystrophic chickens. Additional studies revealed that the anti-dystrophic drugs diphenylhydantoin and methylsergide, which improve righting ability of dystrophic chickens, did not alter 3-methylhistidine release in vitro. This result implies that changes in myofibrillar protein turnover are not the primary lesion in avian muscular dystrophy. From tissue amino acid analysis, the myofibrillar 3-methylhistidine content per g dry weight of muscle was similar in normal and dystrophic pectoral muscle. More than 96% of the 3-methylhistidine present in pectoral muscle was associated with the myofibrillar fraction. Dystrophic myofibrillar protein contained significantly less 3-methylhistidine (nmol/g of myofibrillar protein) than protein from normal muscle. This observation supports the hypothesis that there may be a block in the biochemical maturation and development of dystrophic muscle after hatching. Free 3-methylhistidine (nmol/g wet wt.) was elevated in dystrophic muscle, whereas blood 3-methylhistidine concentrations were similar in both lines. In summary, the increased myofibrillar protein catabolism demonstrated in dystrophic pectoral muscle correlates with the increased lysosomal cathepsin activity in this tissue as reported by others.  相似文献   

4.
We have analysed protein degradation in primary cultures of normal and dystrophic chick muscle, in fibroblasts derived from normal and dystrophic chicks, and in human skin fibroblasts from normal donors and from patients with Duchenne muscular dystrophy (DMD). Our results indicate that degradative rates of both short- and long-lived proteins are unaltered in dystrophic muscle cells and in dystrophic fibroblasts. Longer times in culture and co-culturing chick fibroblasts with the chick myotubes do not expose any dystrophy-related abnormalities in protein catabolism. Furthermore, normal and dystrophic muscle cells and fibroblasts are equally able to regulate proteolysis in response to serum and insulin. We conclude that cultures of chick myotubes, chick fibroblasts, and fibroblasts derived from humans afflicted with DMD are not appropriate models for studying the enhanced protein degradation observed in dystrophy.  相似文献   

5.
Summary Dilations of the sarcotubular system and misaligned myofilaments have been reported as early indicators of muscular dystrophy in skeletal muscle. Since the developing tubular component is believed instrumental in initial myofilament alignment during myogenesis, tubular development is evaluated using normal and dystrophic chick embryo skeletal muscle and cultures of normal and dystrophic embryonic pectoral muscle incubated in the presence of horse spleen ferritin. Comparisons of the findings show that periodic tubules are absent from dystrophic somitic muscle and that invaginating tubules from the sarcolemma are found in fewer, randomly located areas of dystrophic pectoral muscle cells. The results indicate that the tubular component is not involved in the bizarre vesiculations seen in mature dystrophic muscle, however, the malalignment of dystrophic myofilaments is probably the result of the poorer development of the T system in this muscle.  相似文献   

6.
Antibody prepared against troponin-C, the calcium binding component of the troponin complex, was reacted with I band segments, and the distribution of antibody binding was assessed by immuno-electron microscopy. The I segments were isolated from glycerinated pectoral muscle which was prepared from normal adult chickens and from dystrophic chickens of strain 308. The antibody was deposited at 384 Å ± 7 Å intervals along the thin filaments of the normal muscle. In contrast to the normal controls the dystrophic muscle did not exhibit a distinct periodicity when reacted with anti-troponin-C. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed that although protein bands corresponding to troponin-C could be observed in the gels of the dystrophic preparations, the troponin-C band had migrated slower than that from normal thin filaments. It is concluded that avian muscular dystrophy produces an alteration of the structure of troponin-C resulting in (1) an inability of the protein to combine with its specific antibody and (2) a change in its electrophoretic behavior.  相似文献   

7.
Abstract: The levels and molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and pseudocholinesterase (ΦChE, EC 3.1.1.8) were examined in various skeletal muscles, cardiac muscles, and neural tissues from normal and dystrophic chickens. The relative amount of the heavy (Hc) form of AChE in mixed-fibre-type twitch muscles varies in proportion to the percentage of glycolytic fast-twitch fibres. Conversely, muscles with higher levels of oxidative fibres (i.e., slow-tonic, oxidative-glycolytic fast-twitch, or oxidative slow-twitch) have higher proportions of the light (L) form of AChE. The effects of dystrophy on AChE and ΦChE are more severe in muscles richer in glycolytic fast-twitch fibres (e.g., pectoral or posterior latissimus dorsi, PLD); there is no alteration of AChE or ΦChE in a slow-tonic muscle. In the pectoral or PLD muscles from older dystrophic chickens, however, the AChE forms revert to a normal distribution while the ΦChE pattern remains abnormal. Muscle ΦChE is sensitive to collagenase in a similar way as is AChE, thus apparently having a similar tailed structure. Unlike skeletal muscle, cardiac muscle has very high levels of ΦChE, present mainly as the L form; AChE is present mainly as the medium (M) form, with smaller amounts of L and Hc. The latter pattern of AChE forms resembles that seen in several neural tissues examined. No alterations in AChE or ΦChE were found in cardiac or neural tissues from dystrophic chickens.  相似文献   

8.
Abstract— Acetylcholinesterase (AChE) and pseudocholinesterase (°ChE) were studied in vivo and during the first several months of development of pectoral and posterior latissimi dorsi (PLD) muscles in normal and dystrophic chickens. Muscle extracts were prepared in a high ionic strength-nonionic detergent medium in the presence of protease inhibitors, in order to obtain complete solubilization and to prevent degradation of intrinsic molecular forms of both enzymes. In both normal and dystrophic pectoral muscles levels of AChE and °ChE increase rapidly in vivo, °ChE accounting for 5–10% of total cholinesterase activity. In the normal pectoral muscle the concentration of both enzymes drops rapidly after hatching with increasing muscle mass; total AChE per muscle remains relatively constant for 30 days post-hatch. In the dystrophic pectoral muscle both AChE and °ChE accumulate after hatching, resulting in greatly elevated levels (approx 10–25-fold) of both enzymes throughout the period studied. Multiple molecular forms of AChE and °ChE are observed in the pectoral muscle by sucrose gradient centrifugation. Four principal forms are distinguished: two light (L1, L2), one medium (M), and one heavy (H2). The °ChE forms are 0.5–1.0 S units lighter than the corresponding AChE forms. L2 is the predominant light form of AChE, whereas L1 is the major light °ChE form detected. The lighter forms of AChE predominate in normal and dystrophic embryonic pectoral muscle at day 14, being replaced by the H2 form by day 19. H2 is the major °ChE form detected at day 19. After hatching, H2 AChE is the predominant form found in both of the normal muscles studied. In the dystrophic pectoral muscle, progressive accumulation of the L2 form of AChE is detected as early as day 4 post-hatch; this form eventually becomes predominant, although the heavier forms are also elevated. In PLD muscle the same phenomenon occurs, but with a slower time course. In dystrophic pectoral muscle a similar rise in the L1 form of °ChE is first observed by day 4, with heavier forms also elevated in the mature muscle. Thus the alteration in the control of these two enzymes in dystrophic fast-twitch muscles results in an accumulation of the light forms of AChE and °ChE.  相似文献   

9.
The rates of loss of adenylate kinase and creatine kinase from the circulation after intravenous injection of homogenous chicken skeletal muscle enzymes were examined to determine the role of plasma clearance rates in determining the plasma levels of these enzymes in normal and dystrophic chickens. The rapid clearance of adenylate kinase activity (average half-life of 5 min) and the slower biphasic clearance of creatine kinase activity (average half-lives of 0.95 and 11 hr) are consistent with the elevation of creatine kinase but not adenylate kinase in the blood plasma of dystrophic chickens compared to normal chickens. The rates of clearance of these enzymes were similar in normal chickens compared to dystrophic chickens. Radioiodinated enzymes were cleared at similar, but slightly more rapid rates than the loss of enzyme activity. The loss of adenylate kinase activity from the circulation may be due in part to inactivation since adenylate kinase activity is rapidly inactivated in serum in vitro, and because no increase in adenylate kinase activity is observed in the most specific sites of clearance of the radioiodinated enzyme, the liver and spleen. The comparison of enzyme activities in press juices to the activities in high-ionic-strength homogenates of muscle tissue from normal and dystrophic muscle, indicates that adenylate kinase activity is not associated with intracellular structures to the extent that would prohibit release from dystrophic muscle tissue. These results, and those presented previously with regard to plasma levels and clearance rates of AMP aminohydrolase and pyruvate kinase in normal and dystrophic chickens (11) support our hypothesis that the rates of loss of muscle enzyme activities from the circulation are important in determining the circulating levels of muscle enzymes in dystrophic chickens. Furthermore, from the measurement of plasma levels and clearance rates of creatine kinase, it was estimated that the efflux rate of creatine kinase from dystrophic muscle tissue is 2.0% of the total breast muscle creatine kinase per day.  相似文献   

10.
We have studied the protein composition of the pectoralis superficialis muscle of genetically dystrophic (New Hampshire line 413) and normal control (line 412) chickens by one- and two-dimensional gel electrophoresis. A protein, referred to hereafter as the 30 kDa abnormal protein, was specifically detected in the affected muscle. It was purified to homogeneity, and its molecular properties were studied. It is a monomer with a molecular mass of approximately 30 kDa and an isoelectric point of about pI 8.4. We have screened by Western blotting a variety of muscles from line 412 and line 413 chickens for the presence of the 30 kDa protein. While the pattern of total protein is very similar in all cases, the 30 kDa protein was not detected in the pectoralis superficialis muscle of line 412 chickens. However, the immunoreactive bands were detected in the sartorius muscle and the tensor fasciae latae muscle from dystrophic and normal chickens. Interestingly, the immunoreactive bands of normal skeletal muscles are smaller in molecular weight than those of dystrophic skeletal muscles. To determine the early time sequence of the appearance of the abnormal protein, we studied muscles from embryos and post-hatched chickens at various ages. The abnormal protein was detected in dystrophic muscles as early as 15 days ex ovo and occurred throughout development up to six months ex ovo. Although the implication of the dystrophy-associated appearance of the 30 kDa protein in the affected muscle is not clear at present, it would be of particular interest to elucidate the biochemical functions of the 30 kDa protein in the affected muscle (pectoralis superficialis muscle) of genetically dystrophic chicken.  相似文献   

11.
The pathogenesis of the human muscular dystrophies is unknown, and several competing hypotheses have been proposed. The vascular hypothesis states that muscle fibre necrosis occurs in dystrophy as a result of transient muscle ischemia. Although abnormalities of the vascular system may be demonstrated in dystrophy, their role in pathogenesis remains obscure. The responses to serotonin (5-HT) and noradrenaline (NA) were examined in isolated ischiatic artery preparations from normal and genetically dystrophic chickens. The tension generated in response to 5-HT was greater in arteries from normal chickens than in arteries from dystrophic chickens, whereas responses to NA were similar. Analysis of the concentration-response relationships demonstrated that the dystrophic ischiatic artery was less sensitive to 5-HT than was the normal artery, although the sensitivity to NA was similar in both vessels. The results of this study are not consistent with the view that muscle fibre necrosis in avian dystrophy is a consequence of muscle anoxia. These data do demonstrate pharmacological differences between dystrophic avian arteries and arteries from normal chickens, but their presence may represent merely the expression of dystrophy in vascular smooth muscle.  相似文献   

12.
Primary cultures of myogenic cells from progressively older embryonic and adult chickens were incubated in medium containing Merocyanine 540 (MC540) and were exposed to white light during the incubation period. After exposure, the cultures were followed to determine cell survival and differentiation. MC540 attached to the surface membranes of all cells. In cultures from 10-day embryos (E10 cells), concentrations of MC540 greater than or equal to 60 micrograms/ml resulted in death of nearly all myogenic cells upon exposure to light, but non-myogenic cells survived and replicated. Below 60 micrograms/ml, there was a dose-dependent reduction in muscle differentiation. At concentrations less than 40 micrograms/ml, there was no effect on myogenesis. Cultures of cells from 18-day (E18) embryos (myogenic stem cells) and from adult muscle (satellite cells) were resistant to doses of MC540 that killed E10 cells. E14 myogenic cell populations contained both resistant and sensitive sub-populations. Terminally differentiated muscle cells were more sensitive to MC540 than precursor cells from any age embryo. Progeny of E18 cells acquired sensitivity to MC540 as differentiation proceeded. In clonal cultures, cells that normally give rise to small muscle clones (committed cells) were selectively destroyed by exposure to the dye. These observations demonstrate that an MC540-resistant myogenic population is present in low numbers in 10-day embryonic pectoral muscle. As development proceeds, this population increases such that, by 18 days of gestation, most of the myogenic cells are resistant to MC540. The results also suggest that embryonic chick myogenic stem cells and adult satellite cells have surface membrane properties which differ from those of their committed progeny.  相似文献   

13.
Summary Primary cultures of muscle from normal (line 412) and dystrophic (line 413) chick embryos were exposed to corticosterone-21-acetate (C-21-A) or sodium ibuprofen (Motrin) for 28 d after myotube formation. Ibuprofen (0.5 to 500 μg/ml) or C-21-A (0.4 to 40 μg/ml)-treated cultures were fixed and assessed semiquantitatively using phase microscopy. On this basis, ibuprofen (50 μg/ml) and C-21-A (40 μg/ml) seemed to be effective in maintaining both normal and dystrophic muscle cultures. Using ibuprofen and C-21-A at these concentrations, experiments were repeated and analyzed quantitatively. Ibuprofen maintained culture viability (up to 68% more myotubes than untreated controls) but had no significant effect on the number of striated cells. C-21-A effectively maintained culture viability (up to 73% increase) and strongly promoted the formation of striated cells in these cultures (up to a sixfold increase). Both normal and dystrophic cultures were affected similarly by these agents, but the dystrophic cultures showed more consistent if not more extensive improvements in the parameters examined here. Thus, it seems that ibuprofen and C-21-A may affect both normal and dystrophic muscle directly to maintain survival and even promote differentiation.  相似文献   

14.
Dispersed cell cultures, derived from the forelimbs and hindlimbs of genetically dystrophic (dy/dy) and normal (+/+) day mouse embryos were studied with phase contrast microscopy and time lapse cinematography. The composition of the cell populations, and the prefusion and fusion activities of the cells were analysed. Forelimbs of both normal and dystrophic embryos consistently yielded fewer mononucleated cells, more fat cells and fewer myoblasts than hindlimbs, but there was no difference in the population of cells from normal and dystrophic limbs. During prefusion, myoblasts (both normal and dystrophic) exhibited (1) an apparent lack of contact inhibition of locomotion, which was in actuality an extensive movement of one myoblast under another; (2) formation of prefusion aggregates that broke up and realigned into new aggregates before fusion; (3) a special type of post-mitotic association and reassociation, not found among fibroblasts. Onset of rapid cell fusion of myoblasts occurred in a 4 to 8 h period, and was directly dependent upon initial cell concentration. No differences were found between cultures of normal and dystrophic cells in their prefusion activities or in time of onset of rapid cell fusion, when initial concentrations of cells were kept constant. The results of the present study are compared with those of other in vitro studies of dystrophic muscle.  相似文献   

15.
Thiol protease and cathepsin D activities were studied in extracts from hindlimb muscle of 60-day-old normal and dystrophic mice, strain 129 ReJ, and from cultured normal and dystrophic cells. Total thiol protease activity in dystrophic muscle extracts was 3.5 times higher than in normal muscle extracts, while cathepsin D, activity was 2.2 times greater in dystrophic muscle compared with normal muscle. Activation (pH 4.5, 30 degrees C) of latent thiol protease activity in extracts of muscle occurred concomitant with the inactivation or dissociation of endogenous protease inhibitors. Thiol protease assays revealed a higher ratio of active to inactive protease activity in extracts from dystrophic muscle than from normal muscle. Cultured myoblasts (L69/1) were found to contain 30-fold more thiol protease(s) and 6-fold more cathepsin D activity than whole muscle. Cells established from dystrophic muscle and grown in culture for periods up to 6 months were more responsive to thiol protease activation conditions than similar cultures derived from normal muscle. From data on the rate and extent of thiol protease activation in extracts from dystrophic cells and hindlimb muscle compared with normal tissue, it appears that cells and tissues from dystrophic mice contain a lower level of protease inhibitors than cells and tissues from normal mice.  相似文献   

16.
The specific radioactivity of [3H]Leu in the extracellular, intracellular, and Leu-tRNA pools of normal (white leghorn) and dystrophic (line 307) embryonic chick breast muscle cultures was analyzed as a function of equilibration time and extracellular Leu concentration (0.05-5 mM). The primary results were the following 1) [3H]Leu equilibrated to a constant specific radioactivity in the intracellular and Leu-tRNA pools within 2 min after addition to both normal and dystrophic cultures. 2) After equilibration, the extracellular [3H] Leu specific radioactivity in dystrophic cell culture medium was lower than that of medium exposed to normal cells (especially at low Leu concentrations), probably because of increased release of unlabeled Leu from the dystrophic cells as a result of faster protein breakdown. Accordingly, the specific radioactivities in the intracellular and the Leu-tRNA pools were also lower in dystrophic cells. 3) At 5 mM extracellular Leu, the specific radioactivity in the Leu-tRNA pool was approximately 40% lower than the specific radioactivity in the intracellular pool in both normal and dystrophic cells. Thus, high concentrations of extracellular Leu cannot be used to "flood out" reutilization of unlabeled Leu (released by protein degradation) during protein synthesis. 4) At 5.0 mM extracellular Leu, the specific radioactivity of [3H]Leu in the intracellular pool was comparable to that in the extracellular pool in normal and dystrophic cells; however, the specific radioactivity of Leu-tRNA (i.e. the immediate precursor to protein synthesis) was only 55-65% of the extracellular specific radioactivity in normal and dystrophic cells. In conclusion, reutilization of Leu from protein degradation is higher in dystrophic muscle cell cultures than in normal muscle cell cultures, and accurate rates of protein synthesis in cell cultures can only be obtained if specific radioactivity of amino acid in tRNA is measured.  相似文献   

17.
Skeletal muscle fibers are surrounded by an extracellular matrix. The extracellular matrix is composed of glycoproteins, collagen, and proteoglycans. Proteoglycans have been suggested to play an important functional role in tissue differentiation. However, an understanding of how the extracellular matrix affects skeletal muscle development and function is largely unknown. In the avian genetic muscle weakness, low score normal (LSN), a late embryonic increase in the expression of decorin is followed by a subsequent increase in collagen crosslinking. The sarcomere organization, collagen fibril diameter and organization were investigated using transmission electron microscopy. Measurements were made at 20 days of embryonic development and 6 weeks posthatch. These studies showed changes in sarcomere organization and deterioration of muscle fibril structure in the LSN pectoral muscle. In vitro satellite cell cultures were developed and assayed for mitochondrial activity, and protein synthesis and degradation. In these analyses, mitochondrial activity from LSN satellite cells was significantly higher than those from normal pectoral muscle satellite cells. Protein synthesis rates between the normal and LSN satellite cell-derived myotubes were similar, but protein degradation rates were higher in the LSN cultures. Based on the reported functions of decorin as a regulator of cell proliferation and collagen fibril organization, it is possible that the late embryonic increase in decorin may be influencing the alterations in LSN sarcomere and collagen organization.  相似文献   

18.
White and red muscles of normal and genetically dystrophic chickens were compared with regards to activity levels of three soluble enzymes, glyceraldehyde-3-phosphate dehydrogenase, creatine phosphokinase, and acetyl phosphatase. In dystrophic white muscle (pectoral), activity of the two sulfhydryl enzymes, glyceraldehyde-3-phosphate dehydrogenase and creatine phosphokinase, was preferentially lost from the sarcoplasm resulting in decreased specific activities. By contrast, acetyl phosphatase was preferentially retained and showed increased specific activity. Dystrophic white muscle had decreased sulfhydryl content in the soluble proteins, severe reduction in muscle mass, fatty infiltration, and fragmentation of fibers. Red dystrophic muscles (thigh) were minimally involved in accordance with the known sparing of red fibers. Enzyme activities were correlated with histological observations. The results suggested that the disease process in dystrophic white muscle may be related to alterations in the sulfhydryl groups of proteins. The data are correlated with the beneficial effects of our treatment of hereditary avian dystrophy with the sulfhydryl compound, penicillamine (Chou, T.H., Hill, E.J., Bartle, E., Woolley, K., LeQuire, V., Olson, W., Roelofs, R., and Park, J.H. (1975) J. Clin. Invest. 56, 842-849).  相似文献   

19.
We studied the effect of conditioned medium (CM) obtained from cultures of oestrogen-receptor positive breast cancer MCF7 cell line on the differentiation, proliferation and apoptosis patterns of cultured breast fibroblasts from normal interstitial and malignant stromal tissue. Fibroblasts were grown in the presence or absence of CM and examined for the differentiation pattern by immunofluorescence and Western blotting procedures, for proliferation profile by Ki67 expression, and for apoptosis by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling technique. Monoclonal antibodies specific for non-muscle (NM), smooth muscle (SM) lineage and differentiation markers were applied to these cultures. CM is able to induce a SM-like differentiation in interstitial fibroblasts, i.e., essentially myofibroblast formation. Fibroblasts from tumour stroma showed the presence of a small number of smooth muscle cells (SMC) along with a large number of myofibroblasts. Treatment of these cultures with CM was unable to change this pattern. Only normal fibroblasts were responsive to the proliferation/apoptotic-inhibitory effect of the CM. These data suggest that structural and functional differences exist between stromal fibroblasts from normal breast and breast cancer with respect to the responsiveness to soluble factors present in the CM. We hypothesize that the lack of in vitro sensitivity to CM shown by 'tumour' fibroblasts is the result of an in vivo inherent and stable phenotypic change on the fibroblasts surrounding breast tumour cells occurring via a paracrine mechanism.  相似文献   

20.
The amino acid composition data on types I, III, IV and V collagen isolated from embryonic dystrophic skeletal muscle strongly indicate that alterations in collagen synthesis occur in intramuscular connective tissue of developing muscles in embryonic dystrophic chickens. The changes observed in the amino acid composition of dystrophic collagen were: (a) a selective removal of polar amino acids and substitution with non-polar amino acids; (b) significant decreases in basic (lysine, hydroxylysine and arginine) and hydroxylated (4-hydroxyproline and hydroxylysine) amino acids; and (c) significant increases in the amounts of glycine, proline and alanine. The amino acid substitutions suggest a genetic alteration in the collagen synthesizing process and a change in its structure. The variations in amino acid composition of collagen from dystrophic chickens could give rise to a decrease in both inter- and intramolecular cross-linking, thus decreasing the stability and functionality of newly formed collagen fibrils. The differences associated with the dystrophic collagen reported in this study are probably due to the differences in primary structure in terms of amino acid sequence rather than post-translational modifications. The structural differences noted would also lead to an alteration of the role collagen plays in regulating the differentiation of developing muscles. The changes in amino acid structure strongly suggest that the 'collagen' formed by dystrophic chickens should be considered a collagen-like protein or 'collagenoid'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号